
X-Engine: An Optimized Storage Engine for
Large-scale E-commerce Transaction Processing

Gui Huang, Xuntao Cheng, Jianying Wang, Yujie Wang, Dengcheng He,
Tieying Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang Li

{qushan,xuntao.cxt,beilou.wjy,zhencheng.wyj,dengcheng.hedc,
tieying.zhang,lifeifei,sh.wang,mingsong.cw,junyu}@alibaba-inc.com

Alibaba Group

Abstract
Alibaba runs the largest e-commerce platform in the world

serving more than 600 million customers, with a GMV (gross
merchandise value) exceeding USD 768 billion in FY2018.
Online e-commerce transactions have three notable char-
acteristics: (1) drastic increase of transactions per second
with the kickoff of major sales and promotion events, (2)
a large number of hot records that can easily overwhelm
system buffers, and (3) quick shift of the “temperature” (hot
v.s. warm v.s. cold) of different records due to the availability
of promotions on different categories over different short
time periods. For example, Alibaba’s OLTP database clusters
experienced a 122 times increase of transactions on the start
of the Singles’ Day Global Shopping Festival in 2018, pro-
cessing up to 491,000 sales transactions per second which
translate to more than 70 million database transactions per
second. To address these challenges, we introduce X-Engine,
a write-optimized storage engine of POLARDB built at Al-
ibaba, which utilizes a tiered storage architecture with the
LSM-tree (log-structured merge tree) to leverage hardware
acceleration such as FPGA-accelerated compactions, and
a suite of optimizations including asynchronous writes in
transactions, multi-staged pipelines and incremental cache
replacement during compactions. Evaluation results show
that X-Engine has outperformed other storage engines under
such transactional workloads.
CCS Concepts

• Information systems→Data accessmethods;DBMS
engine architectures;Database transaction processing.
Keywords

OLTP database, storage engine, e-commerce transaction

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5643-5/19/06.
https://doi.org/10.1145/3299869.3314041

ACM Reference Format:
Gui Huang, Xuntao Cheng, JianyingWang, Yujie Wang, Dengcheng
He, and Tieying Zhang, Feifei Li, Sheng Wang, Wei Cao, and Qiang
Li. 2019. X-Engine: An Optimized Storage Engine for Large-scale
E-commerce Transaction Processing. In 2019 International Confer-
ence on Management of Data (SIGMOD’19), June 30-July 5, 2019,
Amsterdam,Netherlands. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3299869.3314041

1 Introduction
Alibaba runs the world’s largest and busiest e-commerce

platform consisting of its consumer-to-consumer retail mar-
ket Taobao, business-to-business market Tmall, and other
online markets, serving more than 600 million active con-
sumers with a GMV exceeding USD 768 billion in FY2018.
Such online shopping markets have created new ways of
shopping and selling. As an example, an online promotion
operation can quickly scale its attraction to global customers
as soon as it starts, because online shops in a digital market
are free from physical restrictions compared to offline brick
and mortar stores.
The processing of e-commerce transactions is the back-

bone of online shopping markets. We find that such transac-
tions have three major characteristics: (1) drastic increase in
transactions per second with the kickoff of major sales and
promotional events, (2) large amount of hot records that can
easily overwhelm system buffers, and (3) quick shift of the
“temperature” (hot v.s. warm v.s. cold) of different records
due to the availability of promotions on different categories
over different time at a short time period. We introduce them
in detail in the following.
During the 2018 Singles’ Day Global Shopping Festival

(Nov. 11, 2018), Alibaba’s database clusters process up to
491,000 sales transaction per second, which translates to
more than 70 million database transactions per second. To
stand this test, we introduce a new OLTP storage engine, X-
Engine, because a significant part of transaction processing
performance boils down to how efficiently data can be made
durable and retrieved from the storage.

Key challenges for e-commerce workloads.We start
by identifying three key technical challenges.

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

651

https://doi.org/10.1145/3299869.3314041
https://doi.org/10.1145/3299869.3314041
https://doi.org/10.1145/3299869.3314041

23:30 23:40 23:50 00:00 00:10 00:20 00:30
Time

0

0.25

0.50

0.75

1.00

1.25

R
es

p
on

se
ti

m
e

(m
s)

0

25

50

75

100

125

N
or

m
al

iz
ed

T
P

SResponse time

Normalized TPS

Figure 1: 122 times of sudden increase in transactions
per second along with stable response time observed
in an online database cluster runningX-Engine during
the Singles’ Day Global Shopping Festival in 2018.

The tsunami problem. Alibaba’s e-commerce platform of-
ten needs to run promotional events on dates that have been
carefully chosen, widely expected by global customers, and
at a scale of the entire marketplace. For example, the Singles’
Day Global Shopping Festival runs annually on November
11, where major promotions across almost all vendors on
Tmall start exactly at midnight. Although many promotions
last for the day, there are significant discounts that are only
available for either a limited period of time or a number
of quantities (on a first come first serve basis). This creates
a fierce increase on transactional workloads (reflected as a
huge vertical spike on the transaction per second v.s. time) to
the underlying storage engine starting at 00:00:00 on Nov. 11,
much like a huge tsunami hitting the shore.

Figure 1 plots the transaction response time and the trans-
action per second (TPS) (normalized by the average TPS for
the day before midnight on Nov. 11) of an online database
cluster running X-Engine on Singles’ Day of 2018. In the
first second after midnight, this cluster embraces a fiercely
increased number of transactions that is about 122 times
higher than that of the previous second. With the help of
X-Engine, it successfully maintains a stable response time
(0.42 ms on average).

To embrace this 122-time spike shown in Figure 1, Alibaba
adopts a shared-nothing architecture for OLTP databases
where sharding is applied to distribute transactions among
many database instances, and then scales the number of
database instances up before the spike comes. Although this
methodology works, it takes significant monetary and engi-
neering costs due to the sheer number of instances required.
In this paper, we address this problem by improving the
single-machine capacity of storage engines, a core compo-
nent of OLTP databases, so that the number of instances
required for a given spike and throughput is reduced, or the
achievable throughput given a fixed cost is increased.
The flood discharge problem. The storage engine must

be able to quickly move data from the main memory to the
durable storage (i.e., discharge the flood building up in the
memory) while processing highly concurrent e-commerce

transactions. Online promotions create rush hours in on-
line e-commerce transactions, which contain a much higher
amount of writes (e.g., place orders, update inventories and
make payments) compared with those in non-rush hours.
Even though the main memory capacity has steadily in-
creased in recent years, it is still dwarfed by the size of
records to be inserted or updated by a large number of trans-
actions during the Singles’ Day. Thus, we have to exploit
the capacity available in the memory hierarchy consisting
of RAM, SSD and HDD. X-Engine leverages this hierarchy
by adopting a tiered storage layout, where we can place data
in different tiers according to their temperatures (i.e., the
access frequency), and use new memory technologies like
NVM for some tiers. This is much like discharging a running
flood through reservoirs of increasing size level by level.

The LSM-tree structure is a natural choice for a tiered stor-
age. Apart from LSM-trees, common techniques to accelerate
writes include the append-only method on log-based data
structures [27, 34], optimized tree-based structures [3, 18],
and a hybrid form of both [31]. We find that any one of
these methods alone is not sufficient for serving such e-
commerce transactions: some assume a columnar storage
that is not suitable for write-intensive transactions; others
trade the performance of point and range queries to improve
that of writes, which are not suitable for mixed read and
write e-commerce workloads. An LSM-tree structure con-
tains a memory-resident component where we can apply
the append-only method for fast inserts, and disk-resident
components containing multiple inclusive levels organized
in a tree with each level significantly larger than its adjacent
upper-level [15, 16, 27]. This data structure well fits a tiered
storage, facilitating us to address the tsunami and the flood
discharge problem.

The fast-moving current problem. For most database work-
loads, hot records typically exhibit a strong spatial locality
over a stable period of time. This is not always the case for
e-commerce workloads, especially on a major promotional
event like the Singles’ Day Shopping Festival. The spatial
locality of records is subject to quick changes over time. This
is due to the availability of different promotions on different
categories or records that are purposely placed out over time.
For example, throughout the day, there are “seckill” promo-
tion events (selling merchandises so hot that you must seize
the second they become available to buy it) that are held
for different categories or brands to stimulate demands and
attract customers to shop over different merchandises pacing
out over time. This means that hot records in the database
cache are subject to constant changes, and the temperature
of any record may change quickly from cold/warm to hot or
hot to cold/warm. If we view the database cache as a reser-
voir and the underlying (large) database as the ocean, this
phenomenon results in a current (i.e., hot v.s. cold records)

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

652

that moves quickly towards any direction in a very deep
ocean (i.e., the huge database stored on X-Engine). The stor-
age engine needs to ensure that emerging hot records can
be retrieved from the deep water as quickly as possible and
cache them effectively.

Our contributions. We introduce X-Engine in this pa-
per. X-Engine is an LSM-tree based storage engine for OTLP
databases that is designed to address the above challenges
faced by Alibaba’s e-commerce platform. It processes most
requests in the main memory by exploiting the thread-level
parallelism (TLP) in multi-core processors, decouples writes
from transactions to make them asynchronous, and decom-
poses a long write path into multiple stages in a pipeline
in order to increase the overall throughput. To address the
flood discharge problem, X-Engine exploits a tiered storage
approach to move records among different tiers taking ad-
vantage of a refined LSM-tree structure and optimized com-
paction algorithms. We also apply FPGA offloading on com-
pactions. Finally, to address the fast-moving current problem,
we introduce a multi-version metadata index which is up-
dated in a copy-on-write fashion to accelerate point lookups
in the tiered storage regardless of data temperatures. To
summarize, our contributions are:

• We identify three major challenges for an OLTP stor-
age engine in processing e-commerce transactions, and
design X-Engine based on the LSM-tree structure.

• We introduce a suite of optimizations for addressing
the identified problems, such as a refined LSM-tree data
structure, FPGA-accelerated compactions, asynchro-
nous writes in transactions, multi-staged pipelines,
and multi-version metadata index.

• We evaluate X-Engine extensively using both standard
benchmarks and e-commerce workloads. Results show
that X-Engine outperforms both InnoDB and RocksDB
in e-commerce workloads during online promotions.
We also show that X-Engine has stood the test of the
tsunami of the Singles’ Day Shopping Festival.

This paper is organized as follows. Section 2 gives the
overview of X-Engine. Section 3 introduces the detailed de-
signs of our optimizations. We evaluate our design and opti-
mizations in Section 4, by comparing it against InnoDB and
RocksDB using MySQL. Finally, we discuss related work in
Section 5 and conclude in Section 6.
2 System Overview

X-Engine is a tiered OLTP storage engine based on an re-
fined LSM-tree structure. As discussed in Section 1, because
the data temperature in e-commerce transactional workloads
is constantly changing, we are motivated to differentiate the
placement of records in different storage tiers to serve hot,
warm, and cold records respectively. This allows X-Engine to
tailer-design data structures and access methods according

to record temperatures (i.e., frequencies of being accessed in
a recent window). Furthermore, because e-commerce trans-
actions involve a large number of inserts and updates, we
adopt the LSM-tree due to its excellent write performance
[27]. However, we find that a conventional LSM-tree is not
sufficient for supporting e-commerce transactional work-
loads. Thus, we design and apply a suite of optimizations
in X-Engine to address the three previously identified chal-
lenges. X-Engine can be deployed on top of the POLARFS as
part of POLARDB [4]. POLARFS has utilized many emerging
techniques to achieve an ultra-low latency file system such
as RDMA and NVMe.

Active Memtable
SwitchRedo Logs

Caches

Extent Extent

Data files

ExtentExtent Extent Extent

Extent Extent Extent Extent

Warm data on
NVM/SSD

Cold data on
SSD/HDD

Cold data
on

SSD/HDD

Hot data Tier

Warm/cold data Tier

FPGA­
accelerated
compactions

Indexes
Flush

Writes

Reads

Immutable
memtable

Figure 2: The architecture of X-Engine.
Storage layout. Figure 2 shows the architecture of X-

Engine. X-Engine partitions each table into multiple sub-
tables, and maintains an LSM-tree, the associated metasnap-
shots and indexes for each sub-table. X-Engine contains one
redo log per database instance. Each LSM-tree consists of a
hot data tier residing in main memory and a warm/cold data
tier residing in NVM/SSD/HDD (that are further partitioned
into different levels), where the term hot, warm, and cold
refers to data temperatures, representing the ideal access
frequencies of data that should be placed in the correspond-
ing tier. The hot data tier contains an active memtable and
multiple immutable memtables, which are skiplists storing
recently inserted records, and caches to buffer hot records.
The warm/cold data tier organizes data in a tree-like struc-
ture, with each level of the tree storing a sorted sequence of
extents. An extent packages blocks of records as well as their
associated filters and indexes. We are exploring machine
learning techniques to identify appropriate data tempera-
tures, which is briefly discussed in Appendix C and its full
details are out of the scope of this work.
X-Engine exploits redo logs, metasnapshots, and indexes

to support Multi-version Concurrency Control (MVCC) for
transaction processing. Each metasnapshot has a metadata

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

653

Table 1: Summary of optimizations in X-Engine.
Optimization Description Problem
Asynchronous writes in transactions Decoupling the commits of writes from the processing transactions. TsunamiMulti-staged pipeline Decomposing the commits of writes to multiple pipeline stages.
Fast flush in Level0 Refining the Level0 in the LSM-tree to accelerate flush. Flood

dischargeData reuse Reusing extents with non-overlapped key ranges in compactions.
FPGA-accelerated compactions Offloading compactions to FPGAs.
Optimizing extents Packaging data blocks, their corresponding filters, and indexes in extents.

Fast-moving
current

Multi-version metadata index Indexing all extents and memtables with versions for fast lookups.
Caches Buffering hot records using multiple kinds of caches.
Incremental cache replacement Replacing cached data incrementally during compactions.
index that tracks all memtables, and extents in all levels
of the tree in the snapshot. One or multiple neighboring
levels of the tree forms a tier to be stored on NVM, SSD, and
HDD, respectively. In X-Engine, tables are partitioned into
several sub-tables. Each sub-table has its own hot, warm and
cold data tiers (i.e., LSM-trees). X-Engine stores records in a
row-oriented format. We design a multi-version memtables
to store records with different versions to support MVCC
(introduced in Section 3.2.1). On the disks, the metadata
indexes track all the versions of records stored in extents.
We introduce the details of data structures in Section 3.1.

The read path. The read path is the process of retrieving
records from the storage. The original LSM-tree design does
not enjoy good read performance. A lookup first searches the
memtables. On misses in the memtables, it has to traverse
each successive level one by one. In the worst case, a lookup
has to end up with scanning all levels until the largest level to
conclude that the queried records do not exist. To accelerate
this process, a manifest file has been proposed to locate the
target SST containing queried keys [9]. Bloom filters are also
applied within each SST to facilitate early termination.

To achieve a good response time for point lookups which
are common in e-commerce transactions, we optimize the
design of extents, introduce a metadata index that tracks
all memtables and extents, and a set of caches to facilitate
fast lookups. We also propose an incremental cache replace-
ment method in compactions to reduce unnecessary cache
evictions caused by compactions. We introduce snapshots to
ensure queries read the correct versions of records.

The write path. The write path includes the physical
access path and the associated process of inserting or updat-
ing records in the storage engine. In an LSM-tree KV store,
arriving key-value pairs are appended or inserted into the
active memtable. Once entirely filled, an active memtable
is switched to be immutable waiting to be flushed to disks.
Meanwhile, a new empty active memtable is created. To sup-
port highly concurrent transaction processing, the storage
engine needs to make new records durable through logging
in the persistent storage (e.g., SSD), and insert them into
memtables at high speed. We differentiate long-latency disk
I/Os and low-latency memory accesses in this process and

organize them in a multi-staged pipeline to reduce idle states
per thread and improve the overall throughput (Section 3.2.3).
To achieve a high level of concurrency, we further decouple
the commits of writes from the processing of transactions
and optimize the thread-level parallelism for them separately.

Flush and compaction. A LSM-tree relies on flush and
compaction operations to merge data that may overwhelm
the main memory from memtables to disks and keep the
merged data in a sorted order. Immutable memtables are
flushed to Level0, during which records are sorted and pack-
aged in sorted sequence tables (SSTs) [16]. Each SST occu-
pies an exclusive range of keys, and hence a level may con-
tain multiple SSTs. When the size of SSTs in Leveli reaches
a threshold, they are merged with SSTs with overlapping
key ranges from Leveli+1. This merge process is called com-
paction in some systems because it also removes records that
are marked to be deleted. The original compaction algorithm
reads SSTs from both levels, merges them, and then writes
the merged results back to the LSM-tree. This process has
several drawbacks: it consumes significant CPUs and disk
I/Os; the same record is read from and written to the LSM-
tree multiple times, causing write amplification; it invalidates
the cached contents of records being merged even if their
values stay the same.

In X-Engine, we first optimize the flush of immutable
memtables. For compactions, we apply data reuse that re-
duces the number of extents to be merged, asynchronous I/O
that overlaps merging with disk I/Os, and FPGA offloading
to reduce CPU consumption.

Summary of optimizations. Table 1 summarizes the
various optimizations with respect to specific problems that
they are designed to address. We introduce the detailed de-
sign of X-Engine in the following section.
3 Detailed Design
In this section, we start with elaborating how X-Engine

processes a transaction, and then introduce the detailed de-
signs of X-Engine’s key components, as shown in Section 2,
including the read path, write path, flush and compaction.
X-Engine applies MVCC and 2PL (two-phase locking) to

achieve the isolation level of SI (snapshot isolation) and RC

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

654

Read/Write Phase

Commit Phase

Writer Writer Writer

Transaction
Buffer Logs &

LSM­tree

Multi­staged
Pipeline

Log
Buffering

Log
Flushing

Writing
Memtables Commit

Log
Buffering

Log
Flushing

Writing
Memtables

Log
Buffering

Log
Flushing

Thread a Thread b, c, d

Task
Queues

Data Flow Control Flow

Time

Multi­staged pipeline

Figure 3: Detailed design of transaction processing in X-Engine.
(read committed) to guarantee the ACID properties for trans-
actions. Different versions of the same record are stored as
separate tuples with auto-increment version IDs. X-Engine
tracks the maximum of these versions as the LSN (log se-
quence number). Each incoming transaction uses the LSN it
sees as its snapshot. A transaction only reads tuples with the
largest version that is smaller than its own LSN, and adds a
row lock to each tuple it writes to avoid write conflicts.

Figure 3 shows an overview of processing a transaction in
X-Engine. This process consists of a Read/Write Phase and a
Commit Phase. All read requests of a transaction are served
in the Read/Write Phase through the read path accessing the
LSM-tree. In this phase, records to be inserted or updated in a
transaction are written to the Transaction Buffer. Next, in the
Commit Phase, tasks writing records from the transaction
buffer to the storage are distributed to multiple write task
queues. A multi-staged pipeline is introduced to process all
these write tasks by logging the corresponding records and
inserting them into the LSM-tree. We introduce the details
of the data structures, the read path, the write path, the flush
and the compaction of X-Engine in the following.

3.1 The read path

We start with our designs of data structures, including ex-
tents, caches and indexes. For each data structure, we intro-
duce how it facilitates fast lookups in the read path.

3.1.1 Extent Figure 4 shows the layout of an extent, con-
sisting of data blocks, the schema data, and the block index.
Records are stored in the row-oriented style in data blocks.
The schema data tracks the types of each column. The block
index keeps the offset for each data block. Among the current
deployment in our production systems, we tune the total size
of an extent to 2 MB across all levels of the LSM-tree. Because
many e-commerce transactions access records in a highly
skewed manner, keeping extents in this size allows many
extents to be reusable during compactions (more details in
Section 3.3.2). This design also facilitates the incremental
cache replacement during compactions (an optimization in-
troduced in Section 3.1.4).

Data Block 1

Data Block 2

Data Block 3

Schema

Index

Extent

Rows
Key 601 2 3

Key 602 8 4
......

Key 700 42

Pri. Key Col. 1 Col. 2
Schema data

Block index

Key 550 100

Key 600 200

Key 700 300

4

Figure 4: The layout of an extent.

Table Cache

Bloom Filters

Index Block

Data BlockData BlockData Block

Memtables

Block Cache
Row cache

Hash

Figure 5: Structure of the caches.
We store the schema data with versions in each extent to

accelerate DDL (Data Definition Language) operations. With
this design, when adding a new column to a table, we only
need to enforce this new column on new extents with new
versions, without modifying any existing ones.When a query
reads extents with schemas of different versions, it accords
with the most recent version and fills default values to the
empty attributes of records with the old schema. This fast
DDL feature is important for online e-commerce businesses
which adapt their designs of database schemas to changes in
their requirements frequently.

3.1.2 Cache Figure 5 illustrates the database caches in X-
Engine. We optimize the row cache specifically for point
lookups that are the majority of queries in e-commerce trans-
actions at Alibaba. The row cache buffers records using the

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

655

LRU cache replacement policy, regardless of which levels a
record resides in the LSM-tree. Thus, even the records in the
largest level can be cached, as long as a query accesses it.
Once a point lookup missed the memtables, the key of the
query is hashed to its corresponding slot in the row cache
for matches. As a result, retrieving records in the row cache
for point queries only takes O(1) time. The row cache is less
impactful when lookups access records randomly.
We only keep the latest versions of records in the row

cache, which have the largest chance to be accessed due to
the temporal locality. To achieve this, we replace the old
versions of records with new ones in the row cache during
flush, reducing caches misses that could be caused by flush
otherwise.

The block cache buffers data in the unit of data blocks. It
serves each request that missed the row cache, or lookups
from range queries. The table cache contains the metadata
information of sub-table headers leading to the correspond-
ing extent. With the extent located, we use Bloom filters to
filter unmatched keys out. Then, we search the index block
to locate the record, and finally retrieve it from its data block.

These caches are important for reducing cachemisses after
the temperatures of records shift. Due to the spatial locality
of records, emerging hot records and existing ones in the
row cache may come from the same extent or even the same
data block. Thus, table and block caches help increase the
overall cache hit rates after cache misses, and may contribute
to reducing the latency of replacements in the row cache.

3.1.3 Multi-version Metadata Index Figure 6 illustrates the
structure of the multi-version metadata index in X-Engine.
The LSM-tree of each sub-table has its associatedmetadata in-
dex, which starts from a root node representing the sub-table.
Each modification of the index creates a new metasnapshot
that points to all associated levels and memtables without
modifying nodes of existing metasnapshots (i.e., the copy-
on-write method). In Figure 6, extenti is originally part of
the Level0 and cached (colored in red). When a compaction
reusing this extent completes, a new MetaSnapshotv+1 is
created by the side ofMetaSnapshotv , linking to the newly
merged Level1 (colored in the darker color). The metadata of
Level1 only needs to point to extenti without actually mov-
ing it in the disk (colored in purple), leaving all its cached con-
tents intact. Taking advantage of this copy-on-write method,
transactions can access any versions they want in a read-
only manner, without the need to lock an index during data
accesses. We apply garbage collections to remove outdated
metasnapshots. A similar design has been explored by other
storage engines such as RocksDB [14].

3.1.4 Incremental cache replacement In LSM-trees, as a com-
paction merges many extents in the disk, it often causes
significant cache evictions in large batches, reducing cache

Subtable A

MetaSnapshotv

Meta of Level0

Extenti Caches

MetaSnapshotv+1

Meta of Level1

Compaction

Index

1

2

3

Figure 6: An example of updating the metadata index
in the copy-on-write manner.
hit rates for lookups and resulting in distinct performance
slowdowns and unstable response times. Even if the values
of cached records do not change, they may have been moved
around in the disk if their extents share overlapping key
ranges with other extents involved in compactions.
To address this issue, rather than evicting all compacted

extents from caches, we propose an incremental replacement
in the block cache. During compactions, we check whether
the data blocks of an extent to be merged are cached. If so,
we replace the old blocks in the cache with the newly merged
ones at the same place, instead of simply evicting all old ones.
This approach reduces the cache misses by keeping some
blocks both updated and unmoved in the block cache.

3.2 The write path

In this section, we start with optimizing the memtable struc-
tures that receive incoming records for the LSM-tree of each
sub-table. Next, we introduce how we design the write task
queues and the multi-staged pipeline in the write path, which
are shared by the LSM-trees of all sub-tables in X-Engine.

3.2.1 Multi-version memtable We implement the memtable
as a lock-free skiplist like many other systems to achieve
good lookup and insert performance [9]. However, the state-
of-the-art implementation of the skiplist-based memtables
has a performance issue when querying hot records. Fre-
quent updates on a single record generate many versions. If
a hot record matches the predicate of a query with interests
in only the latest version, the query may have to scan many
old versions to locate the requested one. Online promotions
in e-commerce platforms amplify these redundant accesses
when customers place orders on hot merchandises.

In X-Engine, we append new versions of the same record
next to the original node vertically, forming a new linked
list. Figure 7 shows the proposed structure, where the blue
nodes store records with distinct keys and the yellow nodes
store multiple versions of the same record. The distinct keys
are organized in a skiplist while each key’s multiple versions
are stored in a linked list. Updates on a hot record grow its
corresponding linked list. Moreover, new versions that are
usually referenced by incoming transactions are kept closer
to the bottom level of the skiplist of unique keys, as shown
in Figure 7 where version 99 is the latest version. This design

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

656

key
100

key
300

key
100

key
200

key
300

version
99

version
98

key
400

Figure 7: Structure of the multi-version memtables.
reduces the overhead caused by scanning over unnecessary
old versions.

3.2.2 Asynchronous writes in transactions The conventional
one-thread-one-transaction method in storage engines like
InnoDB has a significant drawback on the write efficiency. In
this approach, a user thread executes a transaction from the
beginning to the end. Although this method makes it easy
to implement both the execution of writes and concurrency
control of transactions while a user thread does not write
logs on its own, the thread has to wait for the long latency
of disk IOs of writing logs to complete.

In X-Engine, we choose another approach to decouple the
commits of writes from their corresponding transactions
and group them for batch processing. As shown in Figure
3, we first distribute write tasks among multiple lock-free
write task queues. After this, most threads can return asyn-
chronously to process other transactions, leaving only one
thread per queue to participate in committing the write tasks
in the multi-staged pipeline (to be introduced below). In
this way, writes in transactions are made asynchronous. In
a highly concurrent workload, this approach allows more
threads to process write tasks from concurrent transactions.
The optimal number of queues is bounded by the I/O band-
width available in the machine, and contentions among mul-
tiple threads over the head of each lock-free queue. We
find that eight threads per queue can saturate the I/O band-
width in a 32-core machine (Section 4.1), and allocating more
threads per queue reduces the throughput due to contentions.
Furthermore, after this decoupling process, we group write
tasks within the same queue together and process them in
batches. Comparing to single transaction commit, the batch
commit can significantly improve the I/O and therefore in-
crease the throughput. We optimize the efficiency of the
batch processing in the following discussion.
3.2.3 Multi-staged pipeline Thewrite path is a long sequence
of multiple operations accessing both the main memory and
the disk with changing computation workload along its exe-
cution. This makes it challenging to hide memory accesses
and disk I/Os with computations.
To address this issue, we decompose the write path into

multiple stages. The right half of Figure 3 shows the overview

1..25 106..135,180..20032..35 80..105 210..220 230..280

1..10 20..30 50..60 61..70 100..110 120..130 150..160 161..170 190..200 201..205

1..30 116..13532..35 80..115 180..195 196..205

1,35 80,200 210,280

1,30 50,70 100,130 150,170 190,205

1,35 50,70 80,135 150,170 180,205 210,280

L1 Extent Index
(before compaction)

L2 Extent Index
(before compaction)

L2 Extent Index
(after compaction)

Reuse CopySplitMergeExtent Data Block Data Block Legend

Figure 8: An example of data reuse during com-
pactions.
of the four-staged pipeline, where the stages access the main
memory and the disk alternately. In the first stage, log buffer-
ing, threads collect theWALs (write-ahead logs) of each write
requests from the transaction buffer to memory-resident
log buffers, and calculate their corresponding CRC32 error-
detecting codes. This stage involves significant computations
and only main memory accesses. In the second stage, log
flushing, threads flush logs in the buffer to disks. With the
log flushed, the log sequence number advances in the log
files. These threads then push write tasks that have already
been logged into the next stage, writing memtables. Here,
multiple threads append records in the active memtable in
parallel. This stage only accesses the main memory. All such
writes can be recovered from the WAL after failures. In the
last stage, commits, transactions with all its tasks finished
are finally committed by multiple threads in parallel, with
resources they used such as locks released.
In this pipeline, we schedule threads for each stage sepa-

rately according to their requirements to match the through-
put of each stage with others in order to maximize the total
throughput. Although the first three stages are memory-
intensive, the first and the second stages access different
data structures in the main memory, while the second one
writes to the disk. Thus, overlapping them improves the
utilization of the main memory and disks.
Furthermore, we throttle the number of threads for each

stage respectively. Due to the strong data dependencies in
the first two stages, we only schedule one thread for each
stage (e.g., thread ’a’ in Figure 3). For the other stages, we
allocate multiple threads for parallel processing (e.g., threads
b, c, d in Figure 3). All threads pull tasks from stages for
processing. Pulling tasks from the first two stages operate
preemptively, allowing only the first arriving thread to pro-
cess the stage. The other stages are embarrassingly parallel,
allowing multiple threads to work in parallel.

3.3 Flush and Compaction
Next, we introduce how to optimize the flush and compaction
operations that organize records in X-Engine’s tiered storage.

3.3.1 Fast flush of warm extents in Level0 We rely on flush
to avoid out-of-memory failures in X-Engine, the risk of

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

657

which are significant upon incoming spikes of transactions.
In X-engine, each flush operation converts its immutable
memtables to extents, append them to Level0 and leave with-
out merging them with existing records. However, this pro-
cess leaves sets of unsorted extents. Queries now have to
access all extents to find potential matches. The disk I/Os
involved in this process are expensive. Although the size of
Level0 is probably less than 1% of the entire storage, it con-
tains records that are only slightly older than those recently
inserted ones in the memtables. Due to the strong temporal
localities in e-commerce workloads, incoming queries may
very likely require these records. Thus, we refer to extents
in Level0 as the warm extents.

We introduce intra-Level0 compactions to actively merge
warm extents in Level0, without pushing merged extents to
the next Level1. This approach keeps warm records in the
first level of the LSM-tree, preventing queries from going
deeper in the tree to retrieve these records. On the other
hand, due to the small size of Level0 compared with other
levels, intra-Level0 compactions only need to access a small
portion of extents, unlike other compactions that merge ex-
tents extensively in deeper levels. Because of this lightweight
consumption of CPUs and I/Os, the intra-Level0 compactions
can be executed frequently.
3.3.2 Accelerating compactions Compactions involve expen-
sive merge operations. We apply three optimizations on com-
pactions: the data reuse, the asynchronous I/O, and FPGA
offloading.
Data reuse. We reuse extents and data blocks wherever

applicable during compactions to reduce the number of I/Os
required for merging between two adjacent levels (i.e., Leveli
and Leveli+1). To increase the opportunities for reuse and
make it effective, we reduce the size of an extent to 2 MB,
and further divide an extent into multiple 16 KB data blocks.
If the key range of an extent involved in a compaction does
not overlap with those of other extents, we reuse it by simply
updating its corresponding metadata index (as introduced
in Section 3.1.3) without actually moving it on the disk. We
show an example in Figure 8, in which three extents from
Level1 with key ranges [1, 35], [80, 200] and [210, 280] are to
be compacted with five extents from Level2 with key ranges
[1, 30], [50, 70], [100, 130], [150, 170] and [190, 205]. We list
different cases of reuse in the following:

• Extent [210, 280] from Level1, [50, 70] from Level2 are
reused directly.

• Level1 extent [1, 35] overlaps with Level2 extent [1, 30].
However, only one data block [1, 25] in the former
overlaps with data blocks in the later. Thus, data block
[32, 35] is reused.

• Level1 extent [80, 200] overlaps with multiple extents
in Level2. Its second data block overlaps with three
extents in Level2. However, keys in this data block

are sparse, as there is no key between 135 and 180.
Thus, we split it into two data blocks: [106, 135], and
[180, 200], and merge them with extent [100, 130] and
[190, 205] from Level2, respectively. Extent [150, 170]
is reused directly.

Asynchronous I/O. At the extent level, a compaction op-
eration consists of three disjoint phases: (1) retrieving two
input extents from the storage, (2) merge them, and (3) write
merged extents (one or many) back to the storage. While
the first and third phases are I/O phases, the second phase
is a compute-intensive phase. We issue asynchronous I/O
requests in the first and third phases. The second phase is
implemented as a call back function of the first I/O phase.
When multiple compactions are running in parallel, the ex-
ecutions of the second phases overlap with those of other
phases to hide I/Os.

FPGA offloading. We introduce FPGAs to accelerate com-
pactions, and reduce their resource consumption on CPUs.
With the two optimizations introduced above, compactions
running on CPUs still consume multiple threads. Because
compactions work on independent pairs of extents from two
consecutive levels of the LSM-tree, a compaction task is em-
barrassingly parallel at the granularity of such pairs. Thus, it
can be split into multiple small tasks. We offload such small
tasks to FPGAs, and process them in a streaming manner.
Each compacted extent is transferred back to disks. With
such offloading, CPU threads are released from the heavy
burden of merging extents. Consequently, we are able to al-
locate more threads to process concurrent transactions. The
details of this FPGA-based compaction acceleration is beyond
the scope of this paper and will be explored separately.
3.3.3 Scheduling compactions LSM-trees rely on compactions
to keep records in the sorted order and remove records
marked as to be deleted from the storage. Without removing
deleted records in time, lookup queries may have to traverse
over many invalid records in the storage, hurting the read
performance significantly. Compactions also help to merge
sub-levels in Level0 to reduce the lookup costs at this level.

In X-Engine, we introduce rule-based scheduling for com-
pactions to exploit these benefits.We distinguish compactions
based on what levels they operate on: intra-Level0 com-
pactions (merging sub-levels within Level0), minor com-
pactions (merging two adjacent levels except the largest
level), major compactions (merging the largest level and
the level above it), and self-major compactions (merging
within the largest level to reduce fragmentations and remove
deleted records). Compaction is triggered when the total size
or the total number of extents of a level reach their prede-
fined thresholds. All triggered compaction jobs are enqueued
into a priority queue. The rules for determining the priority
are open for configurations, which further depends on the
requirements of different applications on top of the database.

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

658

In the following, we show one example of the configura-
tion tailored for one online application at Alibaba. In this
application, there are frequent deletions. When the number
of records that should be deleted reaches its threshold, a
compaction is triggered to remove these records, and this
compaction is given the highest priority to prevent wastes
of storage spaces. After deletions, intra-Level0 compactions
are prioritized to help to accelerate the lookups of recently
inserted records in Level0. Minor compactions, major com-
pactions, and self-major compactions are prioritized in this
order, respectively:
(1) Compactions for deletions.
(2) Intra-Level0 compactions.
(3) Minor compaction.
(4) Major compaction.
(5) Self-major compactions.
Compactions of different sub-tables, and thus different

LSM-trees, can be scheduled for concurrent executions. This
parallelism is embarrassing because of the data indepen-
dence among sub-tables. Within each sub-table, only one
compaction is executed at a time. While it is possible to ex-
ecute multiple compactions of the same LSM-tree without
corrupting the data or causing any data contentions, we have
sufficient opportunities for concurrent compactions at the
level of sub-tables for performance benefits.
4 Evaluation
In this section, we first show how X-Engine performs

when processing e-commerce OLTP workloads with mix-
tures of different types of queries.We then evaluate X-Engine’s
contributions in addressing the three identified challenges:
the tsunami problem, the flood discharge problem, and the
fast-moving current problem. We have already measured
the real-world performance of MySQL databases running
X-Engine during the Singles’ Day in Figure 1.

4.1 Experimental setup
We compare X-Engine with two other popular storage en-
gines: InnoDB [26] and RocksDB [15]. InnoDB is the default
storage engine ofMySQL. RocksDB is awidely used LSM-tree
storage engine, developed from LevelDB [16]. At Alibaba, we
use both InnoDB and X-Engine with MySQL 5.7 to process
e-commerce transactions in many of our database clusters.
Thus, MySQL 5.7 is a natural choice to evaluate InnoDB and
X-Engine. We used the latest release (Nov 2018) of RocksDB
[14], and MyRocks (MySQL on RocksDB) [11].

As discussed in Section 1, we apply sharding on multiple
database instances for distributed processing in production,
the details of sharding is not the focus of this paper. We de-
ploy each storage engine and its associated MySQL instance
in a single node setup (i.e., the target machine). The target
machine consists of two 16-core Intel E5-2682 processors (64
hardware threads in total), a 512 GB Samsung DDR4-2133

main memory and a RAID consisting of three Intel SSDs.
The OS is Linux 4.9.79. We use another machine with the
same hardware configuration (i.e., the client machine) to is-
sue SQL queries for the target machine. These two machines
are located in the same data center with a network latency
of around 0.07 ms between them, which is included in all
measurements.
In addition to popular benchmark toolkits such as Sys-

Bench and dbbench, we apply X-Bench, a benchmark toolkit
developed for stress-testing at Alibaba, to synthesize the e-
commerce workload consisting of a mixture of point lookups,
range lookups, updates, and inserts. With the help from Al-
ibaba’s database administrators and database users who run
the e-commerce businesses online, we are able to simulate
the real-world e-commerce workload closely by tuning the
mixing ratio of these four query types. More details about
X-Bench are introduced in Appendix B.

Please take not that for all box plots we use 25% and 75%
quantiles for box boundaries, the median value as the yellow
line in the box, and min and max values for external bounds
(horizontal lines).

4.2 E-commerce transactions
Figure 9 shows the performance while processing the e-
commerce workload. We start with a mixture of 80% point
lookups, 11% range lookups, 6% updates, and 3% inserts (de-
noted as 80:11:6:3 in the figure). This mixture best resembles
the read-intensive workload in many Alibaba’s databases
without the impacts of online promotions.We gradually scale
the shares of reads (point and range lookups) down to 42%
and 10% while keeping the same percents of updates and
inserts, respectively. This 42:10:32:16 mixture is very close
to the mixture we observe during online promotions like
the Singles’ Day. For mixtures that are more read-intensive,
InnoDB is both faster and more stable than RocksDB and
X-Engine. In LSM-tree systems, lookups missing memtables
and caches in the main memory suffer from accessing one or
more levels in the disk which drag down the response time
and increase the variance. With a suite of optimizations on
the read path, X-Engine performs only slightly worse (<10%)
than InnoDB in these read-intensive cases. In the crucial
42:10:32:16 case representing the Singles’ Day workload, X-
Engine achieves very stable performance in terms of QPS,
and outperforms InnoDB and RocksDB by 44% and 31% on
average, respectively.

Next, we evaluate the impacts of optimizations that help X-
Engine process highly concurrent e-commerce transactions
with a significant amount of writes.

4.3 The tsunami problem
Recall that addressing the tsunami problem translates to
improve the peak throughput for the storage engine. In

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

659

80:11:6:3 77:10:9:4 66:10:16:8 42:10:32:16
Mixed workloads (%:%:%:%)

0

25

50

75

100

125

150

Q
u

er
ie

s
p

er
se

co
n

d
(t

h
ou

sa
n

d
s)

(a) InnoDB

80:11:6:3 77:10:9:4 66:10:16:8 42:10:32:16
Mixed workloads (%:%:%:%)

0

25

50

75

100

125

150

Q
u

er
ie

s
p

er
se

co
n

d
(t

h
ou

sa
n

d
s)

(b) RocksDB

80:11:6:3 77:10:9:4 66:10:16:8 42:10:32:16
Mixed workloads (%:%:%:%)

0

25

50

75

100

125

150

Q
u

er
ie

s
p

er
se

co
n

d
(t

h
ou

sa
n

d
s)

(c) X-Engine
Figure 9: Throughput of MySQL with the three storage engines using the e-commerce workloads with different
mixtures of point lookups, range scans, updates, and inserts. The y-axis of these figures are the same.

16 32 48 64 80 96 112 128
Number of threads

0.25
0.50
1.00
2.00
4.00
8.00

T
h

ro
u

gh
p

u
t

(M
op

s/
s) RocksDB X-Engine

(a) Put

16 32 48 64 80 96 112 128
Number of threads

2

4

8

16

T
h

ro
u

gh
p

u
t

(M
op

s/
s) RocksDB X-Engine

(b) Get

16 32 48 64 80 96 112 128
Number of threads

27

28

29

R
es

p
on

se
ti

m
e

(µ
s)

RocksDB X-Engine

(c) Put

16 32 48 64 80 96 112 128
Number of threads

0

5

10

15

20

R
es

p
on

se
ti

m
e

(µ
s)

RocksDB X-Engine

(d) Get
Figure 10: Throughput and response time of storage
engines through key-value interfaces.

8 16 24 32 40 48 56 64 72 80 88 96 104112120128
Number of threads

0.0

2.5

5.0

T
h

ro
u

gh
p

u
t

of
in

se
rt

s
(M

op
s/

s)

Async./16 queues

Async./8 queues

Async./4 queues

Async./1 queue

Sync./8 queues

Sync./4 queues

Sync./1 queue

Figure 11: Throughput of inserts with and without op-
timizing the write path.
this section, we use dbbench [25] to evaluate storage en-
gines through key-value (KV) interfaces directly, and use
SysBench [20] to evaluate their corresponding MySQL in-
stances through their SQL interfaces. In these evaluations,
each KV pair has 16-byte key and a 10-byte value; each record
contains a 12-byte key and 500-byte attributes. These sizes
are common in e-commerce transactions. We omit InnoDB
in the KV evaluation because it does not have a KV interface.

4.3.1 Running KV operations without MySQL As Figure 10
shows, we pressure the KV interfaces of the storage engines
with an increasing number of software threads up to 128.
For put, X-Engine achieves up to 23 times higher throughput

than RocksDB with comparable response times. For get, X-
Engine is up to 1.68 and 1.67 times faster that RocksDB in
terms of throughput and response time, respectively.
To explain these results, we further show the impacts of

asynchronous writes, the write task queues, and the multi-
staged pipeline (introduced in Section 3.2.2) in Figure 11.
With the same eight write task queues, the peak of X-Engine
with asynchronous writes is 11 times faster than that of
synchronous writes. By increasing the number of write tasks
queues from one to eight, X-Engine becomes 4 times faster.
Note that using only one task queue disables the multi-staged
pipeline as there is only one thread in the pipeline, so that no
stage can be executed in parallel. The highest throughput is
achieved when all hardware threads are used, showing that
X-Engine exploits the thread-level parallelism efficiently.
4.3.2 Running SQL queries with MySQL Figure 12 and Fig-
ure 13 plot the measured throughput and response time of
three storage engines through their SQL interfaces, respec-
tively. In these experiments, we scale the number of con-
nections from 1 to 512. In terms of throughput, X-Engine is
1.60, 4.25, and 2.99 times faster than the second best for point
lookups, insert, and update queries respectively. The through-
put and response time of X-Engine also scales much better
with an increasing number of connections, as the result of
its improved thread-level efficiency shown in Figure 11.

Although range lookups account for only a small minority
of queries in Alibaba’s e-commerce workload, it is a nec-
essary feature for online databases. Figure 14 shows the
throughput of range lookups in three storage engines with
varying numbers of records scanned. Both X-Engine and
RocksDB perform worse than InnoDB, because their LSM-
tree storage layouts are not friendly to scans. It is our on-
going work to adopt scan optimizations in X-Engine.

4.4 The flood discharge problem
X-Engine contributes to the discharging of floods by improv-
ing the performance of compactions. Figure 15 compares the
throughput of X-Engine with and without offloading them
to FPGAs, running oltp_insert of SysBench. FPGA improves
throughput by 27% with reduced variances. We show the
CPUs saved by FPGA offloading in Appendix A.

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

660

1 128 256 384 512
Number of connections

0
200
400
600
800

1000
1200

Q
P

S
(t

h
ou

sa
n

d
s)

InnoDB RocksDB X-Engine

(a) Point lookup

1 128 256 384 512
Number of connections

0

200

400

600

Q
P

S
(t

h
ou

sa
n

d
s)

InnoDB RocksDB X-Engine

(b) Insert

1 128 256 384 512
Number of connections

0

100

200

300

400

Q
P

S
(t

h
ou

sa
n

d
s)

InnoDB RocksDB X-Engine

(c) Update
Figure 12: Throughput of storage engines through SQL interfaces.

1 128 256 384 512
Number of connections

0.5

1.0

R
es

p
on

se
ti

m
e

(m
s)

InnoDB RocksDB X-Engine

(a) Point lookup

1 128 256 384 512
Number of connections

0

2

4
R

es
p

on
se

ti
m

e
(m

s)

InnoDB RocksDB X-Engine

(b) Insert

1 128 256 384 512
Number of connections

0

5

10

R
es

p
on

se
ti

m
e

(m
s)

InnoDB RocksDB X-Engine

(c) Update
Figure 13: Response time of storage engines through SQL interfaces.

2 4 8 16 32 64 128 256 512 1024
Number of records scanned

0

100

200

300

400

Q
u

er
ie

s
p

er
se

co
n

d
(t

h
ou

sa
n

d
s)

X-Engine

InnoDB

RocksDB

Figure 14: Throughput of range lookups.

CPU
compaction

FPGA
compaction

0

200

400

600

Q
u

er
ie

s
p

er
se

co
n

d
s

(t
h

ou
sa

n
d

s)

Figure 15: Throughput of MySQL (X-Engine) with and
without FPGA offloading for compactions.

To evaluate the efficiency of X-Engine’s data reuse during
compactions, we prepare two runs of records, containing 50
million and 500 million records, respectively. All keys are
distributed uniformly at random. We vary the percentage of
distinct keys in the 50-million run from 70% to 99%. The rest
contains groups of different versions of the same record with
the same key. Figure 16 shows the throughput of RocksDB
and X-Engine when compacting these two runs. When 90%,
99% of keys are distinct, X-Engine is 2.99 and 19.83 times
faster, respectively. In these cases, the distribution of records
with different versions of the same key are highly skewed,
similar to what we observe in e-commerce workloads with
strong hot spots. Keeping the small size of extents and data
blocks (2MB, and 16KB, respectively) increases the number

70 80 90 99
Percentage of reusable records.

0

2

4

T
h

ro
u

gh
p

u
t

(G
B

/s
) RocksDB

X-Engine

Figure 16: Throughput of compactions with different
percentages of distinct records.

0 200 400 600 800
Time (seconds)

90

95

100

B
lo

ck
ca

ch
e

h
it

ra
te

(%
)

Block cache hit rate (%) QPS

(a) Without incremental
cache replacement.

0 200 400 600 800
Time (seconds)

Block cache hit rate (%) QPS

0

50

100

150

Q
u

er
ie

s
p

er
se

co
n

d
(t

h
ou

sa
n

d
s)

(b) Wth incremental cache
replacement.

Figure 17: The block cache hit rates of X-Engine while
processing the e-commerce workload. These two fig-
ures share the same axes.
of reusable extents and contributes to the reduction of the
compaction overhead.
Figure 17 shows the block cache hit rates of X-Engine

with and without the incremental cache replacement while
processing an e-commerce workload (the 42:10:32:16 case
with a high amount of writes). This optimization signifi-
cantly reduces the variations of the block cache hit rates,
and avoids occasional sudden drops of the QPS (about 36%
decrease). We acknowledge that operations like compactions
and flushes still cause cache evictions and hurt cache hit
rates on a regular basis.

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

661

4.5 The fast-moving current problem
The solution to the fast-moving current problem depends on
the efficiency of caches, which determine how fast we can
access a cold record (likely stored on disk) and buffer it in
caches. In Figure 18, we vary the skewness of keys accessed
by point queries according to a Zipf distribution, andmeasure
the row and block cache hit rates as well as the QPS achieved.
When accesses are uniformly distributed at random, almost
all accesses miss the row cache because future queries may
hardly access records cached. With more skewed accesses,
some records become hot, and get cached in the row cache,
increasing the row cache hit rate. These results show that the
row cache performs well in highly skewed scenarios which
are common in the e-commerce workload. Block cache is
however less impactful for point queries.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

Zipf factor

0

20

40

60

80

100

C
ac

h
e

h
it

ra
te

(%
)

Row cache hit rate Block cache hit rate QPS

0

200

400

600

800

1000

1200

Q
u

er
ie

s
p

er
se

co
n

d
(t

h
ou

sa
n

d
s)

Figure 18: Impacts of the row and block caches with
skewed lookups.
5 Related work

Storage engine is a critical component of any OLTP data-
base system. The Amazon Aurora storage engine, developed
from a fork of InnoDB, exercises parallel and asynchronous
writes to reduce the latency and improve the throughput of
writes [1, 33]. We improve this design principle with a multi-
staged pipeline in X-Engine. Exploiting log-based structures
is another efficient way to optimize the write performance
[23, 24, 30]. The LSM-tree was proposed by O’Neil et al. [27],
and has attracted many subsequent efforts to optimize its
design [8, 19, 31]. Chandramouli et al. proposed a highly
cache-optimized concurrent hash index with a hybrid log,
supporting fast in-place updates [5]. Dong et al. optimized
the space amplification in RocksDB with a careful study
of related trade-offs [9]. RocksDB also incorporates a sepa-
rate stage for WAL writes [13], and concurrent writes in the
memtable [12]. In X-Engine, we adopt the idea of memtables
from LevelDB [16], and propose a suite of optimizations to
achieve highly concurrent fast writes that reduce the write
amplification of LSM-trees significantly.

Many studies have optimized how records are merged in
LSM-tree systems. Jagadish et al. divided a level into multiple
sub-levels and merged them together in the next level during
compactions [17]. Sears et al. exploredmerges at each level of
the LSM-tree progress incrementally in a steady manner, re-
ducing their negative impacts on the read performance [31].

Raju et al. proposed to only sort records within guards and
allowing unsorted orders outside guards [28]. Teng et al. in-
troduced a compaction buffer to maintain frequently visited
data, reducing cache evictions caused by compactions [32].
Ren et al. redesigned the data block indexes for semi-sorted
data in scenarios like graph-based systems [29]. Dayan et
al. modeled the costs of tiering and leveling compactions,
and improved the trade-off between update costs and point
lookup/space costs [8]. X-Engine reduces the overhead of
compactions through extensive data reuse that avoids sig-
nificant unnecessary merges, and proposes to offload com-
paction to FPGAs for hardware-assisted accelerations.
To achieve efficient read operations, multiple data struc-

tures have been optimized in LSM-trees, including indexes
[6, 15, 21, 22], caches [2, 10, 23], and filters [7]. X-Engine
practices all these data structures in a hierarchical manner
and extends indexes to all extents.

6 Conclusion
We introduce X-Engine, an OLTP storage engine, opti-

mized for the largest e-commerce platform in the world at
Alibaba, serving more than 600 million active customers
globally. Online e-commerce transactions bring some dis-
tinct challenges, especially during the annual Singles’ Day
Global Shopping Festival when customers shop extensively
in a short period of time. We design X-Engine on top of an
optimized LSM-tree to leverage hardware acceleration such
FPGA-accelerated compaction, and a suite of optimizations
such as asynchronous writes in transactions, multi-staged
pipeline, incremental cache replacement, and multiple kinds
of caches. X-Engine has outperformed other storage engines
processing the e-commerce workloads during online promo-
tions and successfully served the Singles’ Day Shopping Fes-
tival. Our ongoing and future work include adopting a shared
storage design to improve its scalability for shared-nothing
distributed transaction processing under sharding, and ap-
plying machine learning methods to predict data tempera-
tures in order to facilitate intelligent scheduling of record
placements in a tiered storage.

Acknowledgments
We thank reviewers for their feedback on this paper. X-

Engine is designed, developed and administrated by a team
of engineers at Alibaba Group. In addition to authors of this
paper, we thank Chang Cai, Shiping Chen, Zhi Kong, Can-
fang Shang, Dehao Wang, Lujun Wang, Buwen Wu, Fei Wu,
Anan Zhao, Teng Zhang, Dongsheng Zhao, and Yanan Zhi
for designing and developing X-Engine. We deeply appreci-
ate Rongyao Chen, Wentao Chen, Shengtao Li, Yue Li, Jiayi
Wang and Rui Zhang for evaluating, and administrating X-
Engine online as part of their efforts to support Alibaba’s
online businesses including the annual Singles’ Day Shop-
ping Festivals.

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

662

References
[1] Steve Abraham. 2018. Introducing the Aurora Stor-

age Engine. https://aws.amazon.com/cn/blogs/database/
introducing-the-aurora-storage-engine/.

[2] Mehmet Altinel, Christof Bornhövd, Sailesh Krishnamurthy, C. Mohan,
Hamid Pirahesh, and Berthold Reinwald. 2003. Cache Tables: Paving
the Way for an Adaptive Database Cache. In Proceedings of the 29th
International Conference on Very Large Data Bases (VLDB ’03), Vol. 29.
VLDB Endowment, 718–729.

[3] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman,
Yonatan R. Fogel, Bradley C. Kuszmaul, and Jelani Nelson. 2007. Cache-
oblivious Streaming B-trees. In Proceedings of the Nineteenth Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA ’07).
ACM, New York, NY, USA, 81–92.

[4] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song
Zheng, Yuhui Wang, and Guoqing Ma. 2018. PolarFS: an ultra-low
latency and failure resilient distributed file system for shared storage
cloud database. Proceedings of the VLDB Endowment 11, 12 (2018),
1849–1862.

[5] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levan-
doski, James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent
Key-Value Store with In-Place Updates. In Proceedings of the 2018 In-
ternational Conference on Management of Data (SIGMOD ’18). ACM,
New York, NY, USA, 275–290.

[6] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. 2001. Improv-
ing Index Performance Through Prefetching. In Proceedings of the
2001 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’01). ACM, New York, NY, USA, 235–246.

[7] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2018. Optimal
Bloom Filters and Adaptive Merging for LSM-Trees. ACM Transactions
on Database Systems (2018).

[8] Niv Dayan and Stratos Idreos. 2018. Dostoevsky: Better Space-Time
Trade-Offs for LSM-Tree Based Key-Value Stores via Adaptive Removal
of Superfluous Merging. In Proceedings of the 2018 International Con-
ference on Management of Data (SIGMOD ’18). ACM, New York, NY,
USA, 505–520.

[9] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur,
Tony Savor, and Michael Strum. 2017. Optimizing Space Amplification
in RocksDB. In The biennial Conference on Innovative Data Systems
Research (CIDR), Vol. 3. 3.

[10] Klaus Elhardt and Rudolf Bayer. 1984. A Database Cache for High
Performance and Fast Restart in Database Systems. ACM Transactions
on Database Systems (TODS) 9, 4 (Dec. 1984), 503–525.

[11] Facebook. 2018. MyRocks. https://github.com/facebook/mysql-5.6/
releases/tag/fb-prod201803.

[12] Facebook. 2018. RocksDB MemTable. https://github.com/facebook/
rocksdb/wiki/MemTable.

[13] Facebook. 2018. RocksDB Pipelined Write. https://github.com/
facebook/rocksdb/wiki/Pipelined-Write.

[14] Facebook. 2018. RocksDB Release v5.17.2. https://github.com/
facebook/rocksdb/releases/tag/v5.17.2.

[15] Facebook. 2019. RocksDB: A persistent key-value store for fast storage
environments. https://rocksdb.org/.

[16] Sanjay Ghemawat and Jeff Dean. 2011. LevelDB. URL: s://github.
com/google/leveldb,% 20http://leveldb. org (2011).

[17] Goetz Graefe and Harumi Kuno. 2010. Self-selecting, Self-tuning, In-
crementally Optimized Indexes. In Proceedings of the 13th International
Conference on Extending Database Technology (EDBT ’10). ACM, New
York, NY, USA, 371–381.

[18] Sándor Héman, Marcin Zukowski, Niels J. Nes, Lefteris Sidirourgos,
and Peter Boncz. 2010. Positional Update Handling in Column Stores.

In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’10). ACM, New York, NY, USA, 543–
554.

[19] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and Rama
Kanneganti. 1997. Incremental Organization for Data Recording and
Warehousing. In Proceedings of the 23rd International Conference on
Very Large Data Bases (VLDB ’97). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 16–25.

[20] Alexey Kopytov. 2019. Scriptable database and system performance
benchmark. https://github.com/akopytov/sysbench.

[21] Tobin J. Lehman andMichael J. Carey. 1986. A Study of Index Structures
for Main Memory Database Management Systems. In Proceedings of
the 12th International Conference on Very Large Data Bases (VLDB ’86).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 294–303.

[22] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive
radix tree: ARTful indexing for main-memory databases. In 2013 IEEE
29th International Conference on Data Engineering (ICDE). IEEE, 38–49.

[23] Justin Levandoski, David Lomet, and Sudipta Sengupta. 2013. LLAMA:
A Cache/Storage Subsystem for Modern Hardware. Proceedings of the
VLDB Endowment 6, 10 (Aug. 2013), 877–888.

[24] Justin J Levandoski, David B Lomet, and Sudipta Sengupta. 2013. The
Bw-Tree: A B-tree for new hardware platforms. In 2013 IEEE 29th
International Conference on Data Engineering (ICDE). IEEE, 302–313.

[25] MemSQL. 2019. Database Benchmark Tool. https://github.com/
memsql/dbbench.

[26] MySQL. 2018. Introduction to InnoDB. https://dev.mysql.com/doc/
refman/8.0/en/innodb-introduction.html.

[27] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.
1996. The log-structured merge-tree (LSM-tree). Acta Informatica 33,
4 (1996), 351–385.

[28] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abra-
ham. 2017. PebblesDB: Building Key-Value Stores Using Fragmented
Log-Structured Merge Trees. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA,
497–514.

[29] Kai Ren, Qing Zheng, Joy Arulraj, and Garth Gibson. 2017. SlimDB: A
Space-efficient Key-value Storage Engine for Semi-sorted Data. Pro-
ceedings of the VLDB Endowment 10, 13 (Sept. 2017), 2037–2048.

[30] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and
Implementation of a Log-structured File System. ACM Transactions on
Computer Systems (TOCS) 10, 1 (Feb. 1992), 26–52.

[31] Russell Sears and Raghu Ramakrishnan. 2012. bLSM: A General Pur-
pose Log Structured Merge Tree. In Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of Data (SIGMOD ’12).
ACM, New York, NY, USA, 217–228.

[32] Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Siyuan Ma, Yanfeng
Zhang, and Xiaodong Zhang. 2017. LSbM-tree: Re-enabling buffer
caching in data management for mixed reads and writes. In 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 68–79.

[33] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmade-
sam, Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Mau-
rice, Tengiz Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora:
Design Considerations for High Throughput Cloud-Native Relational
Databases. In Proceedings of the 2017 ACM International Conference
on Management of Data (SIGMOD ’17). ACM, New York, NY, USA,
1041–1052.

[34] Hoang Tam Vo, Sheng Wang, Divyakant Agrawal, Gang Chen, and
Beng Chin Ooi. 2012. LogBase: A Scalable Log-structured Database
System in the Cloud. Proceedings of the VLDB Endowment 5, 10 (June
2012), 1004–1015.

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

663

https://aws.amazon.com/cn/blogs/database/introducing-the-aurora-storage-engine/
https://aws.amazon.com/cn/blogs/database/introducing-the-aurora-storage-engine/
https://github.com/facebook/mysql-5.6/releases/tag/fb-prod201803
https://github.com/facebook/mysql-5.6/releases/tag/fb-prod201803
https://github.com/facebook/rocksdb/wiki/MemTable
https://github.com/facebook/rocksdb/wiki/MemTable
https://github.com/facebook/rocksdb/wiki/Pipelined-Write
https://github.com/facebook/rocksdb/wiki/Pipelined-Write
https://github.com/facebook/rocksdb/releases/tag/v5.17.2
https://github.com/facebook/rocksdb/releases/tag/v5.17.2
https://rocksdb.org/
https://github.com/akopytov/sysbench
https://github.com/memsql/dbbench
https://github.com/memsql/dbbench
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-introduction.html

A More evaluations
In Figure 19, we tune the number of connections to make

X-Engine operating at the same QPS with and without FPGA
offloading, and then measure and report the CPU utiliza-
tion of all processors. With and without FPGA offloading,
the CPU utilization averages to about 37 and 29 hardware
threads (recall that our cpu caters to 64 threads in total with
32 cores and hyperthreading, so the maximum utilization
is 6400%), respectively. FPGA offloading also decreases the
variance of CPU utilization by about six times by moving
the computation overhead to the FPGA. By exploiting these
saved CPU resources, X-Engine is able to increase the overall
throughput by 27% as shown in Figure 15.

CPU
compaction

FPGA
compaction

2000

3000

4000

5000

C
P

U
u

ti
liz

at
io

n
(%

)

Figure 19: The CPUs usage of MySQL with X-Engine
using CPUs or FPGAs for compactions while deliver-
ing the same level of throughput.
Figure 20 plots bytes read and bytes written per transac-

tion while running write-intensive transactions, comparing
RocksDB and X-Engine, two LSM-tree based systems. All
data are normalized to the results of X-Engine. Because both
RocksDB and X-Engine exercise indexes to accelerate point
lookups, X-Engine’s extents only reduces the read ampli-
fication by about 9%. However, such extents and indexes
contribute to the data reuse in compactions, and help reduce
the write amplification by 63%.
B Generating E-Commerce Workloads

X-Bench takes in a configuration of SQL workloads, where
we specify several types of transactions. Each transaction
mimics certain e-commerce operations such as browsing
the hottest merchandises in a given category, placing or-
ders, and making payments. To achieve this, we fill SQL

Read Write
0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

K
B

p
er

tr
an

sa
ct

io
n RocksDB

X-Engine

Figure 20: Normalized KB read or written per transac-
tion.
templates into each transaction in the form like “UPDATE

TABLE_NAME SET PAY_STATUS = STATUS WHERE OR-
DER_ID = ID;” where “TABLE_NAME”, “STATUS” and “OR-
DER_ID” are placeholders for values to be filled in. By prepar-
ing different SQL templates, we are able to generate point
lookups, range lookups, updates, and inserts in the workload.
X-Bench further allows the configuration of the weight of
each transaction, so that we can vary the percentage of each
transaction in the workload to simulate different workloads.
X-Bench then calls SysBench to populate such placeholders
with values according to specified distributions and other
conditions, and finally queries the target database instance
with these synthesized queries. Assisted by Alibaba’s data-
base administrators and users, the SQL templates we use in
our evaluations are based on real workloads from Alibaba’s
e-commerce platforms.
C Identifying cold records
As discussed before, internal levels in warm/cold layer

(shown in Figure 2) are differentiated by the temperature of
data (extent). An extent’s temperature is calculated by its
access frequency in a recent window. When a compaction
is performed, X-Engine selects the coldest extents with the
number specified by a threshold, say 500 extents, and pushes
these extents to the deeper level to do compaction. By doing
so, X-Engine keeps the warm extents in upper levels and
cold extents in deeper levels. But this method cannot handle
dynamic workloads well. For example, when the current ac-
cess frequency of an extent is low, our algorithm will treat
the extent as cold data but it might become hot in near fu-
ture. To this end, we have investigated machine learning
based algorithms to identify the proper temperature of an
extent. The intuition is that, in addition to extent, we also
use row level (record) as a granularity to infer temperature
(warm/cold). If a record has never been accessed in a recent
window, it is identified as being cold. Otherwise, it is consid-
ered warm. So temperature identification is translated into
a binary classification problem and can be solved using a
classification model, such as using random forest or a neural
network based approach. The details of our machine learning
based algorithm for temperature identification is out of the
scope of this paper and will be elaborated in another work.
D Configurations for Storage Engines and

Benchmarks
We have open-sourced our scripts for evaluating InnoDB

and RocksDB using SysBench and dbbench online 1. We also
show the configurations used forMySQL (InnoDB), MyRocks
(RocksDB), and MySQL (X-Engine) in our evaluations in
Table 2, Table 3, and Table 4, respectively. Table 2 and Table
3 contain well-known configuration options. Most options
in X-Engine are similar to those of RocksDB and InnoDB.
1https://github.com/x-engine-dev/test_scripts

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

664

Options Values
innodb_buffer_pool_size 256G
innodb_doublewrite 1
innodb_flush_method O_DIRECT
innodb_flush_log_at_trx_commit 1
innodb_log_file_size 2 GB
innodb_thread_concurrency 64
innodb_max_dirty_pages_pct_lwm 10
innodb_read_ahead_threshold 0
innodb_buffer_pool_instances 16
thread_cache_size 256
max_binlog_size 500 MB
read_buffer_size 128 KB
read_rnd_buffer_size 128 KB
table_open_cache_instances 16

Table 2: Configurations of MySQL (InnoDB)

Options Values
rocksdb_block_cache_size 170 GB
rocksdb_block_size 16384
rocksdb_max_total_wal_size 100 GB
rocksdb_max_background_jobs 15
rocksdb_max_subcompactions 1
target_file_size_base 256 MB
target_file_size_multiplier 1
level0_file_num_compaction_trigger 4
write_buffer_size 256 MB
max_write_buffer_number 4
max_bytes_for_level_multiplier 10
compression_per_level No for all
num_levels 7 (default)
level_compaction_dynamic_level_bytes True
Table 3: Configurations of MyRocks (RocksDB)

Options Values
xengine_row_cache_size 45 GB
xengine_block_cache_size 170 GB
xengine_db_memtable_size 256 MB
xengine_db_total_memtable_size 100 GB
xengine_max_total_wal_size 100 GB
xengine_data_block_size 16384
xengine_max_compactions 8
xengine_max_flushes 3
xengine_max_memtable_number 2/sub-table
level0_extents_compaction_trigger 64
level1_extents_compaction_trigger 1000
xengine_compression False
xengine_num_levels 3
xengine_thread_pool_size 128

Table 4: Configurations of MySQL (X-Engine)

“level0_extents_compaction_trigger” and “level1_extents_
compaction_trigger” are the maximum number of extents in
Level0 and Level1, respectively. Compactions are triggered
when thees threshold values are reached.

Lastly, “xengine_max_compactions” and “xengine_max_
flushes” refer to themaximumnumber of compaction threads
and flush threads running in X-Engine, respectively.

Industry 2: Storage & Indexing SIGMOD ’19, June 30–July 5, 2019, Amsterdam, Netherlands

665

	Abstract
	1 Introduction
	2 System Overview
	3 Detailed Design
	3.1 The read path
	3.2 The write path
	3.3 Flush and Compaction

	4 Evaluation
	4.1 Experimental setup
	4.2 E-commerce transactions
	4.3 The tsunami problem
	4.4 The flood discharge problem
	4.5 The fast-moving current problem

	5 Related work
	6 Conclusion
	Acknowledgments
	References
	A More evaluations
	B Generating E-Commerce Workloads
	C Identifying cold records
	D Configurations for Storage Engines and Benchmarks

