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Abstract—
As more critical applications move to the cloud, there is

a pressing need to provide privacy guarantees for data and
computation. While cloud infrastructures are vulnerable to a
variety of attacks, in this work, we focus on an attack model
where an untrusted cloud operator has physical access to the
server and can monitor the signals emerging from the processor
socket. Even if data packets are encrypted, the sequence of
addresses touched by the program serves as an information
side channel. To eliminate this side channel, Oblivious RAM
constructs have been investigated for decades, but continue
to pose large overheads. In this work, we make the case that
ORAM overheads can be significantly reduced by moving some
ORAM functionality into the memory system. We first design
a secure DIMM (or SDIMM) that uses commodity low-cost
memory and an ASIC as a secure buffer chip. We then design
two new ORAM protocols that leverage SDIMMs to reduce
bandwidth, latency, and energy per ORAM access. In both
protocols, each SDIMM is responsible for part of the ORAM
tree. Each SDIMM performs a number of ORAM operations
that are not visible to the main memory channel. By having
many SDIMMs in the system, we are able to achieve highly
parallel ORAM operations. The main memory channel uses
its bandwidth primarily to service blocks requested by the
CPU, and to perform a small subset of the many shuffle
operations required by conventional ORAM. The new protocols
guarantee the same obliviousness properties as Path ORAM.
On a set of memory-intensive workloads, our two new ORAM
protocols – Independent ORAM and Split ORAM – are able to
improve performance by 1.9× and energy by 2.55×, compared
to Freecursive ORAM.
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I. INTRODUCTION

Many applications execute in datacenters or on smart

handheld devices. This makes a hardware attack more

feasible, especially on a passive memory system where

adversaries can observe both data and addresses emerging

from the processor socket. While data can be protected

using encryption, hiding the address pattern is not trivial.

This is because a passive memory device does not have

encryption/decryption logic and must receive the address in

plaintext. The addresses touched by a program can therefore

be observed by an attacker that has physical access to the

hardware.

To close this side channel, researchers have proposed

different Oblivious RAMs that make two different access

patterns indistinguishable. In spite of decades of progress,

state-of-the-art ORAM proposals continue to suffer from

very high overheads. An ORAM converts a single memory

access into more than a hundred memory accesses, so its

performance is very much dictated by the memory band-

width available to the system. Modern processors have only

a handful of memory channels that are quickly saturated by

the bandwidth demands of ORAM.

In this work, we try to boost the bandwidth available to

ORAM by creating a number of memory access channels

that do not burden the processor’s limited pin budget.

These memory access channels are on the DIMM and are

controlled by a custom buffer chip on the DIMM. The

buffer chip is part of the trusted computing base (TCB).

We shift most of the ORAM controller functionality from

the secure CPU to the secure buffer chip on each DIMM.

Thus, most of the data movement required for an ORAM

access now happens locally on the DIMMs. We refer to this

new DIMM architecture as a secure DIMM or SDIMM. It

has the following advantages:

1. Memory Capacity and Cost: By relying on commodity

DDR-compatible products and a DIMM interface, SDIMMs

are able to provide higher memory capacity and lower cost

than currently available active memory architectures (e.g.,

Micron HMC [1]). High memory capacity at low cost is

critical for many cloud applications [2], [3].

2. Performance: The ORAM protocol now has as many

memory channels at its disposal as the number of DIMMs.

This improves the memory parallelism that can be achieved

for ORAM accesses. Additionally, it clears ORAM traffic

from the shared main memory channels, which improves

the latency for non-secure accesses.

3. Energy: By localizing most ORAM traffic within a

DIMM, the energy cost of ORAM data movement is sig-

nificantly lowered.

4. Privacy: The CPU vendor does not have to trust the

DRAM chip vendor or the manufacturer of an active mem-

ory device. The CPU vendor can design its own trusted

buffer chip and SDIMM, while using non-trusted commodity

DRAM chips. As we show later, our new ORAM protocols

offer the same privacy guarantees as state-of-the-art ORAM.

Next, we design ORAM protocols that can be efficiently



distributed across multiple SDIMMs in different ways. We

first create an Independent ORAM per SDIMM, where each

SDIMM is responsible for a subtree of the full ORAM.

One can consider this memory model as a queuing system

with multiple servers. The more SDIMMs in the system,

the more parallelism that is available to service ORAM

requests. While this Independent model reduces bandwidth

pressure on the memory bus, it achieves a service time on

an SDIMM that is almost the same as a regular single

channel ORAM. For applications with low memory level

parallelism, a regular Path ORAM might outperform an

SDIMM-based memory system, as Path ORAM can use

all channels to reduce ORAM service time. We therefore

propose a second distributed protocol, a Split ORAM where

each bucket in one ORAM tree is decomposed into multiple

equal parts and distributed across multiple SDIMMs. The

Split ORAM protocol only moves metadata to the CPU,

and most data block shuffling is performed locally within

each SDIMM. The collective internal memory bandwidth

of multiple SDIMMs can be harnessed for a single ORAM

request, thus lowering latency per access. Finally, we show

a memory layout that localizes ORAM data accesses to one

rank for each ORAM request. As a result, we can keep most

of the memory ranks in low power mode.

In short, this work offers the following contributions:

1. We propose an SDIMM that shifts the ORAM controller

to the DIMM buffer and increases memory parallelism.

We discuss the architectural requirement for SDIMMs to

guarantee secure address obfuscation.

2. We show how an ORAM protocol can be decomposed

across multiple SDIMMs using two different approaches.

The first approach, Independent ORAM, achieves a dramatic

reduction in main memory channel bandwidth. The second

approach, Split ORAM, consumes a moderate amount of

main memory channel bandwidth, but reduces latency by

spreading every ORAM request across multiple SDIMMs.

3. We show a low power scheme for SDIMMs that keeps

most of the ranks in low power mode and localizes all

accesses per ORAM request to one rank.

4. Finally, we evaluate our approach and compare it against

the state-of-the-art Freecursive ORAM [4]. Our results show

that SDIMM-based systems can improve system perfor-

mance by 1.9× and energy by 2.5× for a 32 GB memory

system.

II. BACKGROUND

A. DRAM Basics

A commodity DRAM-based memory system consists of

one or more channels that each have a data bus and a

command/address bus. Each channel can have up to three

dual inline memory modules (DIMMs). Every DIMM has

multiple ranks consisting of multiple DRAM chips. Every

cache block is scattered across chips in a rank. All the

Buffer

Adr/Cmd Bus (23 bits) Data Bus (64-72 bits)

Figure 1. A baseline LRDIMM.

chips receive the same commands through a shared com-

mand/address bus, while they send to and receive from their

own part of the data bus. Each rank also consists of multiple

banks that can be accessed nearly independently to increase

memory parallelism. To fetch a cache line, the memory

controller sends a RAS signal to open a row, followed by a

CAS signal to send the selected part of the row to the CPU.

While there are different types of DIMMs, in this work

we focus on load reduced DIMM (LRDIMM [5]), which

supports high bandwidth and high capacity, and is popular

in server machines. In an LRDIMM, the data bus and the

command/address bus between DRAM chips and the CPU

are relayed through the LRDIMM buffer, which is a chip

on the DIMM that currently has no processing capabilities.

The buffer chip improves signal quality and the maximum

frequency of the memory channel (see Figure 1).

B. Threat Model

In this work, we assume that the CPU is secure and the

adversary cannot tamper with it. However, they can deploy

physical attacks on the memory system. Such attacks may

involve a logic analyzer that can monitor visible signals

on printed circuit boards (including the motherboard and

DIMMs). The attacker can thus passively observe the data

and addresses of the memory access stream that emerges

in/out of the processor and memory chips. As a result, they

may deduce crucial information about the running programs

and their inputs. Prior work [6] has shown that sensitive

information can be deduced even if the data is encrypted.

This information can be later used to also actively tamper

with data (an active attack). To withstand such physical

attacks, the memory system must be augmented to not

only provide confidentiality (encryption support), but also

data integrity (e.g., with Merkle Trees) and access pattern

indistinguishability.

C. Path-Oblivious RAM

For decades, many have pursued Oblivious RAM [7],

[8], [9], [10], [11], [12], [13], [4], [14] implementations

to guarantee indistinguishable access patterns. The key idea

behind ORAM is to randomly change the address of each

memory block, whenever it is accessed. One of the recent

proposals for ORAM, with the least bandwidth and storage

overhead, is Path ORAM [11]. In this type of ORAM, data



blocks in memory are logically organized as a balanced

binary tree with root at level 0 and leaves at level L. Each

node in the tree is called a bucket and contains Z encrypted

blocks (typically Z = 4 [4]). Some of these blocks may be

dummy blocks.

In addition to the tree organization, ORAM has two other

key components: PosMap and stash. PosMap is a lookup

table that associates a leaf ID, from 0 to 2L−1, to each data

block. The stash is a small (typically 200 entries [4]) storage

buffer in the memory controller that temporarily holds data

blocks that are read from the tree. ORAM guarantees that

at any moment, the block with leaf ID l is either kept in

the stash or in a node on the path from the root node to

the leaf node l. In every access to the ORAM, the leaf ID

associated with the accessed block is updated to a random

value. In order to hide the access type (i.e., read or write)

and to randomly change the leaf ID, ORAM is accessed

through an accessORAM(a, op, d′) interface, where a, op,

and d′ are the block’s physical address, the operation type,

and the new value for the block (for write operation),

respectively [4]. In every call to accessORAM(a, op, d′),
the memory controller performs the following steps:

1. It looks up the PosMap and finds the leaf ID l associated

with a. It also updates the PosMap entry for address a with

a randomly generated value l′.
2. It fetches and decrypts all the cache lines along the path

from the root node to the leaf node l, and adds them to the

stash.

3. In the case of a read operation, it finds the block a,

and sends a copy of it to the last level cache. For write

operations, it updates the block’s content with d′.
4. Finally, it stores back as many blocks as possible from

the stash to the path from the root node to the leaf node l.
To facilitate these steps, each node in the tree has some

additional fields. More precisely, each block is augmented

with a field for its physical address and a field for its leaf

ID. The memory controller uses these fields to identify

the requested block and to store the blocks from the stash

back in to the memory. In addition to these two fields, a

counter is maintained for the entire bucket, which is used

for encryption and decryption.

D. Freecursive Path Oblivious RAM

The PosMap in Path ORAM imposes a significant storage

overhead on the secure CPU. This is because the PosMap

capacity grows linearly with the size of the tree. To alleviate

this overhead, the PosMap is also stored in the memory [4].

The memory space for PosMap is also treated as a separate

smaller ORAM to avoid information leakage. To distinguish

between these different ORAMs, we call the data ORAM

as ORAM0 and the PosMap ORAM as ORAM1. Note that

the PosMap for ORAM1 might not fit in the secure CPU as

well; hence it will be kept in the memory in ORAM2. In

general, ORAMk keeps the PosMap for ORAMk−1. The

algorithm recursively stores these PosMaps in the memory,

until it becomes small enough to fit on the chip. To find a

cache line, the memory controller starts with the on-chip

PosMap, say ORAMn, and finds an address to perform

accessORAM in ORAMn−1. This process continues until

the accessORAM is called for ORAM0.

The recursive process of calling accessORAM imposes

a severe overhead for each data request. A recent pa-

per addressed this problem and proposed Freecursive Path

ORAM [4]. The key idea in this approach is to cache entries

from ORAMi (i > 0) in an on-chip space called PosMap

Lookaside Buffer (PLB). Upon receiving a new request, the

memory controller checks the PLB iteratively for the entries

in ORAM1 to ORAMn associated with this request. The

procedure stops if there is no hit in the PLB or for the first

ORAM leading to a hit. Fletcher et al. [4] advocate that all

the ORAM0 to ORAMn be stored in the same ORAM tree

in memory to avoid information leakage.

The Freecursive architecture has two parts, backend and

frontend. The backend has the stash and the memory con-

troller, and takes care of performing the accessORAM
function. The frontend, on the other hand, queues up LLC

requests and has the PLB cache to determine how many

accessORAMs are needed per LLC request. The service

time of the backend depends on the available resources,

especially memory bandwidth.

E. Active Memory Solution

It is worth highlighting that recent work [15], [16] is

considering the use of active memory devices to eliminate

the leakage of the address stream. These works rely on logic

capabilities (primarily, encryption and decryption) within

the memory package, as may be possible with devices like

the Micron HMC [1]. Placing active components within

the memory package can have significant implications on

cost. This cost is incurred by all applications running on

this server, regardless of whether they are sensitive or not.

Instead, a server with low cost-per-bit DIMMs can benefit

all applications that run on this server, while the overheads

of an ORAM protocol are experienced only when executing

sensitive phases in applications.

The use of active memory devices can impact cost and

performance in many ways. First, commodity DRAM chips

keep costs down by avoiding extraneous logic and catering

to high-volume markets. Second, while capabilities can be

added to a separate logic die in a 3D package, such 3D

packages are inherently more expensive because of their

use of through-silicon vias (TSVs). Third, devices like the

HMC support a limited capacity of 4 GB per package. When

supporting large memory capacities in servers, it is unlikely

that the entire memory system will be constructed with a

large network of HMCs that can impact board layout and

introduce long network latencies. It is more likely that 3D-

stacked active memory packages will be used to construct an



off-chip cache that is backed up with a traditional low-cost

and passive memory system. This larger memory system will

still need support for ORAM to guarantee privacy. Such an

ORAM will also suffer from long latencies since part of the

processor pin budget is allocated to the HMC cache and not

available to boost ORAM bandwidth.

CPU BUF

DRAM CHIP

Traditional Memory/ORAM    HMC-based Memory               Secure-DIMM          

Performance:                         Low                                        High                            Medium

Cost:                              Low           High            Low

Attack surface:               interconnects               interconnects interconnects

DRAM chips                                                                                   DRAM chips

CPU

DIMM

DRAM CHIP

DIMM

CPU HMC

Figure 2. Landscape of solutions: baseline ORAM (left), active memory
(center), SDIMM (right).

To some extent, our proposals here are creating an “ac-

tive” memory system, but are doing so in a cost-aware

manner that enables large memory capacities. We are con-

tinuing to use low-cost commodity memory chips that are

connected to an active logic unit on the DIMM. Since these

connections do not rely on exotic packaging and are visible

to the attacker, ORAM semantics are required to eliminate

side channels. While the use of an active memory unit like

the HMC requires the system vendor to trust the memory

vendor, in our proposed architecture, the system vendor can

create their own active logic unit, thus exercising full control

over the trusted computing base.

The design space is depicted in Figure 2. The attack

surface (shown by black components) in our model (right)

is the same as in traditional ORAM solutions (left). Our so-

lution expands the trusted computing base (shown by yellow

components) – by offloading some ORAM functionality to

buffers on the SDIMM, we can increase performance at low

cost. The active memory solution (center) lowers the attack

surface and improves performance, but pays a steep penalty

in memory cost-per-bit.

III. SECURE DIMMS AND NEW ORAM PROTOCOLS

A. Secure DIMM

In this work, we propose a novel Secure-DIMM or

SDIMM that is used to distribute the ORAM tree and reduce

its bandwidth impact. In an SDIMM, the central LRDIMM

buffer is replaced with a secure buffer that can perform an

accessORAM operation (see Section II-C) on the DIMM

and in close proximity to DRAM chips. Figure 3a depicts

the high-level architecture of an SDIMM. As shown, the

TCB includes both the CPU and the secure buffer, and

the communication between them is encrypted. However,

DRAM chips and the on-DIMM bus between the secure

buffer and these DRAM chips are not trusted. A secure

buffer has two main components:

1) It has an ORAM memory controller that guarantees

obliviousness on the DIMM. Therefore, each SDIMM

can be considered as a single-channel ORAM.

2) It has an interface logic that enables secure encrypted

communication between the secure buffer on the

DIMM and the secure CPU. The encryption applies

for both data and command/address buses.

SDIMMs can be used to create a distributed implemen-

tation of a Freecursive ORAM backend with the same

encryption and integrity verification mechanism (PMMAC).

Informally speaking, in an SDIMM-based architecture, the

CPU sends an encrypted request to an SDIMM, the SDIMM

performs an accessORAM operation to fetch the requested

block, and the SDIMM finally encrypts and sends the block

back to the CPU. We try to abide by the DDR protocol as

much as possible, i.e., we do not introduce any new pins on

the memory channel. As described later, we do introduce

new commands that can be placed on the DDR bus. Since

an ORAM protocol requires a custom-designed controller

anyway, this does not introduce significant additional design

effort.

In brief, SDIMM has the following primary advantages:

1) In an ORAM, system throughput is almost directly

proportional to the effective memory bandwidth avail-

able to the processor. Each SDIMM can be viewed as

an independent channel that performs ORAM accesses

in parallel, without burdening the shared memory

channels. Therefore, the effective available memory

bandwidth scales up linearly by deploying multiple

SDIMMs.

2) An SDIMM has the same DRAM chips as an

LRDIMM, and its secure buffer has almost the same

pins as the LRDIMM buffer1. Therefore, an SDIMM

does not require significant changes to the design and

wiring of the DIMM. This has favorable implications

for DIMM manufacturing at scale.

3) An SDIMM uses a DIMM form factor. The CPU-

side memory controller can be modified to enable

SDIMMs and LRDIMMs to co-reside on the same

memory channel. This allows virtual machines (VMs)

with different levels of security requirements to run on

the same CPU. Since an SDIMM handles most data

movement locally, it does not negatively impact the

bandwidth available to a co-resident VM.

4) In contrast to active memory, such as the Hybrid

Memory Cube [1], SDIMMs can offer both address

obfuscation and high capacity. As a result, an SDIMM

is a suitable choice for in-memory applications (e.g.,

1In this work, we assumed a DDR3 topology for the SDIMM. The
SDIMM buffer has the same pins as the LRDIMM buffer, so adapting
a DDR3 LRDIMM into an SDIMM is straightforward. However, in a
DDR4 topology, the LRDIMM data buffer is decomposed into multiple
small buffers. Adapting the DDR4 LRDIMM to an SDIMM would require
a few additional pins to each buffer chip.
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Figure 3. (a) SDIMM overall design. (b) The Independent ORAM protocol.

Oracle TimesTen database) that requires high capac-

ity. In addition, an SDIMM-based system can easily

morph between a secure and non-secure memory.

5) An SDIMM gives the system or DIMM manufacturer

control over the security of the memory system, and

eliminates reliance on the memory vendor or on an

active memory device. The system manufacturer must

create an SDIMM with commodity DRAM chips

and their own trusted secure buffer2. This server can

then be placed in the cloud and an authentication

mechanism can confirm that the hardware has not been

tampered with.

To realize the benefits of a secure DIMM, we will answer

the following questions in the upcoming sub-sections: (i)

When using multiple SDIMMs, how can the ORAM tree be

distributed across SDIMMs such that the memory latency

is minimized? (ii) How is a secure link between the CPU

and an SDIMM initialized? (iii) How can data be transferred

between an SDIMM and the secure CPU without leaking any

information? (iv) How do we design an SDIMM interface

without requiring changes to a DDR channel?

B. CPU-SDIMM Communication

For secure communication, the CPU should authenticate

and initialize the connections to the SDIMMs. At boot-up

time, the secure CPU has to confirm that it is communi-

cating with a trusted secure buffer on the SDIMM. This

authentication of the device can be done in one of many

possible ways, using industry best practices. For example,

when the system boots up, the CPU can communicate with

its secure buffers to obtain their IDs; the CPU then contacts

a third-party authenticator, similar to Verisign, to obtain a

public key. Once the CPU has a public key for its secure

buffer, it goes through the standard practices to establish a

secure connection, typically involving multiple messages to

agree on upstream/downstream session keys and counters.

To ensure secure and low-latency data transfer between the

CPU and an SDIMM, we use counter-mode AES, which

XORs the plaintext message with a frequently-changing pad

that is a function of the key and counter.

2It is not uncommon for CPU vendors to design custom DIMMs [17].

C. A Distributed Independent ORAM

In an optimized baseline ORAM memory system, the

ORAM binary tree is re-organized as a tree of smaller

subtrees. The buckets in each subtree are placed in adjacent

memory locations to increase row buffer hit rate. In addition,

the cache lines of a bucket are also scattered between

multiple channels to utilize channel parallelism [10]. Based

on this arrangement and memory address mapping, buckets

are distributed over different banks, ranks, DIMMs, and

channels.

In the proposed ORAM implementation, as shown in Fig-

ure 3b, the address space is partitioned across all SDIMMs

based on the most significant bits of the leaf ID. Each

SDIMM is only aware of the ORAM sub-tree that it

manages. A requested data block will likely transfer from

one SDIMM to another, although most data movements

are within an SDIMM. The CPU maintains a PLB and on

a memory access, it generates the necessary accessORAM

operations. These are sent to the relevant SDIMM. In other

words, the CPU manages the frontend of ORAM while

SDIMMs accelerate the backend. The steps are explained

in more detail below.

1. The memory controller checks the PLB and determines

which request must be issued next. Based on the leaf ID of

that request, it is sent to one of the SDIMMs (SDIMM-0

in our example in Figure 3). The request is encrypted and

sent to the secure buffer on SDIMM-0 with an ACCESS

command (we will later explain how these commands are

set up in a DDR compatible manner). To obfuscate the

operation type (read or write), an ACCESS command is

always followed by one block of data; in case of a read

operation, this block is a dummy that is discarded by the

receiving SDIMM.

2. The secure buffer on SDIMM-0 receives the request and

decrypts the message. It then fetches all the buckets in the

path from its root to the associated leaf ID, decrypts them,

and puts them into the local stash, located in the secure

buffer of SDIMM-0.

3. In case of a write, the relevant block is updated with

its new value. Regardless of the operation (read or write),

SDIMM-0 then generates a random new leaf ID for the block

requested by the CPU. If the leaf ID belongs to the current
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SDIMM, the block remains in the local stash. Otherwise,

the block is removed from the stash in SDIMM-0.

4. The secure buffer then moves as many blocks as possible

from its local stash to buckets on the path from the root to

the old leaf ID.

5. In case of a write operation where the new leaf ID is

in SDIMM-0, the secure buffer sends a dummy block to

the CPU-side memory controller. In all other cases (read

or write), the secure buffer encrypts the pertinent cache

block, and sends it to the CPU-side memory controller. The

block is augmented with its new leaf ID (mapped to say

SDIMM-1). Note that in a DDR channel, only the CPU-

side memory controller can control the memory channel.

Therefore, SDIMM-0 cannot initiate a data transfer. The

CPU-side memory controller has to periodically send a

PROBE command to SDIMM-0 to determine if a response

is ready. When the command’s response is positive, it issues

a FETCH RESULT command to fetch the requested data

block.

6. Upon receiving the data block, the CPU-side memory

controller may have to move this data block to its new

SDIMM. If the CPU does this with a single write to

the destination SDIMM, it is evident where the block has

moved. This can disrupt the indistinguishability guarantee

in ORAM. If the access pattern has high temporal locality,

i.e., a single block A is touched repeatedly, the sequence of

touched SDIMMs would take the form: read from SDIMM-i,
write to SDIMM-j, read from SDIMM-j, write to SDIMM-

k, read from SDIMM-k, and so on. Therefore, to obfuscate

the new destination of this block and preserve indistinguisha-

bility of access patterns, the CPU sends one block to every

SDIMM using the APPEND command. The command sent

to SDIMM-1 in our example contains the pertinent block

while the ones destined to other SDIMMs carry dummy

blocks. The APPEND command simply adds the block to

the destination’s local stash, if it is not a dummy.

Since block addresses are random, the number of blocks

removed and appended to each SDIMM local stash averages

close to zero. However, the proposed protocol can cause

overflows in local stashes. If a local stash overflows, it can

initiate local reads and writes to drain its stash, similar to

conventional stash overflow strategies such as background

eviction [10]. We later quantify the probability of stash

overflow when transferring data between SDIMMs and show

a simple solution to make it almost zero (see Section IV-C).

We refer to this design as the Independent architecture

because most ORAM operations, including the assignment

of new leaf IDs to fetched blocks, are in the hands of each

SDIMM. The CPU is largely hands-off; it only manages

the PLB, issues accessORAM requests, and issues APPEND

commands to move the requested block to a new SDIMM.

This design places a much smaller bandwidth demand on

the memory channel than the baseline ORAM because only

blocks requested by the CPU (and occasional dummies) are

transmitted on the memory channel. The memory channel

escapes dealing with the many blocks on an ORAM tree

path that are shuffled on every ORAM access.

D. The Split Architecture

In the Independent architecture, a single SDIMM is

responsible for most of the data shuffling required by an

accessORAM operation. Given the SDIMM’s limited buffer

chip pin bandwidth, the latency for this operation is similar

to that of a baseline ORAM operating with a single memory

channel. Thus, even though the Independent architecture

can efficiently process multiple accessORAM operations in

parallel on different SDIMMs, the latency for each operation

is relatively high.

Therefore, to further reduce latency for an ORAM access,

we must spread a single ORAM access across multiple

SDIMMs to leverage the collective memory bandwidth in

multiple SDIMMs. This is especially useful if the workload

has limited memory level parallelism and multiple SDIMMs



are sitting idle while a few SDIMMs are performing accesses

in the Independent ORAM architecture.

The Split Architecture tries to mitigate the accessORAM

latency by relying on a different data layout in the memory.

Informally speaking, one ORAM tree is decomposed into

multiple trees of the same height, but each of them has less

capacity per bucket. Here, without loss of generality, we will

explain splitting for two SDIMMs (or 2-way splitting). Each

bucket in the original ORAM tree has four cache blocks,

and corresponding metadata (four tags, four leaf IDs, four

MACs, one shared counter). In 2-way splitting, each bucket

has one half of each data block, one half of each tag, one

half of each leaf ID, half the counter, and its own MAC.

Similar to PMMAC [4], MACs are generated based on the

compact counters and the data portions available in each

bucket. Therefore, in n-way splitting, the MAC overhead is

n times that in Freecursive ORAM. However, this overhead

is small, relative to the high overhead of dummy blocks in

the baseline ORAM. Figure 4a shows the data layout due

to 2-way splitting. Note that we are not assigning half the

blocks (and corresponding metadata) to one SDIMM; we are

assigning half of every block/metadata to each SDIMM.

An accessORAM operation now entails the following

steps (shown in Figure 4b):

1. The CPU-side memory controller looks up the PLB to find

the appropriate leaf ID for the next accessORAM operation.

For all buckets on the path from the leaf to the root, the CPU-

side ORAM controller sends two types of fetch commands

to both SDIMMs. First, it sends a FETCH DATA command

that reads the data part of each bucket on the path from

the leaf to the root. This data is not transmitted back to the

CPU, but is stored in each SDIMM’s local stash, i.e., it is a

largely local operation. Note that each SDIMM only handles

half the bits for each data block.

2. Next, the CPU-side memory controller sends regular read

commands, i.e., conventional RAS and CAS signals, and

retrieves the metadata (tags, leaf IDs, and counters) for the

entire path in both SDIMMs. Note that each SDIMM is

responsible for providing half the bits of each metadata block

back to the CPU.

3. On the CPU side, the ORAM controller re-assembles

all the metadata received from different SDIMMs for the

same bucket position and reconstructs tags, leaf IDs, and

the counter. Having all the tags, the ORAM controller can

find the requested block. The CPU stash is also designed to

shadow the local stash in each SDIMM; the key difference

is that the CPU stash only has tags and the local SDIMM

stashes have data blocks.

4. The CPU knows the exact location of the requested block

in the SDIMM stashes. It issues FETCH STASH commands

to fetch the pieces of the requested data block from the

SDIMMs. This command sends the local stash index to

identify the block that must be returned. Having all the

leaf IDs, the CPU-side ORAM controller also determines

how to write back from the stash. Unlike the Independent

architecture, most ORAM decisions in the Split architecture

are made by the CPU. The CPU sends this write-back order

to all SDIMMs. Note that instead of using the full address to

refer to data in the stash, the CPU-side ORAM controllers

use the position in the stash. Additionally, the CPU-side

ORAM controller sends the re-assembled counters to all

the SDIMMs. This is needed as these counters are used for

encryption and decryption of the contents of buckets, as well

as for MAC verification. All of this information is packaged

as two RECEIVE LIST commands to the SDIMMs.

5. The SDIMMs receive the lists of the blocks that should be

evicted from their stash into their trees as well as the entire

counter bits, through two RECEIVE LIST commands. Using

the counters, the SDIMMs re-encrypt the blocks, re-calculate

MACs, and update the tree according to the list sent by the

CPU.

In these steps, most of the data block shuffling move-

ment happens within the SDIMMs. The memory channel

to the CPU is primarily used to send/receive metadata and

the specifically requested data blocks. Thus, compared to

conventional ORAM, we see lower traffic on the memory

channel and lower latency. Compared to the Independent

SDIMM architecture, the Split architecture places more

traffic on the memory channel, but incurs a lower latency per

request by leveraging the collective bandwidth on multiple

SDIMMs. In addition, splitting increases the MAC overhead

as each split piece requires its own MAC. The Split and

Independent protocols can also be combined, e.g., in a 4-

SDIMM organization, 2 SDIMMs can be responsible for

half the ORAM (using the Independent protocol), and a

Split protocol can be used to distribute every accessORAM

operation across these 2 SDIMMs.

E. Low Power ORAM Access

The performance of the ORAM-based memory system

depends on available bandwidth. One way to improve band-

width is to increase memory channel clock frequency. How-

ever, DRAM chips consume more background power when

frequency is increased. To reduce the power, we propose

to re-organize SDIMM’s ORAM tree placement in such a

way that each rank contains one whole subtree, as shown in

Figure 5. Note that the new layout still keeps the buckets

in a small subtree close to each other as proposed in [10].

This layout applies to the Independent and Split protocols.

As a result of this new organization, during an

accessORAM , the SDIMM engages one rank and the other

ranks in the SDIMM can be placed in low power mode. Note

that wakeup latency (24ns for DDR3 [18]) is much shorter

than accessORAM latency. In addition, an SDIMM can

turn on the rank required for the next request early enough

to hide the wakeup latency. In a quad-rank SDIMM, we can

accommodate four large subtrees and place three of them in

low power mode. In this case, the first two levels of the tree
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Figure 5. Memory layout for the low power technique.

that are shared by these subtrees are stored in the secure

buffer.

F. Extending DDR Commands

In our discussions so far, we have introduced a few

new commands that the CPU’s memory controller uses to

communicate with the secure buffer and orchestrate acces-

sORAM operations. Unfortunately, there is no free pin on

an LRDIMM to use for these commands. To retain DDR

compatibility, we shoehorn our new commands into the

existing DDR interface.

There are two types of commands that the CPU sends to

an SDIMM: short and long commands. For short commands,

the command/address bus is enough to send a request. For

long commands, the data bus is also needed. In order to

support new commands that can be received by a secure

buffer, we use address bits as well to encode commands. To

this end, we reserve the first blocks of the SDIMM for com-

mands. This means that the first blocks cannot contain any

data. RAS and CAS commands to these reserved addresses

are interpreted by the SDIMM as special commands. Since

a CAS command can work at the granularity of an 8-byte

word, each reserved memory block can be used to construct

8 different commands. Therefore, we use the addresses in

Block 0, in the read mode, to express our short commands.

For long commands, we use the write mode with address

0. In this case, the data written to this address contains

the message. Table I summarizes the formats for these new

commands. The first two commands are used during the

authentication process to exchange keys.

G. Privacy Analysis

The Freecursive protocol is composed of a frontend

and backend. For the Independent protocol, we keep the

two components intact, but the frontend executes on the

CPU, while the backend executes on the SDIMM. The

communication between these two components is protected

with counter-mode encryption and does not leak any infor-

mation. The nature of communication between these two

components is also fixed, i.e., it always involves (i) sending

an accessORAM operation and a data block to a random

SDIMM, (ii) receiving a data block from that SDIMM, and

Command Type RD vs. WR cmd/addr Bus

SEND PKEY short RD RAS(0x0)
CAS(0x0)

RECEIVE SECRET long WR RAS(0x0)
CAS(0x0)

ACCESS long WR RAS(0x0)
CAS(0x0)

PROBE short RD RAS(0x0)
CAS(0x8)

FETCH RESULT short RD RAS(0x0)
CAS(0x10)

APPEND long WR RAS(0x0))
CAS(0x0)

FETCH DATA short RD RAS(0x0)
CAS(0x18)

FETCH STASH long WR RAS(0x0)
CAS(0x18)
CAS(idx)

RECEIVE LIST long WR RAS(0x0)
CAS(0x0)

Table I
DETAILS OF COMMANDS USED BY SDIMM.

(iii) sending blocks to all SDIMMs. The deterministic nature

of these additional messages ensures that there is no new

information leakage and the indistinguishability properties

of the baseline Freecursive ORAM are preserved.

The Split protocol mirrors the Freecursive baseline, but

only exchanges the bare minimum number of data blocks

between frontend and backend (with counter-mode encryp-

tion). Again, the nature of this communication (number of

blocks, source, and destination) is deterministic and does not

introduce new leakage. On exposed unencrypted buses, the

traffic observed is identical to the traffic that would have

been observed with Freecursive.

IV. METHODOLOGY AND RESULTS

A. Methodology

For our evaluation, we use USIMM, a trace-based cycle

accurate memory simulator [20]. We modified USIMM to

support a last level cache and also implemented Freecursive

ORAM [4]. For the backend of ORAM, we used an FR-

FCFS memory scheduler [21]. Read requests are prioritized

until the write queue size exceeds 40. In our simulator,

we fast-forward 1M accesses to warm up the LLC and

then measure cycle-accurate performance for the next 1M

accesses. For traces, we captured L1 cache misses, for 10

SPEC2006 benchmarks using full system simulator Sim-

ics [22]. We did our evaluation for both single channel

and 2-channel memory configurations with two DIMMs per

channel. For our energy evaluation we relied on Micron

Power Calculator [23] and CACTI 7 [24] to calculate DRAM

chip and memory channel power consumption. Table II

summarizes the parameters we use in our evaluation.



Trace Capturing

Processor

ISA UltraSPARC III ISA

CMP size and Core Freq. 1-core, 1.6 GHz
in-order

Re-Order-Buffer 128 entry

Cache Hierarchy

L1 I-cache 32KB/2-way
private, 1-cycle

L1 D-cache 32KB/2-way
private, 1-cycle

Cycle-Accurate Simulation

Cache Hierarchy

L2 Cache 2MB/64B/8-way
shared, 10-cycle

DRAM Parameters

DRAM Device Parameters Micron MT41J256M8
DDR3-800 Timing parameters [19]
8 ranks per channel, 8 banks/chip

32768 rows/bank, x8 part

DIMM Configuration 72 bit channel, 9 devices/rank

Row-Buffer Size 8KB

DRAM Bus Frequency 1600 MHz

DRAM Write Queue Size 64 entries

Freecursive Parameters

PLB Size 64KB
Blocks per Bucket (Z) 4

Data Block Size 64B
Encryption/Decryption Latency 21 cycles
Number of recursive PosMaps 5

Table II
SIMULATOR PARAMETERS.

B. Results

Evaluating the Baseline: In our evaluation, Freecursive

ORAM is considered as the baseline. Figure 6 shows the

slowdown of Freecursive ORAM compared to a non-secure

baseline for single channel and 2-channel memory systems,

respectively. According to this figure, even with caching

7 levels of ORAM in the memory controller, ORAM, on

average, causes 8.8× and 5.2× performance loss for a single

and double channel memory, respectively. Additionally, we

observe that each LLC miss translates into 1.4 accessORAM

operations on average because of recursive PosMap look-

ups.

Figure 6. Average slowdown of Freecursive with respect to a non-secure
configuration.

SDIMM models: For each memory configuration, there

are multiple options for an SDIMM-based design. These

different organizations are summarized in Figure 7. For

a single channel configuration, we consider two SDIMM-

based designs: INDEP-2 and SPLIT-2, respectively repre-

senting the Independent and Split protocols on 2 SDIMMs

each. For 2-channel memory systems, we consider three

SDIMM-based designs: INDEP-4, SPLIT-4, and INDEP-

SPLIT: all use 4 SDIMMs, with the Independent protocol,

Split protocol, and a combination of the Independent and

Split protocols, respectively. We report our results for these

designs with and without a 64KB cache that stores the first

few levels of ORAM.

Impact on Performance: Figure 8 and Figure 9 show

the normalized execution time with respect to Freecursive

ORAM for single and double channel systems, respectively.

For the single-channel memory, with caching the first few

layers of ORAM, these approaches reduce execution time

by 32% and 33.5%, with INDEP-2 slightly out-performing

SPLIT-2 on average. Without the help of ORAM caching

(baseline and proposed), SIDMM-based systems reduce ex-

ecution time by around 35.7%.

Figure 8. Normalized execution time of single-channel SDIMM-based
designs.

Figure 9. Normalized execution time of double-channel SDIMM-based
designs.

For the double channel memory, INDEP-4, SPLIT-4, and

INDEP-SPLIT improve performance by 20.3%, 20.4%, and

47.4% on average, respectively. Thus, the 5× slowdown

(Figure 6) in the baseline Freecursive protocol, relative to

a non-secure baseline, has been halved to 2.6× with the

INDEP-SPLIT protocol, while using low-cost commodity

DRAM chips and not requiring trust in the memory vendor.

Applications (gromacs, omnetpp) that have high levels of

memory-level parallelism do better with the Indep-4 protocol

because they can keep all 4 SDIMMs busy. Other applica-



CPU CPU CPU

CPUCPU

ORAM ORAM ORAM

½ ORAM ½ ORAM

½ ORAM½ ORAM

ORAM ½ ORAM

½ ORAM

ORAM ORAM

¼  ORAM

¼ ORAM

¼  ORAM

¼ ORAM

(a) (b) (c)

(e)(d)

Figure 7. Different SDIMM-based designs (a) INDEP-2 (b) SPLIT-2 (c) INDEP-4 (d) SPLIT-4 and (e) INDEP-SPLIT.

tions (GemsFDTD) benefit more from low latency and the

SPLIT-4 protocol. We observe that the combined INDEP-

SPLIT protocol finds the best balance in terms of latency

and parallelism in every benchmark and achieves the best

performance.

In Freecursive ORAM, for each accessORAM operation,

the CPU deals with 2 × (Z + 1) × L memory accesses,

where Z is the bucket size and L is the number of ORAM

tree levels in memory. Meanwhile, in an Independent ORAM

protocol, the CPU only deals with 1 read and 5 writes (as-

suming 4 SDIMMs). In the Split protocol, the CPU requires

multiple memory accesses to read and update metadata. For

a 28-layer ORAM system with 7-layer ORAM caching,

INDEP-2 and INDEP-4 reduce the number of off-DIMM

accesses to 4.2% and 7.8% of the baseline ORAM, including

PROBE access overheads, respectively. These overheads

drop to less than 3.2% when ORAM caching is not used. For

the Split architecture, the off-DIMM accesses are reduced

to 12% of the baseline ORAM. For the 2-channel case, the

Split and Indep-Split models reduce memory access latency,

relative to Freecursive, by 41% and 63% respectively. In

turn, the low ORAM-specific traffic on the main DDR bus

can lead to lower latency for memory accesses by other non-

secure threads (not evaluated in this study).

Impact on Energy: SDIMM-based designs reduce en-

ergy by keeping most of the memory accesses local to an

SDIMM (I/O energy saving), as well as by taking advantage

of the low power technique introduced in Section III-E

(background energy saving).

We also evaluate our low power technique (Section III-E)

and observe no more than 4% performance drop as a result

of higher bank conflicts. It is worth noting that localizing

accesses to one rank also eliminates the 2-cycle rank-to-

rank switching time (TRTRS). Figure 10 shows the memory

energy overhead of our best performing organizations (i.e.,

SPLIT-2 and INDEP-SPLIT) and Freecursive for single and

double channel configurations. Compared to Freecursive,

SPLIT-2 and INDEP-SPLIT improve memory energy effi-

ciency by 2.4× and 2.5×, respectively.

Sensitivity Analysis: We investigate the impact of the

Figure 10. Memory energy overhead normalized to a non-secure baseline
for (a) single channel and (b) double channels.

number of ORAM layers on the speedup achieved by the

best of our SDIMM-based designs (i.e., SPLIT-2 in single

channel and INDEP-SPLIT in the double channel memory).

Figure 11 shows the average normalized execution time for

different numbers of layers. As expected, adding more layers

increases the improvements of our designs. Similarly, our

designs show slightly higher improvements when ORAM

caches are not used. In short, the improvement ranges from

33% to 35% for the single channel memory and 47% to 49%

for the double channel memory, respectively.

Area Overhead: The SDIMM buffer chip’s main com-

ponents are an ORAM controller and an 8KB buffer to

avoid overflow. Fletcher et al. report 0.47 mm2 area for the

ORAM controller in 32nm. Using CACTI 6.5, we measure



Figure 11. Average normalized execution time for different numbers of
layers in ORAM. Lx refers to an x-level ORAM.

the 8KB buffer area to be less than 0.42 mm2 in the same

technology [25]. Therefore, we estimate that the overall area

overhead of an SDIMM buffer chip is less than 1 mm2.

C. Modeling Overflow Rates

In this section, we investigate the impact of transferring

blocks between independent SDIMMs on the stash size.

Later, based on our findings, we propose a simple technique

to avoid stash overflow due to transferring. In our model,

we divide the secure buffer into two parts: normal stash

and transfer queue (see Figure 12). The normal stash is the

part used through an accessORAM, while the transfer queue

keeps the block arriving from other DIMMs. We model the

size of the transfer queue and show how the probability of

transfer queue overflow can be made extremely small.

Normal

Stash

Transfer

Queue

from other 

SDIMMs 1. Replace a Block leaving 

for other SDIMMs in the 

stash

2. Inserting  to stash through 

an accessORAM

Figure 12. Transfer queue considered in our model.

The transfer queue receives blocks from other SDIMMs.

In addition, the transfer queue services one block by sending

it to the normal stash. However, the normal stash accepts a

block from the transfer queue using only two approaches:

(1) the transfer queue decides to perform an accessORAM

operation to service this block, and (2) one block leaves the

normal stash for another SDIMM and creates a vacancy.

In the latter approach, servicing a block in the transfer

queue does not impact the size of the normal stash. In the

former approach, the normal stash might overflow due to the

accessORAM operation. However, prior work has already

shown that the probability of this event is extremely small

for Z > 4.

The probability of block arrival is 1

4
in a dual SDIMM

system. If we do not use the first approach, the probability

of block servicing is also 1

4
, which means the queue is

saturated, i.e., it will overflow in the future with a probability

Figure 13. (a) Probability moving more than k steps away from origin in
a random walk for different number of steps. (b) The probability of transfer
queue overflow when draining it with an accessORAM with probability p,
for different values of p and different buffer sizes.

of 1. To see the rate of overflow, we model the size of

the transfer queue as a random walk process on a one-

dimensional space. Informally speaking, with probability
1

4
, we walk one step to the right, with probability 1

4
, we

walk one step left, and with probability 1

2
, we do not walk.

To quantify it, let’s assume F (s, k) is the probability that,

starting from position 0, we are at position k after s steps.

Then, F (s, k) can be expressed using the following recursive

equations.
F (s, k) = 0.5×F (s− 1, k)+0.25×F (s− 1, k− 1)

+ 0.25× F (s− 1, k + 1)

F (s, k) = 0 if(s < k)&F (0, 0) = 1 initial condition

Using the above formula, we plotted the chances of piling

up more than 16/64/256/1024 blocks in the stash for up

to 800K steps. As shown in Figure 13a, the small buffer

reaches a 97% chance of overflowing after 100K steps. This

probability for the larger buffer size is also considerable

when we consider 800K steps. More precisely, the chance of

passing the buffer limits are 91%, 70%,and 10% for buffer

capacity of 64, 256, and 1024, respectively.

To solve this problem, we have to increase service rate

so that queue utilization (i.e., ratio of the arrival rate to the

service rate) goes under 1 and avoids steady state saturation.

To this end we are going to use the first approach mentioned

above. That is, with a probability p, we will insert a block

into the ORAM through an extra accessORAM operation. In

this case, we have utilization ρ = 0.25/(0.25+ p).



If we consider each transfer queue as m/m/1/K queue

model, i.e., poisson arrival/service probability model with

1 server and K slots in the queue, then the probability of

the queue being full is Pn = ρK × (1 − ρ)/(1 − ρK+1).
Figure 13b shows the chance of overflow for different sizes

of transfer queue and different values of probability p. We

see that even a small queue has a very small overflow

rate if we occasionally service an incoming block with an

accessORAM operation [26].

V. RELATED WORK

The concept of ORAM was first introduced by Goldreich

and Ostrovsky to aviod software piracy [7]. Since then, nu-

merous theoretical works have proposed a variety of ORAMs

to reduce bandwidth and capacity overheads [27]. One

notable proposal is Path ORAM which organizes the ORAM

as a binary tree and assumes a small capacity overhead for

the client [11]. This approach has been implemented and

optimized in Phantom and Ascend hardware prototypes [28],

[13]. Recently Nayak et al. introduced HOP which is a

hardware prototype with provable security [29]. Fletcher et

al. implemented Tiny ORAM on an FPGA that supports

variable size data blocks [4].

Besides these implementations, there are multiple propos-

als to improve the performance of ORAM. Ren et al. [10]

explore the design space of ORAM and suggest background

eviction and optimized data layout of data in the memory.

Yu et al. [30] take advantage of spatial locality in data and

use prefetching to get data more efficiently. Fork Path per-

forms multiple ORAM accesses in parallel to avoid reading

redundant data. Freecursive ORAM suggests an approach

to avoid most of the recursive accesses to ORAM [31].

Fletcher et al. [32] proposed a solution to throttle down

the side channel on ORAM-based systems and trade-off

performance for security. Ghostrider is a compiler assisted

hardware implementation for ORAM [33]. Cooperative Path

ORAM optimizes the memory scheduler to mitigate the

traffic impact of ORAM access on non-secure threads [34].

Our work is orthogonal to these hardware works and can

be applied in conjunction with these works. The major dif-

ference between our work and the above approaches is that

we create partially active memory components and distribute

ORAM functionality across multiple memory modules. Ac-

tive memory components such as HMC [35] can provide

address obfuscation if they have encryption/decryption logic

in their logic layer [15], [16]. However, leveraging active

memory components requires trusting the memory vendor.

Additionally, to support medium to high capacity, many

HMCs are needed (at high cost). For example, while one

SDIMM can support 64GB, we need 16 4GB HMCs to

realize this capacity. HMC-based space-constrained servers

will therefore have more challenges supporting the high

memory capacity required by cloud applications, e.g., ge-

nomic workloads [36], [37].

VI. CONCLUSIONS

ORAM constructs impose very high bandwidth penalties.

In this work, we make the case that ORAM shuffling

should be off-loaded to smart and secure DIMMs so that

the processor’s progress is not impeded. We introduce two

new distributed ORAM protocols that can leverage these

SDIMMs to reduce bandwidth and access latency, while

not introducing other side channels and while not causing

buffer overflows. The Independent protocol has high latency,

high parallelism, and low bandwidth penalty, so it favors

workloads that exhibit high memory level parallelism. The

Split protocol has low latency, low parallelism, and medium

bandwidth penalty, so it favors workloads that exhibit low

memory level parallelism. Furthermore, we introduce a new

low power technique to reduce background power. Our best

technique reduces execution time by 47% on average while

improving memory energy by 2.5×, relative to the state-

of-the-art Freecursive baseline. Relative to a non-secure

baseline, our contributions have lowered ORAM overheads

to 2.6× in terms of performance and XX× in terms of

memory bandwidth demands.
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