
Weighted Distinct Sampling: Cardinality Estimation for SPJ
Queries

Yuan Qiu
1

Yilei Wang
1

Ke Yi
1,3

Feifei Li
2

Bin Wu
2

Chaoqun Zhan
2

1
Hong Kong University of Science and Technology

2
Alibaba Group

3
SICS, Shenzhen University

(yqiuac,ywanggq,yike)@cse.ust.hk;(lifeifei,binwu.wb,lizhe.zcq)@alibaba-inc.com

ABSTRACT
SPJ (select-project-join) queries form the backbone of many SQL

queries used in practice. Accurate cardinality estimation of these

queries is thus an important problem, with applications in query

optimization, approximate query processing, and data analytics.

However, this problem has not been rigorously addressed in the

literature, despite the fact that cardinality estimation techniques of

the three relational operators, selection, projection, and join, have

each been extensively studied (but not when used in combination)

in the past 30+ years. The major technical difficulty is that (distinct)

projection seems to be difficult to combine with the other two

operators when it comes to cardinality estimation.

In this paper, we give the first formal study of cardinality esti-

mation for SP queries. While it was studied in a prior work in 2001,

there is no guarantee on its optimality. We define a class of algo-

rithms, which we call weighted distinct sampling, for estimating SP

query sizes, and show how to find a near-optimal sampling strategy

that is away from the optimum only by a lower order term. We

then extend it to handling SPJ queries, giving the first non-trivial

solution for SPJ cardinality estimation. We have also performed an

extensive experimental evaluation to complement our theoretical

findings.

ACM Reference Format:
Yuan Qiu, Yilei Wang, Ke Yi, Feifei Li, Bin Wu and Chaoqun Zhan. 2021.

Weighted Distinct Sampling: Cardinality Estimation for SPJ Queries. In

Proceedings of the 2021 International Conference on Management of Data
(SIGMOD ’21), June 20–25, 2021, Virtual Event, China. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3448016.3452821

1 INTRODUCTION
Query size estimation (a.k.a. cardinality estimation) is a fundamen-

tal problem in database systems that requires little justification for

its importance. Size estimation techniques for the three basic rela-

tional operators: Selection (σ), Projection1 (π), and (natural) Join

1
In this paper, the projection operator πA uses its relational algebra semantics, i.e.,
duplicates in A are removed after the projection. If not, this operator need not be

considered as it does not affect the query size. This corresponds to SELECT DISTINCT

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3452821

(Z), have each been extensively studied in the literature. However,

most existing methods do not compose, which becomes a serious

problem to their practical adoption as these relational operators

rarely appear on their own in a query.While a number of techniques

can handle SJ queries [8, 25, 32, 42], how to deal with P jointly with

SJ largely remains an unsolved problem. There is one early work

investigating size estimation for SP queries [19], which is reviewed

in more detail in Section 1.3, but no (non-trivial) techniques can

handle SPJ queries.

When P is the only operator applied on a table R, the size of

πA(R) is the number of distinct values (NDV) in attribute A. The
problem of estimating the NDV using small space has been studied

for more than 30 years by both the database and the algorithms

community [5, 6, 11, 13–15, 30, 41]. However, P by itself does not

yield many interesting queries. Instead, it is often combined with

S and J, as illustrated by the following examples on the TPC-H

schema:

SELECT count(distinct o_custkey) FROM orders

WHERE o_orderdate > 2020-01-01 AND o_orderpriority = "1-URGENT"

SELECT count(distinct o_custkey) FROM orders, lineitem

WHERE o_orderdate > 2020-01-01 AND l_extendedprice > 100

AND o_orderpriority = "1-URGENT" AND o_orderkey = l_orderkey

The first is an SP query that counts the number of distinct customers

who have ever placed an urgent order this year, while the second

is an SPJ query that adds one more constraint that the order must

contain one item priced at least 100.

The current practice for dealing with such queries decouples

P and SJ, i.e., it just returns the smaller of the NDV of projection

attribute and the estimated size of SJ query. This over-simplistic

approach ignores any interaction between P and SJ, which often

leads to a gross overestimation. As an extreme case, imagine that

there are many customers, but only one has placed urgent orders

this year, and it happens that s/he placed many urgent orders.

In this paper, we first design a new technique for estimating the

size of SP queries, significantly improving over the results from

[19] in both theory and practice. Then we consider SPJ queries,

advancing the state of the art of cardinality estimation one step

closer to general SQL queries.

1.1 Problem Definition
Any SPJ query can be expressed by the following normal form [1]:

Q := πA(σϕ (R1 Z R2 Z · · · Z Rm)). (1)

A in SQL. Furthermore, GROUP BY A yields a result size identical to that of πA , so our

techniques also apply to queries where the projection is replaced by a group-by.

https://doi.org/10.1145/3448016.3452821
https://doi.org/10.1145/3448016.3452821

Whenm = 1, this becomes an SP query. For simplicity, we only

consider the case where the projection is on a single attribute A.
For SP queries, this is not a restriction, since we can (conceptually)

concatenate all the projection attributes into a single one. This does

not work for SPJ queries, though, and we leave SPJ queries with

multiple projection attributes to future studies.

We assume that all the relations R1, . . . ,Rm and the projection

attributeA are known in advance. However, the selection condition

ϕ is only given at query time and can be arbitrary. In particular, ϕ
may involve attributes from different relations, so our formulation

also incorporates θ -joins with arbitrary join conditions given at query
time. The goal is to construct a synopsis on R1, . . . ,Rm , such that

given any ϕ, we can estimate |Q | from the synopsis with small error.

Our definition reflects how cardinality estimation is needed in

practical database systems: The join structure of the queries has

only limited forms, often confined by the database schema; the

projection attribute also has limited possibilities. So it is affordable

to build a synopsis for each possible query in the form of (1) that

the database expects to receive. On the other hand, the selection

condition ϕ may use arbitrary expressions (even UDFs) over any

attributes, which is not possible to be given in advance.

We introduce some more notations. For SP queries, we use R to

denote the only relation in (1), whose size is N . For SPJ queries,

we use NZ = |R1 Z · · · Z Rm | to denote the join size. When

the projection attribute A is clear from the context, we use D to

denote the NDV ofA, and useDϕ
to represent the NDV ofA subject

to the selection condition ϕ, which is also the query size |Q | we

wish to estimate. We use D̂ϕ
to denote an estimator of Dϕ

. Table 1

summarizes the notations used in this paper.

Notation Meaning

R,R1, . . . ,Rm Input relation(s)

A Projection attribute

dom(A) Domain of attribute A
ϕ Selection condition

N Number of tuples in R (for SP queries)

Ni Number of tuples with A = i where i ∈ dom(A)
N
ϕ
i Number of tuples with A = i that pass ϕ

NZ Join size |R1 Z · · · Z Rm |
D NDV of A

Dϕ
NDV of A with selection condition ϕ

D̂ϕ
Estimator for Dϕ

n Sample budget

As Set of sampled values from dom(A)
pi The probability that value i is sampled

τi Sample budget allocated for value i

n
ϕ
i Number of sampled tuples with A = i that pass

ϕ where i ∈ dom(A)
µi (ϕ) Conditional probability of sampling a passing

tuple for i , Pr[nϕi ≥ 1 | i ∈ As]

ϕ◦ Special filter where N
ϕ◦
i = 1 for all i ∈ dom(A)

µi Abbreviation of µi (ϕ
◦) = τi/Ni

N , p, τ , µ Vectors of above symbols

Table 1: Notation used in the paper.

1.2 Error Metric
Most algorithms for the standard NDV problem (i.e., no selection

condition) provide multiplicative error guarantees. However, there

is a simple argument that such a guarantee is not possible for SP

queries (hence also for SPJ queries), when the selection condition

is only given at query time and can be arbitrary: Consider two

selection conditions ϕ0 and ϕ1. ϕ0 blocks all tuples in R, while ϕ1
blocks all but one that is arbitrarily chosen. SoDϕ0 = 0 andDϕ1 = 1.

Thus, unless the synopsis has kept more than half of the tuples, it

cannot distinguish the two cases with confidence more than 1/2.

Note that not being able to distinguish between 1 and 0 means that

the multiplicative error is unbounded.

Therefore, we aim at designing synopses with additive errors.

This helps circumvent the 0 vs 1 problem above, as an additive error

of Err means that the synopsis can be insensitive to any query

size smaller than Err . In fact, additive errors are more appropriate

in many applications of query size estimation, in particular query

optimization. In query optimization, the goal is actually not to find

the optimal query plan, but to avoid bad plans [18]. A multiplicative

error would require us to estimate small query sizes accurately,

which is unnecessary, while incurring larger errors for large query

sizes, which may correspond to plans we wish to avoid.

Specifically, we measure the accuracy of an estimator D̂ϕ
for

a particular selection condition ϕ by the standard Mean Squared

Error (MSE), and:

MSE[D̂ϕ] = E[(D̂ϕ − Dϕ)2] = Bias2[D̂ϕ] + Var[D̂ϕ] .

Note that by Chebyshev inequality, an MSE can be translated into

an additive error of O

(√
MSE[D̂ϕ]

)
with arbitrary constant proba-

bility.

We would like the synopsis to handle arbitrary selection con-

ditions given at query time with a guaranteed MSE. Thus, we

measure the quality of a synopsis on the worst possible ϕ, i.e.,
maxϕ MSE[D̂ϕ].

1.3 Distinct Sampling
Let dom(A) be the domain of the projection attribute A. All algo-
rithms for the standard NDV problem are based on the idea of dis-
tinct sampling: For a parameter 0 < p < 1, we take each i ∈ dom(A)
into the sample with probability p, which is often implemented by

checking ifh(i) ≤ p for a randomhash functionh : dom(A) → [0, 1].
Let As be the set of distinct values of A sampled. Then, |As |/p is a

good estimator of D.
Now consider SP queries. As the selection condition ϕ is only

given at query time and can take an arbitrary form, one natural

idea is to augment As with additional tuples sampled from R. More

precisely, for a parameter τ , we take τ tuples into the sample, ran-

domly chosen from all tuples with A = i , for each i ∈ As ; if there
are less than τ tuples with A = i for some i , all of them are taken.

The sample can be collected easily in one pass over the data by

running the reservoir sampling algorithm for each i with h(i) ≤ p.
The estimator for SP queries is then changed to

D̂ϕ =
1

p

���{i ∈ As | nϕi ≥ 1}

��� = 1

p

∑
i ∈dom(A)

I[nϕi ≥ 1] , (2)

where I[·] is the indicator function and n
ϕ
i is the number of tuples

with A = i in the sample that pass the condition ϕ. Indeed, this was
the idea of the first and only work addressing size estimation for

SP queries, due to Gibbons [19].

The key drawback of the simple sampling strategy above is that

the same p and τ are applied for all distinct values in dom(A). While

this makes sense for the standard NDV problem, since each distinct

value in A contributes only once to the count no matter how many

times it appears in R, it may lead to a sub-optimal solution for SP

queries. The following example shows a scenario where it can be

quadratically worse than the optimal sampling strategy in terms of

MSE.

Example 1. Consider a table R with D distinct values in A.
√
D

of these distinct values are called heavy values, each of which

has 3

√
D tuples, and the rest of the distinct values are called light

values, each of which has 1 tuple. Note that the entire table R has
√
D · 3
√
D + (D −

√
D) ≈ 4D tuples in total. Suppose the sample

budget is 2D. We apply the above strategy with parameter τ and p .

If τ > 2

√
D, p cannot be larger than 3/4, otherwise the expected

sample size
9

4
D − o(D) would be larger than the sample budget 2D.

Consider a selection condition ϕ that passes all the tuples of the

light values and blocks all the rest (i.e., blocks all heavy values). We

have Var[D̂ϕ] = 1

p2 ·p(1−p) · (D −
√
D) = Ω(D) (as p ≤ 3/4 in this

construction,
1

p − 1 is larger than 1/3).

If τ ≤ 2

√
D, then consider a series of selection conditions ϕ(x)

that passes x tuples for each of the heavy values, for some 1 ≤ x ≤

3

√
D, and blocks the rest. We have Dϕ(x) =

√
D, and E[D̂ϕ(x)] =

µ(x)
√
D, where µ(x) = 1 −

(
3

√
D−x
τ

) / (
3

√
D
τ

)
is the probability that

at least one of the x tuples is sampled. Observing that x is unknown

to the estimator and µ(x) can range from
τ

3

√
D

to 1, an uncertainty

gap of at least 1/3, so Bias[D̂ϕ(x)] must be Ω(
√
D) for some values

of x , i.e., maxx MSE[D̂ϕ(x)] = Ω(D). Note that this bias cannot be
removed by scaling up or down the estimator (2).

On the other hand, a better sampling strategy is the following:

We sample all the light values , and sample each heavy value with

probability 1/3. If a value is sampled (heavy or light), we take all of

its tuples. We correspondingly modify the estimator to

D̂ϕ =
∑

i ∈dom(A)

1

pi
I[nϕi ≥ 1], (3)

where pi is the probability that i is sampled, i.e., pi = 1 for a light

i and pi = 1/3 for a heavy i . It can be verified that the (expected)

sample size is 2D, and MSE[D̂ϕ] = Bias2[D̂ϕ] + Var[D̂ϕ] = 0 +

O(
√
D) = O(

√
D).

1.4 Weighted Distinct Sampling
The example above suggests that, unlike the standard NDV problem

where all distinct values are treated equally, SP queries call for a

weighted sampling strategy according to the frequencies of the

values, where the “weight” corresponds to the sample budget, i.e.,
piτi , allocated to each i ∈ dom(A).

More precisely, in this paper we study the weighted distinct sam-
pling problem: For each i ∈ dom(A), we sample it with probability

pi . This can be implemented by checking if h(i) ≤ pi for a random

hash function
2
. If it is sampled, then we take τi tuples into the

sample, randomly chosen from all tuples with A = i . The goal is
to minimize the worst-case MSE of the estimator (3). Denoting by

Ni the number of tuples in R with A = i , then finding the optimal

sampling strategy can be formulated as the following optimization

problem (we use bold symbols to represent the vector forms of

pi ,τi ,Ni):

minimize

p,τ
max

ϕ
f0(p,τ ,ϕ)

subject to 0 ≺ p ⪯ 1 , 0 ⪯ τ ⪯ N ,

p · τ ≤ n .

(4)

Here f0(p,τ ,ϕ) = MSE[D̂ϕ], ≺ and ⪯ denote product (element-

wise) order, and n is the given sample budget. So the last constraint

ensures that the (expected) sample size does not exceed the budget.

Note that we require pi > 0 for all i , so that (3) is well defined. If a

sampling strategy does not want to sample a particular i , it can set

τi = 0 instead.

Intuitively, higher sample budgets should be allocated to values

i’s with higher Ni ’s; indeed, determining this relationship quantita-

tively is a key technical problem we solve in this paper. To contrast,

we call the sampling strategy with the same p and τ for all i uniform
distinct sampling, which simply allocates the same sample budget

to all i .

1.5 Our Contributions
In addition to proposing the idea of weighted distinct sampling, we

make the following technical contributions in this paper:

• We design anO(D)-time algorithm that, given the frequency

vector N (in sorted order), finds a near-optimal solution

to the optimization problem (4). The solution found by the

algorithm is larger than the optimum by only a lower order

term. Note that after we have solved (4) for p and τ , the
sample can be collected in one pass over the data using a

hash function h and reservoir sampling.

• As illustrated by Example 1, weighted distinct sampling

works better on more skewed data. We substantiate this

intuition by analyzing its MSE against the Zipfian distribu-

tion, which quantitatively shows that the MSE reduces as

data skewness increases.

• We also show that our sampling strategy has a worst-case

MSE of O(min{DN /n,D2}) for SP queries on any database

instance, while Gibbons’ uniform distinct sampling strategy

as described in [19] may have an MSE of Ω(D2) on certain

instances and queries, even with a sample size of n = Θ(N).
In this case, our MSE is quadratically better than that of

uniform distinct sampling.

• The straightforward way to dealing with SPJ queries is to

first compute the join R1 Z · · · Z Rm , and then build the

SP-query synopsis on the join results. This can be expensive,

especially formulti-way cyclic joins.We extend our sampling

strategy to a random walk based algorithm that can collect

the sample much more efficiently, while incurring a small

loss to the accuracy.

2
Our analysis only requires h to be taken from a pairwise-independent hash family.

• Finally, we conducted an extensive experimental study to

evaluate these algorithms on synthetic, benchmark, and real

data, giving recommendations to their practical use.

2 RELATEDWORK
Cardinality estimation is a fundamental problem that has been

studied extensively. However, most previous work only studied

each relational operator in isolation.

As mentioned, the projection operator acting on its own is the

standard NDV problem. This problem has a long history and is well

understood by now [5, 6, 11, 13–15, 30, 41]. None of them works in

conjunction with selection and/or joins, though, except the distinct

sampling algorithm [19], which was reviewed in Section 1.3.

Estimating the result size of a selection operator is the classical

selectivity estimation problem, and has also been widely studied.

When the selection condition ϕ can be arbitrary, however, the only

way to estimate its selectivity is by random sampling, which is

also the approach we take in this paper. On the other hand, if ϕ is

restricted to a particular form, most commonly a range condition, a

host of techniques have been proposed, including sampling [7, 26,

39], histograms [20, 21, 24, 28, 34, 35, 40], and quantiles [16, 22, 23,

33].

Join size estimation is anotherwell studied problem, and there are

twomain categories: sketch-based [4, 9, 10, 37] and sample-based [2,

8, 12, 17, 42]. The former usually offers better accuracy, but cannot

support selection conditions. The latter may incur larger errors

compared with sketch-based synopses, but can often incorporate

selection conditions easily. However, none of these techniques can

handle SPJ queries.

Query size estimation falls under the general umbrella of approx-
imate query processing (AQP) [3, 27, 29, 32, 38, 43]. AQP techniques

generally fall into two categories: query-time sampling and pre-

computed samples. The former takes samples according to the

query, so can often return more accurate estimates, but the down-

side is that it needs to access the entire database at query time,

which may not be desirable for use in query optimizers for large-

scale distributed databases. Our sampling method falls into the

category of pre-computed samples, and aims at producing query

size estimates by only examining the pre-computed sample at query

time.

3 OPTIMAL SAMPLING STRATEGY
In this section, we provide a near-optimal solution to problem (4)

in Section 1.4 . Without loss of generality, we assume dom(A) =
{1, . . . ,D} and their frequencies Ni are given in ascending order.

Denote the optimal solution to problem (4) by (p∗,τ∗) and the

optimal worst-case MSE by OPT, namely,

OPT = max

ϕ
f0(p
∗,τ∗,ϕ) = min

p,τ
max

ϕ
f0(p,τ ,ϕ) .

The main result of this section is the following characterization

of a near-optimal solution to problem (4):

Theorem 3.1. There exists 0 ≤ M ≤ D, κ > 0 and

pi = min

{
1,

κ
√
Ni

}
, τi =

{
Ni , if i ≤ M,

0, if i > M,

such that p · τ ≤ n and

max

ϕ
f0(p,τ ,ϕ) ≤ OPT +

√
OPT + 1 .

The key message in this result is that the sample budget piτi
should be proportional to

√
Ni , except for a few very large Ni ’s,

which we simply ignore (by setting τi = 0). Another way of looking

at this result is that each tuple with A = i has a per-tuple sample

budget of piτi/Ni ∼ 1/
√
Ni , i.e., inversely proportional to

√
Ni .

Fundamentally, this is the balance point between two forces in a

tug of war: On the one hand, a value i ∈ dom(A) will contribute
to the SP query size as long as at least one tuple with A = i passes
the filter ϕ, so values with higher Ni are more likely to contribute.

On the other hand, all Ni tuples with the same A = i can only

contribute one to the query size, no matter how many of them pass

ϕ, so the per-tuple importance is actually less than those tuples with

a smaller Ni . Below, we illustrate this idea with a more concrete

example:

Example 2. In Table 2 we give a concrete example with D = 10

distinct values and show the near-optimal solutions under different

sample budgets n. The values ofκ andM are found by our algorithm

to be discussed in Section 4. This example illustrates that for most

values i in the middle, the sample budget piτi is proportional to√
Ni . For very small number of corresponding tuples Ni ’s, their

sampling probability pi hits the ceiling of 1 and we take all their

tuples; for very large Ni ’s, we decide not to sample them at all, the

intuition being that the sample budget they would consume is so

high that it actually makes more sense to ignore them and accept

the error thus caused.

Now consider applying a filter ϕ◦ that passes one tuple for each

value i (so Dϕ◦ = 10). Suppose sample budget n = 20 and As =
{1, 2, 3, 4, 5, 6, 7, 9}, our estimator will be

D̂ϕ◦ =
∑
i ∈As

p−1i = 6 + 0.93−1 + 0.57−1 = 8.82 .

In the rest of this section we prove Theorem 3.1. The proof

involves a series of transformations starting from problem (4), each

of which either preserves optimality or introduces a quantifiable

small error.

3.1 Rewriting the Optimization Problem
Problem (4) is a minimax problem. To convert it to a regular op-

timization problem, we need to write maxϕ f0(p,τ ,ϕ) into an ex-

plicit form of p and τ , i.e., to identify the worst ϕ that maximizes

f0 for any given p and τ . However, this is another optimization

problem and it has no closed-form solutions. To get around this

difficulty, we first minimize f0(p,τ ,ϕ◦) for a particular ϕ◦, i.e., find
(p◦,τ◦) = argminp,τ f0(p,τ ,ϕ◦). This is a regular optimization

problem. Then we show that (p◦,τ◦) must also be an optimal solu-

tion to problem (4).

We can write D̂ϕ
in Equation (3) as

D̂ϕ =

D∑
i=1

Xi , where Xi =
1

pi
· I[nϕi ≥ 1] .

Denote the expectation of Xi as a function of ϕ by

µi (ϕ) = E[Xi] =
1

pi
· pi · Pr[n

ϕ
i ≥ 1 | i ∈ As]

Value i = 1, 2, 3 i = 4, 5, 6 i = 7 i = 8 i = 9 i = 10

Frequency N1 = N2 = N3 = 1 N4 = N5 = N6 = 2 N7 = 3 N8 = 5 N9 = 8 N10 = 20

pi τi piτi pi τi piτi p7 τ7 p7τ7 p8 τ8 p8τ8 p9 τ9 p9τ9 p10 τ10 p10τ10 M
n = 10 0.89 1 0.89 0.63 2 1.26 0.51 3 1.54 0.40 5 1.99 0.32 0 0 0.20 0 0 8

n = 15 1 1 1 1 2 2 0.87 3 2.62 0.68 5 3.38 0.53 0 0 0.34 0 0 8

n = 20 1 1 1 1 2 2 0.93 3 2.80 0.72 5 3.62 0.57 8 4.58 0.36 0 0 9

Table 2: Example of near-optimal solutions

= 1 −

(
Ni − N

ϕ
i

τi

)/(
Ni
τi

)
,

where N
ϕ
i is the number of tuples of value i that pass ϕ. This is

equivalent to the conditional probability of sampling at least one

passing tuple for i given i is sampled (i ∈ As). Note that µi (ϕ) is an

increasing function of N
ϕ
i (for any fixed τi), and 0 ≤ µi (ϕ) ≤ 1.

Since the values in dom(A) are sampled pairwise independently,

we have

E[D̂ϕ] =

D∑
i=1

µi (ϕ) , Var[D̂ϕ] =

D∑
i=1

[
µi (ϕ)

pi
− µ2i (ϕ)

]
,

MSE[D̂ϕ] =

[
Dϕ −

D∑
i=1

µi (ϕ)

]2
+

D∑
i=1

[
µi (ϕ)

pi
− µ2i (ϕ)

]
.

Note that for a value i with N
ϕ
i = 0, we have µi (ϕ) = 0, so

it has no contribution to the Var[D̂ϕ]. The bias can be written

as Bias[D̂ϕ] =
∑D
i=1(I[N

ϕ
i ≥ 1] − µi (ϕ)), so the i with N

ϕ
i = 0

has no contribution to the bias either. Therefore, the filter ϕ that

maximizes f0(p,τ ,ϕ) must have N
ϕ
i ≥ 1 for all i .

Consider the special filter ϕ◦ where N
ϕ◦
i = 1 for all value i ,

then the expectation µi (ϕ
◦) = τi/Ni , which we abbreviate to µi .

µi is also the fraction of tuples we take from i given i ∈ As . With ϕ
fixed to ϕ◦, we rewrite problem (4) to the following optimization

problem, where τi is replaced by µiNi :

minimize

p,µ
f1(p, µ)

subject to 0 ≺ p ⪯ 1 , 0 ⪯ µ ⪯ 1 ,
D∑
i=1

pi µiNi ≤ n ,

(5)

where

f1(p, µ) = f0(p,τ ,ϕ
◦) =

(
D −

D∑
i=1

µi
)
2

+

D∑
i=1

(µi
pi
− µ2i

)
.

3.2 Relating the Two Optimization Problems
Now we prove that an optimal solution to problem (5) is also an

optimal solution to problem (4).

Lemma 3.2 shows the existence of an optimal solution to problem

(5) where pi is not set infinitely close to 0. Then, we present Lemma

3.3 and 3.4, each of which reveals some properties of such an optimal

solution.

In this paper, we omit the proofs of all lemmas and theorems,

which can be found in the full version of the paper [36].

Lemma 3.2. The objective function of problem (5) can take an
optimal value in the feasible domain.

Lemma 3.3. Suppose (p, µ) is an optimal solution to problem (5),
then for any i with µi > 0, pi ≥ (D −

∑
j,i µ j)

−1. Besides, if 0 <
µi < 1, then pi = (D −

∑
j,i µ j)

−1.

Lemma 3.4. Suppose (p, µ) is an optimal solution to problem (5),
then µi = 0 or µi = 1 for all but one i .

With the above lemmas, we can now argue that solving prob-

lem (5) on the particular ϕ◦ is enough for solving the original

problem (4).

Theorem 3.5. Let (p∗, µ∗) be an optimal solution to problem (5),
then (p∗,τ∗) is an optimal solution to problem (4) in Section 1.4 where
τ ∗i = µ∗i Ni for all i .

3.3 A Near-Optimal Solution
Problem (5) has linear constraints and a closed-form objective func-

tion, but the objective function is non-convex. General solvers for

such optimization problems only return a local-optimal solution

without any guarantee on its global optimality. Furthermore, they

usually use iterative algorithms that can be slow on large instances.

In this section, we exploit the special structure of problem (5) and

transform it to an easier one that admits a near-optimal solution.

By Lemma 3.4, for any optimal solution, there is at most one

value i with fraction of tuples 0 < µi < 1. For simplicity, we

also sets µi = 0 for this i , i.e., we only consider solutions such that

µi ∈ {0, 1} for all i . The problem now becomes the following:

minimize

p,µ
f1(p, µ)

subject to 0 ≺ p ⪯ 1 , µ ∈ {0, 1}D ,

D∑
i=1

pi µiNi ≤ n .

(6)

We quantify its near-optimality by the following lemma.

Lemma 3.6. Let (p, µ) be the optimal solution to problem (6), and
OPT = f1(p∗, µ∗) be the optimal objective value of problem (5), then

f1(p, µ) ≤ OPT +
√
OPT + 1 .

Now we focus on solving problem (6). We first give a characteri-

zation of its optimal solutions, similar to Lemma 3.4.

Lemma 3.7. There exists an optimal solution (p, µ) to problem
(6) such that µi = 1 for i ≤ M and µi = 0 for i > M , for some
M ∈ {0, 1, . . . ,D}.

Thus the problem of finding µ is reduced to findingM = ∥µ∥1,
whose possible values are 0, . . . ,D. Suppose we have obtained an

optimalM . We still need to find p. For any givenM , this is another

optimization problem:

minimize

p
f2(p; M) =

M∑
i=1

1

pi

subject to 0 ≺ p ⪯ 1 ,
M∑
i=1

piNi ≤ n .

(7)

Note that f2 and f1 differ only in terms independent of p, so it is

sufficient to minimize f2. Without the constraint p ⪯ 1, problem
(7) could be solved easily by the Cauchy-Schwartz inequality, and

the optimal solution would be pi ∼ 1/
√
Ni . The constraint p ⪯ 1

has introduced some technical complications, but we still manage

to get the following closed-form solution.

Lemma 3.8. An optimal solution to problem (7) is

pi = min

{
1,

κ
√
Ni

}
,

where κ =
n −

∑K
j=1 Nj∑M

j=K+1
√
Nj

, where K is the largest integer such that

n −
K∑
i=1

Ni >
√
NK

M∑
i=K+1

√
Ni . (8)

If n ≤
√
N1

∑M
i=1
√
Ni , we set K = 0.

Combining Theorem 3.5, Lemma 3.6, 3.7, and 3.8, we obtain

Theorem 3.1. In addition, these lemmas yield a method to findM
and κ, although not very efficient: For eachM = 0, 1, . . . ,D, we use
Lemma 3.8 to find the optimal p. Then we choose the bestM .

4 EFFICIENT ALGORITHMS
Recall that we assume N1 ≤ N2 ≤ · · · ≤ ND are given in sorted

order. The straightforward algorithm described above has a run-

ning time of O(D2). For each M , we spend O(D) time to find the

corresponding K (which we denote as KM to stress that it depends

on M) and p, as specified in Lemma 3.8. Then we calculate the

objective function

f3(M) = (D −M)
2 +
(
∑M
i=KM+1

√
Ni)

2

n −
∑KM
i=1 Ni

+ KM −M ,

and return theM with the minimum f3(M).
In this section, we first give an improved algorithm with running

time O(D). Then we also show how the algorithm can be made to

work if only a histogram is given in lieu of all value frequencies.

4.1 An O(D)-time Algorithm
We see that the bottleneck of the above algorithm is in finding all

the KM ’s. To improve it, we make the key observation that KM is

non-increasing with respect to M [36] . This means that we can

find KM incrementally for M = M0, . . . ,D, starting from K = M0.

This suggests theO(D)-time algorithm as described in Algorithm 1.

AfterM∗ and KM∗ are found, we can calculate κ, p and τ in O(D)
time following Lemma 3.8.

Algorithm 1: FindM∗ and K∗ = KM∗

Input :D, {Ni }
D
i=1 and n

Output :M∗ and K∗ = KM∗

M0 ← 0, sum ← 0;

whileM0 ≤ D and n ≥ sum do
M0 ← M0 + 1, sum ← sum + NM0

;

sum ← sum − NM0
, M0 ← M0 − 1, M

∗ ← 0, K∗ ← 0;

min_mse ← +∞, K ← M0, sum_sqrt ← 0;

forM ← M0 to D do
while K > 0 and n − sum ≤

√
NK · sum_sqrt do

sum ← sum − NK , sum_sqrt ← sum_sqrt +
√
NK ;

K ← K − 1;

mse ← (D −M)2 + sum_sqrt2/(n − sum) + K −M ;

if mse < min_mse then
min_mse ←mse, M∗ ← M, K∗ ← K ;

sum_sqrt ← sum_sqrt +
√
NM ;

returnM∗ and K∗;

Example 3. We illustrate how Algorithm 1 works using the exam-

ple in Table 2 with n = 20. The algorithm first findsM0 = 8, as the

first 8 frequencies add up to 17, while adding N9 would exceed n.
WhenM = 8, we find KM = 8, and f3(M) = (10 − 8)

2 + 0 = 4.

WhenM = 9, we reduce KM to 6, and update f3(M) as

f3(9) = (10 − 9)
2 +
(
√
3 +
√
5 +
√
8)2

20 − 9
+ 6 − 9 = 2.20 .

WhenM = 10, we reduce KM to 3, while f3(M) is updated to

f3(10) = 0
2 +
(3
√
2 +
√
3 +
√
5 +
√
20)2

20 − 3
+ 3 − 10 = 2.46 .

The algorithm maintains the prefix sum

∑
Ni and the suffix sum∑√

Ni so that both KM and f3(M) can be updated incrementally.

The optimal value is therefore taken atM = 9.

Theorem 4.1. There is an O(D)-time algorithm that, given {Ni }

in ascending order, finds a near-optimal solution to problem (4).

4.2 Histogram Approximation
If not all frequencies Ni are available, our algorithm can also work

with a heavy hitters histogram, which is commonly maintained by

database systems. A heavy hitters histogram only maintains the H
values in dom(A)with the largest frequencies, namely,ND−H+1, . . . ,ND .

Then, for the low-frequency values, we simply assume that they

have equal frequencies, i.e., we use N̂L = (N −
∑D
j=D−H+1 Nj)/(D−

H) as an approximation of Ni for i = 1, . . . ,D − H . The running

time improves to O(H) [36] .

5 MSE ANALYSIS
Our algorithm finds a near-optimal weighted distinct sampling

strategy. However, we still need to answer the question: how good is

its MSE, in particular, in comparison with uniform distinct sampling

[19]? In this section, we give a theoretical analysis; results from

empirical studies will be presented in Section 7.

Worst-case data distribution.We first show that the MSE of our

optimal weighted distinct sampling strategy is O(min{DN /n,D2})

in the worst case.

Theorem 5.1. For any input data and SP query, the MSE of the
near-optimal weighted distinct sampling strategy found by our algo-
rithm is bounded by O(min{DN /n,D2}).

This bound is tight in the worst case. The hardest input distribu-

tion is simply the uniform distribution. In fact, it is not surprising

that uniform distribution is the worst-case input for weighted dis-

tinct sampling; on uniform data, all distinct values are equally

important, losing the advantage of weighted sampling.

Analysis of Gibbons’ algorithm. On the other hand, the MSE of

the uniform distinct sampling strategy of Gibbons [19] is Ω(D2)

on certain datasets and queries, even with a sample budget of

n = Ω(N), as we show in [36]. Recall that the worst-case MSE of

our weighted distinct sampling strategy is O(DN /n) when n ≥
N /D. Therefore, for any sample size n = ω(N /D), we obtain an

asymptotic improvement over Gibbons’ uniform distinct sampling

algorithm, and the improvement is quadratic when n = Θ(N).

Analysis on Zipfian distribution. We have also conducted anal-

ysis on the Zipfian distribution, which shows that the MSE reduces

as data skewness increases [36].

6 SPJ QUERIES
A straightforward way of handling SPJ queries is to first compute

the join R1 Z · · · Z Rm , and then run our optimal weighted dis-

tinct sampling algorithm on the join results. This way, an SPJ query

becomes an SP query, and all our MSE analysis from the previous

section will hold. In particular, we can guarantee a maximum MSE

of O(DNZ/n) for SPJ queries over any database instance and any

ϕ, where NZ = |R1 Z · · · Z Rm | is the join size. However, com-

puting the full join and running the algorithm on all join results

can be very expensive, especially for multi-way joins. In this sec-

tion, we describe a random walk based algorithm that collects the

sample in just one pass over the data, without performing the join.

The resulting sample is not optimal, though, but we demonstrate

through our experiments that the accuracy loss is still small enough

in comparison to the significant savings in the sample construction

cost.

6.1 RandomWalk Algorithm
Our random walk algorithm is inspired by the Wander Join algo-

rithm of Li et al. [32]. However, Wander Join does not support

projections. Thus, we make the following modifications. To make

things more concrete, consider a 3-way line join R Z S Z T , where
the projection attribute A belongs to R. We conceptually add one

more table that consists of a single attribute and D tuples, one for

each distinct value in dom(A) (see Figure 1a). For each tuple r ∈ R
with πA(r) = i , we add an edge between value i and tuple r . We

also add an edge between any two tuples that can join. Then, the

idea is to start the random walks from the conceptual table dom(A)
and walk towardsT , where each random walk yields a sample from

the join results.

Another major difference is that Wander Join [32] takes samples

at query time, which requires indexes to be available, and results

dom(A) R S T

r1 s1
t1

r2 s2
t2

r3 s3
t3

r4 s4
t4

r5 s5
t5

r6 s6
t6

r7 s7
t7

1

2

3

4

(a) Adding conceptual column.

dom(A) R S T

r1 s1
t1

r2 s2
t2

r3 s3
t3

r4 s4
t4

r5 s5
t5

r6 s6
t6

r7 s7
t7

1

2

3

4

(b) Distinct sampling from join.

Figure 1: Sampling by random walks.

in a lot of random accesses in the database at query time. This

does not fit the scenario of query optimization, which is the main

application of query size estimation. Here, we would like to have

a pre-computed small synopsis from which the query size can be

estimated quickly without having to rely on indexes.
Below, we describe our random walk algorithm for obtaining a

weighted distinct sample from a multi-way join. It does not need

indexes, either, and the sample can be collected in one pass over

each relation.

We first compute the optimal sampling strategies p,τ using the

frequencies of values of dom(A) in R as described in Section 3,
3

and collect a distinct sample on R. Suppose i = 1 has been sampled,

and τ1 = 3 tuples r from R have been sampled with πA(r) = i . Next,
we extend each of the τ1 tuples into a join result, sampled from

all join results whose projection on A is i . This corresponds to the

subgraph rooted at i = 1 (see Figure 1b).

As we may encounter a “deadend" when extending a tuple into a

join result, such as (r1, s3) in Figure 1b, we take the following two-

phase approach. We use a space budget of τ ′i = cτi for each distinct

i ∈ dom(A) sampled from R, where c > 1 is an empirical constant

scaling parameter. We are in phase one as long as the space budget

is not reached. In phase one, we try to obtain a random sample

of size up to τ ′
1
from the partial join results σA=1(R) Z S , using

reservoir sampling. Consider i = 1 and suppose τ ′
1
= 4 in Figure 1b.

Our initial random walks consist of 3 tuples in R, which is smaller

than τ ′
1
= 4, so we are in phase one. Then when scanning S , for

each si ∈ S , we join it with the current sample from R, and feed

the join results to reservoir sampling. If |σA=1(R) Z S | ≤ τ ′
1
, we

take all the join results into the sample and remain in phase one;

otherwise we go to phase two. In Figure 1b, |σA=1(R) Z S | = 7 > 4,

so only 4 partial join results have been sampled (solid lines), and

we move onto phase two when scanning T .
We will be in phase two when scanning T . In phase two, for

each partial random walk (r , s), we extend it to one tuple in T ,
randomly chosen from all those that join with s (if such tuples

exist). An example is shown in Figure 1b, where 3 join results,

(r1, s1, t2), (r4, s4, t6) and (r4, s5, t6), have been eventually sampled.

Note that (r1, s3) fails to extend to T , which is why we use a larger

space budget τ ′
1
. In the end, if more than τ1 join results have been

obtained, we sub-sample them down to τ1.

3
Essentially, we use the frequencies of values in R to approximate their frequencies

in the full join results, which is why we cannot guarantee optimality of the sampling

strategy.

For general multi-way joins, we reorder relations so that each

relation (except the first one) shares at least one common attribute

with a previous relation. We then scan the relations one by one

in this order. When scanning, we only take tuples that join with

the corresponding tuples sampled from all previous relations so far.

For example, if there is also a join condition between R and T , then
when extending a partial random walk (r , s) to a t ∈ T , we only
sample from all tuples t ∈ T such that t joins with both r and s .

Since we scan the relations one by one, at the end of processing

each relation, we get a sample for the prefix of the join. For example

in Figure 1b, the four paths (r1, s1), (r1, s3), (r4, s4), (r4, s5) is a sample

for queries on R Z S . By storing all the random walks (including

those not generating to a join result), the same sample collected

for R1 Z · · · Z Rm can be used in estimating any prefix of the join

R1 Z · · · Z Rj where j ≤ m.

Finally, we run the algorithm above for all i ∈ dom(A) sampled

in the first relation in parallel. So the algorithm makes one pass

over each relation (i.e., its time complexity is only linear to the sum
of all relation sizes from the join), using space cn = O(n), where n is

the total sample budget .

6.2 Bias Reduction
Another technical difference between our SPJ algorithm and SP

algorithm as described in Section 3 is that, in the SP algorithm, τi is
either Ni or 0, so individual estimators have no bias. In the random

walk algorithm, however, for a sampled i ∈ As , only up to τi of its
join results are sampled. As such, there is a downward bias in the

estimator. To see this problemmore clearly, for a selection condition

ϕ, let µi (ϕ) be the probability that any sampled tuples for i pass

ϕ, given i is sampled. Then D̂ϕ =
∑D
i=1 Yi would be an unbiased

estimator of Dϕ
, where Yi =

I[nϕi ≥1]
pi µi (ϕ)

. However, as illustrated in

Example 1, the problem is that µi (ϕ) is unknown
4
. Due to the

uncertainty in µi (ϕ), bias cannot be eliminated. Nevertheless, we

introduce the following heuristic to reduce it to some extent.

Our idea is to reduce the bias based on the value of n
ϕ
i , which is

known. If n
ϕ
i ≥ 2, then N

ϕ
i is also likely large, so the chance that

some tuple passes ϕ is also large, so we take µi (ϕ) = 1.

If n
ϕ
i = 1, then µi (ϕ) is likely small. We observe that pt ≤

µi (ϕ) ≤ 1, where pt is the probability that the only tuple t in the

sample that passes ϕ was sampled when the sample was initially

collected, conditioned upon i being sampled. Then we strike a

balance between the two extremes by taking geometric mean and

setting µi (ϕ) ≈
√
pt .

To summarize, our bias-reduced estimator is D̂ϕ =
∑D
i=1 Ŷi ,

where

Ŷi =


0, if n

ϕ
i = 0 ,

1

pi
√
pt
, if n

ϕ
i = 1 ,

1

pi , if n
ϕ
i > 1 .

The remaining issue is how to compute pt . Recall our two-phase
sample collection algorithm. If the algorithm terminates during

4
More precisely, it is always 1 if all tuples with A = i are sampled; otherwise, it

depends on N ϕ
i , which is unknown.

phase one, then pt is the same for all tuples with A = i:

pt =
τ ′i

|σA=i (R1) Z · · · Z Rm |
.

Note that the partial join size |σA=i (R1) Z · · · Z Rm | can be

computed when we scan Rm .

If the algorithm goes on to phase two, then pt might be different

for different t . Suppose phase one terminates after scanning Rs , for
some s < m. Consider a tuple t = r1 Z r2 Z · · · Z rm sampled

in the end, where r j ∈ Rj . First, (r1, . . . , rs) are sampled during

phase one, so the probability that it is sampled is

τ ′i
|σA=i (R1)Z · · ·ZRs |

.

During phase two, we perform a series of random walks, where in

each step, we pick a tuple uniformly at random from all tuples that

join with previous tuples, so

pt =
τ ′i

|σA=i (R1) Z · · · Z Rs |
·

m∏
j=s+1

1

|r1 Z · · · Z r j−1 Z Rj |
. (9)

For example, in Figure 1b, for t = (r4, s5, t6), pt =
4

7
· 1
3
= 4

21
.

Finally, note thatpt ’s for all the sampled tuples t can be computed

easily during the sample collection process.

7 EXPERIMENTAL EVALUATION
In this section, we report the results from an extensive experimental

evaluation on various cardinality estimation methods for both SP

queries and SPJ queries.

7.1 Methods Evaluated

Exact. The exact method has been implemented to provide a ref-

erence. Note that computing the exact query size for SPJ queries

requires the entire data set and is very slow.

Upper Bound (UB). As mentioned in Section 1, a simple and com-

monly used method for estimating the size of SPJ queries is to

estimate the NDV of A and the size of the remaining query (with-

out the projection) separately, and then return the smaller of the

two. In our evaluation, we implement this method in its best-case

scenario, i.e., we use the exact NDV and the remaining query size,

and return the smaller of the two.

Uniform Distinct Sampling (UDS). Uniform Distinct Sampling

(UDS) refers to the algorithm described in [19] for estimating SP

query sizes. For SPJ queries, we compute the full join first, and then

run this algorithm on the join results. MurmurHash3, implemented

in SMHasher
5
, is used as the hash function for deciding if a value

in dom(A) is sampled.

Weighted Distinct Sampling (WDS). This refers to our weighted
distinct sampling algorithm using the optimal sampling strategy as

described in Section 3. For SPJ queries, similar to UDS, we compute

the full join and run the algorithm on the join results.

HistogramApproximation (HISTO).Wehave also implemented

the algorithm in Section 4.2, where the algorithm is only given a

heavy hitters histogram as an approximation of the value frequen-

cies. The histogram contains the frequencies of the top 10% most

frequent values.

5
https://github.com/aappleby/smhasher

RandomWalk Algorithm (RW). The random walk algorithm in

Section 6 can be considered an approximate version of WDS for

SPJ queries. The sample can be collected in one pass over the data,

at the expense of some loss in accuracy.

We implemented all the algorithms above in C++. Each relation

is stored as a std::vector of std::tuple’s. The experiments were

carried out on a machine with an Intel(R) 2.10GHz Xeon(R) Silver

4116 CPU running CentOS Linux 7.7. The memory is large enough

to hold all input relations and join results. For each dataset, we

run the algorithm 30 times using independent random seeds, and

report the root of the average MSE (RMSE) from these 30 runs. The

sample budget is 1% of the data size by default.

We used a wide range of datasets in our evaluation, including

synthetic datasets with different skewness, the TPC-DS benchmark,

and two real-world datasets. Below, we describe these datasets and

queries in turn, followed by our experimental findings.

7.2 Results on Synthetic Datasets

Datasets.Our theoretical analysis shows thatWDSworks better on

more skewed data, so we used two synthetic datasets, one uniform

and the other following a Zipfian distribution, to validate this claim.

The table has roughly one million tuples. The uniform dataset

contains D = 1000 distinct A-values, each appearing in 1000 tuples.

The Zipfian data have a skewness factor α = 1.1. The distinct values

are integers ranging from 1 to 50000, and the frequency of value i
is proportional to 1/iα .

We introduced a second attribute B, which is used in the selection
condition ϕ. We tested three conditions. The first one represents

an average case that is considered easy, while the other two are

designed to model worst-case scenarios.

(1) For both uniform and Zipfian data, ϕ1 passes each tuple

independently with the same probability p. Essentially, p
corresponds to the selectivity of the query.

(2) ϕ2 applies on the uniform dataset. First, we pick a random

value from the D distinct values of A, and pass all its tuples.

Then, we randomly take a set of D/2 values randomly from

the remaining D − 1 distinct values, and passes t tuples for

each. Note that Dϕ2 = D/2 + 1. The smaller t is, the more

difficult the query is considered, as it is more difficult to

catch those passing tuples by sampling.

(3) ϕ3 applies on the Zipfian dataset. It passes all tuples of the

most frequent value. It also passes a single tuple for each

value whose frequency is at least t . As with ϕ2, the smaller t
is, the more difficult the query will be.

Results on uniform data. Figure 2a shows the estimates of query

ϕ1 returned by various algorithms on the uniform dataset, where we

vary the selectivity p. Thus, UB simply reports min{D,pN }, which
is shown as straight line turning at p = D/N = 10

−3
. UDS andWDS

are both sampling algorithms, so in addition to the mean, we also

plot the 10% and 90% percentiles of the 30 runs. Figure 2b shows

the R MSE of these algorithms. From these results, we see that on

this easy query, UB actually performs quite well, while UDS is even

worse than UB due to large underestimation. On the other hand,

WDS has generally outperformed UB in this case. The performance

of WDS is more stable across different values of p, while UB is a

good estimator for either small p (when pN is a good estimate since

very likely, noA-value has more than one tuple passing ϕ1) or large
p (when D is a good estimate, since almost every distinct A-value
has at least one tuple passing ϕ1).

On ϕ2, which is a hard query, the situation becomes quite differ-

ent (see Figure 2c and 2d). Since more than D tuples in total pass ϕ2,
UB always returns D, which is a bad estimate. On the other hand,

the two sampling algorithms give more accurate estimates. Between

the two, we see that WDS has stable performance across different

values of t , and is always better than UDS. For larger values of t , the
two have similar MSE (UDS has larger bias and smaller variance,

while WDS has smaller bias but larger variance), but the accuracy

of UDS drops as t gets smaller (the query gets more difficult).

Results on Zipfian data. Figure 2e to 2h show the results on

the Zipfian dataset. Since Zipfian distribution produces a skewed

dataset with a long tail, UB fails miserably; we cannot even plot its

results on the hard query ϕ3. The performance of HISTO is similar

to WDS, showing that our algorithm still works well even if only a

histogram is given. It even outperforms WDS on ϕ3. This is because
by computing the optimal solution based on the histogram, we

set higher probabilities for more frequent values, which happens

to suit the scenario of ϕ3. Note that this does not contradict the
optimality of the solution based on full frequency information,

which is assuming the worst filter condition ϕ.
The comparison between UDS and WDS is interesting on the

Zipfian dataset. We see from Figure 2e and 2f that on ϕ1, which
passes each tuple with equal probability, the two algorithms have

very similar performance, while WDS significantly outperforms

UDS on ϕ3 across all values of t . These results are consistent with
the design and analysis of WDS, which is aimed at minimizing the

MSE over worst-case queries on skewed data. Meanwhile, it is also

reassuring to see that, on easier, non-worst-case data and queries,

WDS is no worse than its competitors.

7.3 Results on Benchmark Data
We used the TPC-DS benchmark data generator to generate a

dataset of size 2GB, and tested the following 2 queries
6
from the

benchmark.

SP queries. Query 28 finds the number of distinct list prices. It

consists of 6 distinct count subqueries on a single table over different

sales buckets. Thus, each subquery is an SP query with a different

selection condition. The results on these 6 SP queries are shown in

Figure 3a and 3b. We see that WDS achieves a smaller MSE than

UDS in all cases. HISTO performs similar to WDS, and is always

better than UDS as well.

SPJ queries. Query 54 finds the number of customers that pur-

chased a given item during a given period. With the union between

catalog and web sales carried out first, the query is an SPJ query

involving a star join between one fact table and two dimension

tables. We tested 4 queries with selection conditions on different

attributes of the dimension tables. For SPJ queries, we also included

the random walk algorithm (RW) in the experimental comparison.

The results are shown in Figure 3c and 3d. We see that bothWDS

and RW have smaller MSE than UDS. The performances of WDS

6
The SQL statements of all queries can be found in [36].

(a) Uniform ϕ1 Estimates (b) Uniform ϕ1 RMSE (c) Uniform ϕ2 Estimates (d) Uniform ϕ2 RMSE

(e) Zipfian ϕ1 Estimates (f) Zipfian ϕ1 RMSE (g) Zipfian ϕ3 Estimates (h) Zipfian ϕ3 RMSE

Figure 2: Performance Evaluation for Synthetic Datasets

(a) Query 28 Estimates (b) Query 28 RMSE

(c) Query 54 Estimates (d) Query 54 RMSE

Figure 3: Performance Evaluation for TPC-DS Benchmark

and RW are very similar. This is because the join is a foreign-key

star join, i.e., each tuple in the fact table joins with exactly one tuple

in each of the dimension tables, and the projection attribute is in

the fact table. Thus, the random walks will start from the fact table

and walk towards the dimension tables. This has the same effect

as sampling from all the join results, since there is a one-to-one

correspondence between the tuples in the fact table and the full

join results. However, we can run RW much more efficiently to

collect the sample as there is no need to compute and materialize

the join results. Results on the sample construction time will be

given in Section 7.6.

7.4 Results on Real Data
We used two real datasets and tested the following SPJ queries:

IMDb data. We tested IMDb Query 1 that finds all actors and

actresses that ever acted in a movie whose rating is above a given

(a) IMDb Query 1 Estimates (b) IMDb Query 1 RMSE

(c) IMDb Query 2 Estimates (d) IMDb Query 2 RMSE

Figure 4: Performances Evaluation of IMDb Data

threshold t on IMDb dataset
7
. This involves data stored in two

tables: principals, the acting list, and ratings, rating information

of movies. We cleaned up the data by removing movies without

ratings. This results in 7 million tuples in the principals table

and 1 million tuples in the ratings table. Then, the query can

be written as an SPJ query with a selection condition on multiple

attributes.

As this is a large dataset, we used a sample budget that is 0.1%

of the dataset. The results are shown in Figure 4a and 4b as we vary

the parameter t . Here, we omit UB as it is way off the chart. We see

that WDS performs much better than UDS, while RW and WDS

are close, because this join is also a foreign-key join.

We also evaluated another more complicated query (IMDb Query

2). It finds all actors and actresses that acted in twomovies released

more than 50 years apart, where the rating of the latter movie is

7
https://www.imdb.com/interfaces/

higher by t compared to the former one. This query involves 5

joins where one of them is a complicated many-to-many join that

generates more than 200 million tuples. The selection condition is

also more complicated as it involves arithmetic operations between

different attributes. The results are shown in Figure 4c and 4d as

we vary the parameter t . While WDS still dominates UDS, RW also

behaves accurately in this case. This is because values in the result

are likely to have many passing tuples. So RW does not experience

a loss of accuracy due to bias. Contrarily, it sampled more distinct

values so that the variance is reduced.

(a) Trust Network Estimates (b) Trust Network RMSE

Figure 5: Performance Evaluation of Network Data

Network data. The second dataset is the network dataset [31],

which stores information about a who-trusts-whom network on a

Bitcoin platform. Vertices represent users and directed edges repre-

sent trust relationships. The edges are weighted −10 to 10, denoting

the degree of trust from the source user to the destination user.

There are around 6k vertices and 36k edges. Our query of interest

finds the users involved in at least one trust triangle. Specifically,
three users X ,Y ,Z form a trust triangle if there exist edges from

X to Y , Y to Z , and Z to X , and the weight of each edge is at least

a given threshold t . We store the graph as a relation, so the above

query can be written as an SPJ query involving a triangle join.

The results are shown in Figure 5a and 5b where we vary the

parameter t . We see that WDS and UDS have similar performance.

Recall that these two algorithms are run on the join results, which

consist of all triangles in the network. This is a skewed dataset, as

some vertices are involved in many triangles while the rest have

few triangles. Each triangle has the same probability to pass the

selection condition, so this SP query (on the join results) is an easy

case, similar to what we have observed in Figure 2f. The triangle

join presents a challenge for RW, since many random walks may

not be able to close as a triangle. This results in a smaller effective

sample size, which in turn leads to larger MSE.

7.5 Results Varying Other Parameters

(a) Query 38 Estimates (b) Query 38 RMSE

Figure 6: Performance Evaluation of TPC-DS Q38

Number of Projection Attributes. To evaluate the effect of

concatenating projection attributes, we tested a query modified

from TPC-DS Q38. In SQL, the query is written as

SELECT count(distinct c_last_name),

count(distinct c_last_name, c_birth_year),

count(distinct c_last_name, c_first_name, c_birth_year),

count(distinct c_last_name, c_first_name, c_birth_year,

c_birth_country)

FROM store_sales, date_dim, customer

WHERE store_sales.ss_sold_date_sk = date_dim.d_date_sk

AND store_sales.ss_customer_sk = customer.c_customer_sk

AND d_month_seq between 1188 and 1188+11

Figure 6a and 6b show the accuracy comparison when the num-

ber of projection attributes vary from 1 to 4. For UDS and WDS,

the error magnitude is insensitive to the number of projection at-

tributes. WDS still dominates UDS in all cases. For RW, increasing

the number of projection attributes also increases the number of

distinct values at the source of the random walk. Therefore less

tuples will be stored for each distinct value under the constraint of

space. This leads to a larger bias.

(a) Network Self-Join Estimates (b) Network Self-Join RMSE

(c) Graph Self-Join Estimates (d) Graph Self-Join RMSE

Figure 7: Performance Evaluation for Self-Joins

Number of Joins. We tested the algorithms under more compli-

cated queries when there are many joins, and the joins are many-

to-many. For graph data, the queries find all vertices that has a

length-d path to vertex 1. To compose this into a query, we perform

d−1 self-joins to include all length-d paths in the join result. The se-

lection condition passes only those paths ending in vertex 1, where

all vertices in the path are distinct. For the network dataset above,

we could only compute at most 3 joins, which already generates

over 4 billion join results. So we include a less dense graph
8
to

evaluate queries with more joins. Figure 7 shows the results on the

network dataset and the graph dataset. When d = 5, 6, we set the

sample size to 0.1%.

Since the selectivity of this filter is low, the bias of UDS makes

it inaccurate. WDS sacrifices its variance for the bias reduction,

which results in a smaller MSE when summed up. For RW, with the

8
https://snap.stanford.edu/data/p2p-Gnutella04.html

Dataset Query

Sample construction cost Query cost

UDS WDS HISTO RW EXACT UDS WDS RW

Uniform

ϕ1
125 ms 163 ms 156 ms -

100 ms < 1 ms < 1 ms -

ϕ2 95 ms < 1 ms < 1 ms -

Zipfian

ϕ1
300 ms 406 ms 356 ms -

115 ms < 1 ms < 1 ms -

ϕ3 182 ms < 1 ms < 1 ms -

TPC-DS

Q28 561 ms 782 ms 753 ms - 385 ms 1 ms 1 ms -

Q38 13.6 s 14.3 s - 1.34 s 14.9 s 15 ms 7 ms 5 ms

Q54 (2GB) 5.51 s 5.75 s - 281 ms 6.41 s < 1 ms < 1 ms < 1 ms

Q54 (5GB) 8.85 s 9.02 s - 558 ms 9.87 s 11 ms 10 ms 3 ms

Q54 (10GB) 18.8 s 19.2 s - 1.35 s 21.2 s 27 ms 21 ms 8 ms

IMDb

Query 1 16.3 s 17.3 s - 2.43 s 21.3 s 45 ms 36 ms 21 ms

Query 2 224 s 251 s - 3.83 s 259 s 32 ms 52 ms 112 ms

Network

Triangle 4.33 s 4.35 s - 61 ms 4.46 s < 1 ms < 1 ms < 1 ms

3 Joins 2004 s 2309 s - 31.0 s 1946 s 185 ms 435 ms 120 ms

Graph

1 Join 81.9 ms 91.0 ms - 31.7 ms 72.6 ms < 1 ms 1 ms 1 ms

5 Joins 56.7 s 60.3 s - 1.78 s 55.3 s 2 ms 6 ms 2 ms

Table 3: Comparison of Time Costs

increase of join relations, each distinct value has more tuples in the

join results, forcing us to move to phase 2 of the algorithm. It thus

leads to an accuracy penalty. Nevertheless, at the same time, the

benefit in efficiency becomes more significant.

(a) Estimates on 5GB dataset (b) RMSE on 5GB dataset

(c) Estimates on 10GB dataset (d) RMSE on 10GB dataset

Figure 8: Performance Evaluation underDifferentData Sizes

Data Sizes. In addition tests on the 2GB TPC-DS dataset, we tested

Query 54 on a 5GB and a 10GB dataset to examine the effect of data

sizes on the algorithms. These are shown in Figure 8. As can be

observed, the performance of algorithms are stable across different

sizes of data. The growth of running times are also near linear.

7.6 Running Times
We have also measured the wall-clock running times of the algo-

rithms, including both the time for building the sample and the

time for producing an estimate for a given query, which are summa-

rized in Table 3. First, we see that the query costs of all estimation

algorithms are order-of-magnitude smaller than of computing the

query size exactly. This justifies their use in a query optimizer.

The sample construction cost is larger for WDS compared to

UDS, as we need to find the optimal sampling strategy first. But

the costs are small anyway for SP queries. For SPJ queries, the

sample construction cost is dominated by that of computing the join,

which dwarfs the additional cost of finding the optimal sampling

strategy. On the other hand, RW is able to build the sample without

computing the join, resulting in significant savings.

7.7 Summary of Experimental Evaluation
From our experimental evaluation, we can draw the following con-

clusions: For SP queries, WDS performs at least as well as UDS,

and outperforms it on hard queries, especially on skewed data.

Thus, as long as one is willing to pay the small extra cost to find

the optimal sampling strategy, WDS is always the recommended

method. HISTO performs similar to WDS and is desirable when the

frequency vector is not known. For SPJ queries, if one can tolerate

the cost to pre-compute the join, then running WDS on the join

results is the best choice. Otherwise, RW can be used, especially

for foreign-key joins, where its performance is as good as that of

running WDS on the full join results. On cyclic joins, however, RW

may lose some accuracy compared with WDS.

8 CONCLUSIONS
In this paper, we have introduced weighted distinct sampling to

tackle the problem of size estimation for SP queries, and extended

it to handling SPJ queries. We have presented algorithms that can

collect samples in time linear to the size of the database. It is also not

difficult to adapt them to run in a constant number of MapReduce

rounds, enabling it to run over large distributed datasets.

ACKNOWLEDGMENTS
This work has been supported by HKRGC under grants 16202317,

16201318, 16201819, and 16205420, and by an Alibaba Innovative

Research (AIR) grant.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases.

Addison-Wesley Longman Publishing Co., Inc.

[2] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.

1999. Join synopses for approximate query answering. In Proc. ACM SIGMOD
International Conference on Management of Data.

[3] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan, S. Madden, B. Mozafari,

and I. Stoica. 2014. Knowing when youâĂŹre wrong: Building fast and reliable

approximate query processing systems. In Proc. ACM SIGMOD International
Conference on Management of Data.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of

Approximating the Frequency Moments. J. Comput. System Sci. 58, 1 (1999),

137–147. https://doi.org/DOI:10.1006/jcss.1997.1545

[5] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. 2002.

Counting Distinct Elements in a Data Stream. In Proc. International Workshop on
Randomization and Approximation Techniques in Computer Science. 1–10.

[6] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer

Gemulla. 2007. On synopses for distinct-value estimation under multiset opera-

tions. In Proc. ACM SIGMOD International Conference on Management of Data.
199–210.

[7] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 1998. Random sam-

pling for histogram construction: how much is enough?. In Proc. ACM SIGMOD
International Conference on Management of Data.

[8] Yu Chen and Ke Yi. 2017. Two-Level Sampling for Join Size Estimation. In Proc.
ACM SIGMOD International Conference on Management of Data.

[9] Graham Cormode and Minos Garofalakis. 2005. Sketching streams through the

net: Distributed approximate query tracking. In Proc. International Conference on
Very Large Data Bases.

[10] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2002.

Processing complex aggregate queries over data streams. In Proceedings of the
2002 ACM SIGMOD international conference on Management of data. ACM, 61–72.

[11] Marianne Durand and Philippe Flajolet. 2003. Loglog Counting of Large Cardinal-

ities (Extended Abstract). In Proc. European Symposium on Algorithms. 605–617.
[12] Cristian Estan and Jeffrey F Naughton. 2006. End-biased samples for join car-

dinality estimation. In Proc. IEEE International Conference on Data Engineering.
IEEE, 20–20.

[13] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hy-

perloglog: the analysis of a near-optimal cardinality estimation algorithm. In

Analysis of Algorithms (AOFA).
[14] Philippe Flajolet and G. Nigel Martin. 1985. Probabilistic Counting Algorithms

for Data Base Applications. J. Comput. Syst. Sci. 31, 2 (1985), 182–209.
[15] Michael J. Freitag and Thomas Neumann. 2019. Every Row Counts: Combining

Sketches and Sampling for Accurate Group-By Result Estimates. In Proc. Biennial
Conference on Innovative Data Systems Research.

[16] Edward Gan, Jialin Ding, Kaisheng Tai, Vatsal Sharan, and Peter Bailis. 2018.

Moment-based quantile sketches for efficient high cardinality aggregation queries.

Proceedings of the VLDB Endowment 11 (2018).
[17] Sumit Ganguly, Phillip B Gibbons, Yossi Matias, and Avi Silberschatz. 1996. Bifocal

sampling for skew-resistant join size estimation. ACM SIGMOD Record 25, 2

(1996), 271–281.

[18] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2008. Database
Systems: The Complete Book. Prentice Hall.

[19] Phillip B. Gibbons. 2001. Distinct Sampling for Highly-Accurate Answers to

Distinct Values Queries and Event Reports. In Proc. International Conference on
Very Large Data Bases. 541–550.

[20] P. B. Gibbons, Y. Matias, and V. Poosala. 2002. Fast incremental maintenance of

approximate histograms. ACM Transactions on Database Systems 27, 3 (2002),
261–298.

[21] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukrishnan, and

Martin J. Strauss. 2002. Fast, small-space algorithms for approximate histogram

maintenance. In Proc. ACM Symposium on Theory of Computing.
[22] Anna C. Gilbert, Yannis Kotidis, S. Muthukrishnan, and Martin J. Strauss. 2002.

How to Summarize the Universe: Dynamic Maintenance of Quantiles. In Proc.

International Conference on Very Large Data Bases.
[23] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-

tion of quantile summaries. In Proc. ACM SIGMOD International Conference on
Management of Data.

[24] S. Guha, N. Koudas, and K. Shim. 2006. Approximation and streaming algorithms

for histogram construction problems. ACM Transactions on Database Systems 31,
1 (2006), 396–438.

[25] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Arun N. Swami. 1996. Se-

lectivity and Cost Estimation for Joins Based on Random Sampling. J. Comput.
System Sci. 52 (1996), 550–569.

[26] Sariel Har-Peled and Micha Sharir. 2011. Relative (p, ε)-approximations in geom-

etry. Discrete & Computational Geometry 45, 3 (2011), 462–496.

[27] J. M. Hellerstein, P. J. Haas, and H. J. Wang. 1997. Online Aggregation. In Proc.
ACM SIGMOD International Conference on Management of Data.

[28] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath Poosala, Kenneth C.

Sevcik, and Torsten Suel. 1998. Optimal Histograms with Quality Guarantees. In

Proc. International Conference on Very Large Data Bases.
[29] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert

Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily Approximating

Complex Ad-Hoc Queries in Big Data Clusters. In Proc. ACM SIGMOD Interna-
tional Conference on Management of Data.

[30] Daniel M. Kane, Jelani Nelson, and David P.Woodruff. 2010. An optimal algorithm

for the distinct elements problem. In Proc. ACM Symposium on Principles of
Database Systems. 41–52.

[31] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.

2016. Edge weight prediction in weighted signed networks. In Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE, 221–230.

[32] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online Aggre-

gation via Random Walks. In Proc. ACM SIGMOD International Conference on
Management of Data.

[33] Charles Masson, Jee E. Rim, and Homin K. Lee. 2019. DDSketch: A Fast and Fully

Mergeable Quantile Sketch with Relative Error Guarantees. Proceedings of the
VLDB Endowment 12 (2019).

[34] Y. Matias, J. S. Vitter, and M. Wang. 1998. Wavelet-Based Histograms for Selectiv-

ity Estimation. In Proc. ACM SIGMOD International Conference on Management
of Data.

[35] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita.

1996. Improved histograms for selectivity estimation of range predicates. In Proc.
ACM SIGMOD International Conference on Management of Data.

[36] Yuan Qiu, Yilei Wang, Ke Yi, Feifei Li, BinWu, and Chaoqun Zhan. 2020. Weighted
Distinct Sampling: Cardinality Estimation for SPJ Queries (full version). http:

//www.cse.ust.hk/~yike/spj-full.pdf

[37] Johanna Sommer, Matthias Boehm, Alexandre V. Evfimievski, Berthold Reinwald,

and Peter J. Haas. 2019. MNC: Structure-Exploiting Sparsity Estimation for Matrix

Expressions. In Proc. ACM SIGMOD International Conference on Management of
Data. 1607–1623.

[38] Surajit Surajit, Bolin Ding, and Srikanth Kandula. 2017. Approximate Query

Processing: No Silver Bullet. In Proc. ACM SIGMOD International Conference on
Management of Data.

[39] S. Suri, C. Toth, and Y. Zhou. 2006. Range counting over multidimensional data

streams. Discrete and Computational Geometry (2006).

[40] Nitin Thaper, Sudipto Guha, Piotr Indyk, and Nick Koudas. 2002. Dynamic

multidimensional histograms. In Proc. ACM SIGMOD International Conference on
Management of Data.

[41] Daniel Ting. 2019. Approximate Distinct Counts for Billions of Datasets. In Proc.
ACM SIGMOD International Conference on Management of Data. 69–86.

[42] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil P Chakkap-

pen. 2015. Join size estimation subject to filter conditions. Proceedings of the
VLDB Endowment 8, 12 (2015), 1530–1541.

[43] C. Zhan, M. Su, C. Wei, X. Peng, L. Lin, S. Wang, Z. Chen, F. Li, Y. Pan, F. Zheng,

and C. Chai. 2019. AnalyticDB: real-time OLAP database system at Alibaba cloud.

In Proceedings of the VLDB Endowment, Vol. 12.

https://doi.org/DOI: 10.1006/jcss.1997.1545
http://www.cse.ust.hk/~yike/spj-full.pdf
http://www.cse.ust.hk/~yike/spj-full.pdf

	Abstract
	1 Introduction
	1.1 Problem Definition
	1.2 Error Metric
	1.3 Distinct Sampling
	1.4 Weighted Distinct Sampling
	1.5 Our Contributions

	2 Related Work
	3 Optimal Sampling Strategy
	3.1 Rewriting the Optimization Problem
	3.2 Relating the Two Optimization Problems
	3.3 A Near-Optimal Solution

	4 Efficient Algorithms
	4.1 An O(D)-time Algorithm
	4.2 Histogram Approximation

	5 MSE Analysis
	6 SPJ Queries
	6.1 Random Walk Algorithm
	6.2 Bias Reduction

	7 Experimental Evaluation
	7.1 Methods Evaluated
	7.2 Results on Synthetic Datasets
	7.3 Results on Benchmark Data
	7.4 Results on Real Data
	7.5 Results Varying Other Parameters
	7.6 Running Times
	7.7 Summary of Experimental Evaluation

	8 Conclusions
	Acknowledgments
	References

