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Select-Project-Join Queries

 Relational Algebra
– 𝜋𝜋𝐴𝐴(𝜎𝜎𝜙𝜙(𝑅𝑅1 ⋈ 𝑅𝑅2 ⋈ ⋯ ⋈ 𝑅𝑅𝑚𝑚))

 SQL
– select (distinct) A 

– from R1, R2, …, Rm 

– where Phi

 Example: Find customers who placed an order after 2020-01-01 

– SELECT (DISTINCT) o_custkey FROM orders

WHERE o_orderdate > 2020-01-01
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Select-Project-Join Queries

 Relational Algebra
– 𝜋𝜋𝐴𝐴(𝜎𝜎𝜙𝜙(𝑅𝑅1 ⋈ 𝑅𝑅2 ⋈ ⋯ ⋈ 𝑅𝑅𝑚𝑚))

 SQL
– select (distinct) A 

– from R1, R2, …, Rm 

– where Phi

 Example: Find customers who placed an order after 2020-01-01
– And the order contains an item of price more than 100
– SELECT (DISTINCT) o_custkey FROM orders, lineitem

WHERE o_orderdate > 2020-01-01 AND l_extendedprice > 100
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Cardinality Estimation for S / P / J Queries

 Selection (𝜎𝜎)
– Selectivity estimation
– Sampling, Assumptions (uniform, independent, …), …

 Projection (𝜋𝜋) 
– If duplicates are not removed, cardinality is not affected (select A from R)

– Otherwise, distinct count estimation (select distinct A … / select A, agg() … group by A)

– Summary (FM, HyperLogLog, KMV, …), Sampling (uniform, distinct, …) 
 Join (⋈) / Selection + Join (⋈𝜃𝜃)

– Join size estimation
– Sketch (AMS, Count Sketch, …), Sampling (Ripple Join, Wander Join, Two-Level 

Sampling, …), …
 What about Selection + Projection (+ Join)?
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Review: Distinct Sampling

 Projection Only:
– Want to estimate 𝐷𝐷 = |𝜋𝜋𝐴𝐴𝑅𝑅|
– Sample each distinct value with probability 𝑝𝑝 into set 𝐴𝐴𝑠𝑠

• Perform sampling on hash values
– ⁄𝐴𝐴𝑠𝑠 𝑝𝑝 is a good estimator for 𝐷𝐷

• Unbiased

• Variance 𝐷𝐷𝐷𝐷 1−𝑝𝑝
𝑝𝑝2

≈ 𝐷𝐷
𝑝𝑝

– Example:
• Suppose the sampling rate 𝑝𝑝 = ⁄1 2
• Our sample is 𝐴𝐴𝑠𝑠 = 1,3,4,6
• Estimate �𝐷𝐷 = 4

⁄1 2 = 8 (Actual 𝐷𝐷 = 6)
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Review: Distinct Sampling

 Selection + Projection:
– Want to estimate 𝐷𝐷𝜙𝜙 = |𝜋𝜋𝐴𝐴𝜎𝜎𝜙𝜙𝑅𝑅|
– Augment each sample with 𝜏𝜏 tuples as 𝑅𝑅𝑠𝑠

• Uniformly taken from all its tuples

– Use ⁄𝜋𝜋𝐴𝐴𝜎𝜎𝜙𝜙𝑅𝑅𝑠𝑠 𝑝𝑝 as estimator
– Example: 

• Still 𝑝𝑝 = ⁄1 2 and 𝐴𝐴𝑠𝑠 = 1,3,4,6
• Set 𝜏𝜏 = 2, so each 𝑎𝑎 ∈ 𝐴𝐴𝑠𝑠 is augmented by ≤ 2 tuples
• Now our filter is 𝜙𝜙 ≔ 𝐵𝐵 < 10 ∗ 𝐴𝐴
• 𝜋𝜋𝐴𝐴𝜎𝜎𝜙𝜙𝑅𝑅 = 2,3,4,5,6 , so 𝐷𝐷𝜙𝜙 = 5
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Review: Distinct Sampling

 Selection + Projection:
– Want to estimate 𝐷𝐷𝜙𝜙 = |𝜋𝜋𝐴𝐴𝜎𝜎𝜙𝜙𝑅𝑅|
– Augment each sample with 𝜏𝜏 tuples as 𝑅𝑅𝑠𝑠

• Uniformly taken from all its tuples

– Use ⁄𝜋𝜋𝐴𝐴𝜎𝜎𝜙𝜙𝑅𝑅𝑠𝑠 𝑝𝑝 as estimator
– Example: 

• Still 𝑝𝑝 = ⁄1 2 and 𝐴𝐴𝑠𝑠 = 1,3,4,6
• Set 𝜏𝜏 = 2, so each 𝑎𝑎 ∈ 𝐴𝐴𝑠𝑠 is augmented by ≤ 2 tuples
• Now our filter is 𝜙𝜙 ≔ 𝐵𝐵 < 10 ∗ 𝐴𝐴
• 𝜋𝜋𝐴𝐴𝜎𝜎𝜙𝜙𝑅𝑅 = 2,3,4,5,6 , so 𝐷𝐷𝜙𝜙 = 5

• 𝜋𝜋𝐴𝐴𝜎𝜎𝜙𝜙𝑅𝑅𝑠𝑠 = 3,4 , so �𝐷𝐷𝜙𝜙 = 2
⁄1 2 = 4
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Uniform Distinct Sampling: Problems

 If we could augment each value with ALL its tuples, the estimator would degenerate 
to the projection-only case.

– Unbiased with variance Θ 𝐷𝐷
𝑝𝑝

.

 However, we only stored 𝜏𝜏 tuples
– It is possible that we failed to sample a passing tuple when there exists
– This creates a (downward) bias

 The expected sample size is 𝐷𝐷𝐷𝐷𝐷𝐷, so a problem is how to balance
– The original paper used a heuristic
– We show next that there are hard inputs where no setting is good
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Uniform vs. Weighted Distinct Sampling

 Hard Input
– 𝐷𝐷 heavy hitters, each having 3 𝐷𝐷 tuples
– 𝐷𝐷 − 𝐷𝐷 light hitters, each having 1 tuple
– 𝐷𝐷 distinct values, ≈ 4𝐷𝐷 tuples, use 2𝐷𝐷 sample budget

 Uniform Distinct Sampling: MSE = Ω 𝐷𝐷
– If 𝜏𝜏 > 2 𝐷𝐷, variance is Ω 𝐷𝐷

– If 𝜏𝜏 ≤ 2 𝐷𝐷, bias is Ω 𝐷𝐷

 Weighted Distinct Sampling: A simple configuration can achieve 𝑂𝑂 𝐷𝐷
– Keep ALL light values (Sampling with probability 𝑝𝑝𝑙𝑙 = 1)
– Sample heavy values with 𝑝𝑝ℎ = ⁄1 3, and store ALL their tuples if sampled.
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Why Use Weighted Distinct Sampling?

 In distinct count estimation, heavy hitters are not more important.
– Any distinct value can only contribute 1 to the distinct count post filter 𝐷𝐷𝜙𝜙.

 However, heavy hitters are harder to estimate.
– For light hitters, we may store all its tuples to remove the bias.
– This is not possible for heavy hitters.
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Weighted Distinct Sampling: Algorithm

 Parameters: vectors {𝑝𝑝𝑖𝑖}, 𝜏𝜏𝑖𝑖 defined for 𝑖𝑖 ∈ dom 𝐴𝐴
 Algorithm: Sample each distinct value 𝑖𝑖 with probability 𝑝𝑝𝑖𝑖.

If sampled, augment it with 𝜏𝜏𝑖𝑖 of its tuples.

 Estimation: Let 𝑛𝑛𝑖𝑖
𝜙𝜙 denote the number of tuples that passes 𝜙𝜙 among the 𝜏𝜏𝑖𝑖 sampled 

tuples. 𝑛𝑛𝑖𝑖
𝜙𝜙 = 0 if 𝑖𝑖 itself was not sampled at all. Use the following estimator.

�𝐷𝐷𝜙𝜙 = �
𝑖𝑖∈dom 𝐴𝐴

𝐼𝐼 𝑛𝑛𝑖𝑖
𝜙𝜙 ≥ 1
𝑝𝑝𝑖𝑖

 When 𝑝𝑝𝑖𝑖 ≡ 𝑝𝑝 and 𝜏𝜏𝑖𝑖 ≡ 𝜏𝜏, it degenerates to uniform distinct sampling.
 What are the best parameters?

– Solving an optimization problem.
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Near Optimal Solution

 𝑁𝑁𝑖𝑖: Frequency if items 𝑖𝑖.

 In general, 𝑝𝑝𝑖𝑖 ∝
1
𝑁𝑁𝑖𝑖

, and 𝜏𝜏𝑖𝑖 = 𝑁𝑁𝑖𝑖.

– When 𝑁𝑁𝑖𝑖 is too small, we set 𝑝𝑝𝑖𝑖 = 1.
– When 𝑁𝑁𝑖𝑖 is too large, we never sample the value.

 Intuition
– Heavy hitters are harder to estimate, so the sampling probability 𝑝𝑝𝑖𝑖 decreases wrt 𝑁𝑁𝑖𝑖
– Bias is more important than variance, so we keep all tuples from a value if it is sampled.

– The cost of sample budget for 𝑖𝑖 is proportional to 𝑁𝑁𝑖𝑖, so for large 𝑁𝑁𝑖𝑖, costs outweigh 
benefits, and we never sample them.
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𝜙𝜙

MSE 𝒑𝒑, 𝝉𝝉,𝜙𝜙

subject to 0 ≺ 𝒑𝒑 ≼ 1,
0 ≼ 𝝉𝝉 ≼ N,
𝒑𝒑 ⋅ 𝝉𝝉 ≤ 𝑛𝑛,



Weighted Distinct Sampling: Example

 Consider a frequency distribution as below.
– 𝑁𝑁1,𝑁𝑁2,𝑁𝑁3 = 1,𝑁𝑁4,𝑁𝑁5,𝑁𝑁6 = 2
– 𝑁𝑁7 = 3,𝑁𝑁8 = 5,𝑁𝑁9 = 8,𝑁𝑁10 = 20

 Say our sample budget is 𝑛𝑛 = 20, then
– For 𝑖𝑖 = 1, … 6, 𝑝𝑝𝑖𝑖 = 1, we deterministically keep them in the sample. (cost = 9)

– 𝑝𝑝7 = 0.93,𝑝𝑝8 = 0.72,𝑝𝑝9 = 0.57 is inversely proportional to 𝑁𝑁𝑖𝑖. Once sampled, all 
their tuples will be maintained. (cost = 0.93*3+0.72*5+0.57*8=11)

– 𝑁𝑁10 is too large, so we never sample value 10. (cost = 0)
 Estimation: Suppose our current sample is 𝐴𝐴𝑠𝑠 = {1,2,3,4,5,6,7,9}, and the filter 

passes a tuple for each 𝑖𝑖 = 1, … 10. Our estimator is
�𝐷𝐷𝜙𝜙 = 6 + 0.93−1 + 0.57−1 = 8.82

when actual 𝐷𝐷𝜙𝜙 = 10.
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Weighted Distinct Sampling for SPJ queries

 Direct Extension: Join-and-Run
 More efficient approach: using random walks
 View the join as a graph

– Nodes: distinct values + tuples
– Edges: value ∈ tuple + between joining tuples
– Example: 𝑅𝑅 𝐴𝐴, … ⋈ 𝑆𝑆 ⋈ 𝑇𝑇

• Each length 3 path from 𝑖𝑖 → 𝑡𝑡𝑗𝑗 is s join result

 Start by running WDS on 𝑅𝑅
– Scale 𝝉𝝉 up by a constant as joins can expand tuples
– For each sampled value, perform a BFS in the graph while being careful not to break 𝜏𝜏.

 Estimation time: WDS + Bias Correction
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Experiment Results (SP, Synthetic)
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Experiment Results (SPJ, Benchmark & Real)
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Conclusions and Future Directions

 We introduced Weighed Distinct Sampling for cardinality estimation of SP(J) queries.
 Implemented in AnalyticDB, product of Alibaba Cloud
 Future Directions

– Dynamic Maintenance
– Special Predicates (e.g. ranges)
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Thank you!
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BACK-UP SLIDES
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Uniform Distinct Sampling: Hard Case

 There are 𝐷𝐷 heavy hitters, each having 3 𝐷𝐷 tuples
 Remaining 𝐷𝐷 − 𝐷𝐷 values are light, each having 1 tuple

– There are 3𝐷𝐷 + 𝐷𝐷 − 𝐷𝐷 ≈ 4𝐷𝐷 tuples in total
 Suppose we allow a sample budget of 2𝐷𝐷, sampling half the database!
 Intuition: If 𝜏𝜏 is large, then 𝑝𝑝 must be small, so variance is large. Otherwise 𝜏𝜏 is small, 

and bias is large.

 If 𝜏𝜏 > 2 𝐷𝐷, then 𝑝𝑝 ≤ ⁄3 4. Otherwise the expected sample size is at last
3
4

𝐷𝐷 ⋅ 2 𝐷𝐷 + 𝐷𝐷 − 𝑜𝑜 𝐷𝐷 =
9
4
𝐷𝐷 − 𝑜𝑜 𝐷𝐷 > 2𝐷𝐷

– Since 𝑝𝑝 ≤ 3
4
, the variance is Ω 𝐷𝐷

𝑝𝑝
= Ω 𝐷𝐷
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Uniform Distinct Sampling: Hard Case

 If 𝜏𝜏 ≤ 2 𝐷𝐷, for simplicity we just consider 𝑝𝑝 = 1.
 Consider 𝜙𝜙𝑥𝑥 that 1) blocks all light value, and

2) passes 𝑥𝑥 tuples for any heavy value
– When 𝑥𝑥 varies from 1 to 3 𝐷𝐷, 𝐷𝐷𝜙𝜙𝑥𝑥 ≡ 𝐷𝐷

– Our estimator is �𝐷𝐷𝜙𝜙𝑥𝑥 = 𝜋𝜋𝐴𝐴𝜎𝜎𝜙𝜙𝑥𝑥𝑅𝑅𝑠𝑠 = ∑𝑖𝑖=1
𝐷𝐷 𝐼𝐼 𝑛𝑛𝑖𝑖

𝜙𝜙𝑥𝑥 ≥ 1 , where 𝑛𝑛𝑖𝑖
𝜙𝜙𝑥𝑥 is the number of 

passing tuples sampled for value 𝑖𝑖. Its expectation is E �𝐷𝐷𝜙𝜙𝑥𝑥 = 𝑝𝑝 𝑥𝑥 ⋅ 𝐷𝐷.

– 𝑝𝑝 𝑥𝑥 is the probability of sampling at least one passing tuple for any value.

• If 𝑥𝑥 = 3 𝐷𝐷, we must sampled passing tuples, thus 𝑝𝑝 𝑥𝑥 = 1
• If 𝑥𝑥 = 1, 𝑝𝑝 𝑥𝑥 = ⁄𝜏𝜏 3 𝐷𝐷 ≤ ⁄2 3. 

– The gap of the estimator is Ω 𝐷𝐷 when the actual 𝐷𝐷𝜙𝜙𝑥𝑥 is fixed. So the bias is Ω 𝐷𝐷
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Uniform vs. Weighted Distinct Sampling

 Uniform Distinct Sampling:
– If 𝜏𝜏 > 2 𝐷𝐷, variance is Ω 𝐷𝐷

– If 𝜏𝜏 ≤ 2 𝐷𝐷, bias is Ω 𝐷𝐷

– Either way, MSE = Bias2 + Var = Ω 𝐷𝐷
 Can we do better?
 For this specific case:

– Keep all light values (Sampling with probability 𝑝𝑝𝑙𝑙 = 1)
– Sample heavy values with 𝑝𝑝ℎ = ⁄1 3, and take ALL their tuples if sampled.

– Expected sample size is 𝑝𝑝ℎ 𝐷𝐷 ⋅ 3 𝐷𝐷 + 𝑝𝑝𝑙𝑙 𝐷𝐷 − 𝐷𝐷 ⋅ 1 < 2𝐷𝐷

– There is no bias, and the variance (from heavy values) is 𝑂𝑂 �𝐷𝐷 𝑝𝑝ℎ = 𝑂𝑂 𝐷𝐷 .
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WDS for SPJ: Estimation

 We are no longer able to store ALL join results for a distinct value (they are huge!)
 So we want to reduce the bias.
 At estimation time, we check each distinct value in our sample:

– If none of its join results passed the filter, or if it failed to extend to any join result at all, 
we regard that it does not appear in the original (post-filter) join result, and estimate 0.

– If ≥ 2 of its join results passed the filter, we assume there are many candidates, so we 
regard the probability of sampling a passing join result is high, and estimate 1.

– If there is a single passing join result, we have have sampled it due to luck. And we want 
to estimate the probability of sampling a passing tuple.

• Lower bounded by 𝑝𝑝𝑡𝑡, the probability of sampling this exact tuple; Upper bounded 
by 1, so we use a scaled up estimator 1

𝑝𝑝𝑡𝑡
, and 𝑝𝑝𝑡𝑡 can be calculated in random walks.

 Finally, scale it up by the inverse of 𝑝𝑝𝑖𝑖.
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