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Ranking temporal data has not been studied until recently, even

though ranking is an important operator (being promoted as a first-

class citizen) in database systems. However, only the instant top-k
queries on temporal data were studied in, where objects with the k
highest scores at a query time instance t are to be retrieved. The

instant top-k definition clearly comes with limitations (sensitive to

outliers, difficult to choose a meaningful query time t). A more

flexible and general ranking operation is to rank objects based on

the aggregation of their scores in a query interval, which we dub

the aggregate top-k query on temporal data. For example, return

the top-10 weather stations having the highest average temperature

from 10/01/2010 to 10/07/2010; find the top-20 stocks having the

largest total transaction volumes from 02/05/2011 to 02/07/2011.

This work presents a comprehensive study to this problem by de-

signing both exact and approximate methods (with approximation

quality guarantees). We also provide theoretical analysis on the

construction cost, the index size, the update and the query costs of

each approach. Extensive experiments on large real datasets clearly

demonstrate the efficiency, the effectiveness, and the scalability of

our methods compared to the baseline methods.

1. INTRODUCTION
Temporal data has important applications in numerous domains,

such as in the financial market, in scientific applications, and in the

biomedical field. Despite the extensive literature on storing, pro-

cessing, and querying temporal data, and the importance of rank-

ing (which is considered as a first-class citizen in database sys-

tems [9]), ranking temporal data has not been studied until re-

cently [15]. However, only the instant top-k queries on temporal

data were studied in [15], where objects with the k highest scores

at a query time instance t are to be retrieved; it was denoted as the

top-k(t) query in [15]. The instant top-k definition clearly comes

with obvious limitations (sensitivity to outliers, difficulty in choos-

ing a meaningful single query time t). A much more flexible and

general ranking operation is to rank temporal objects based on the

aggregation of their scores in a query interval, which we dub the

aggregate top-k query on temporal data, or top-k(t1, t2, σ) for an

interval [t1, t2] and an aggregation function σ. For example, return

the top-10 weather stations having the highest average temperature

from 10/01/2010 to 10/07/2010; find the top-20 stocks having the

largest total transaction volumes from 02/05/2011 to 02/07/2011.

Clearly, the instant top-k query is a special case of the aggregate

top-k query (when t1 = t2). The work in [15] shows that even the

instant top-k query is hard!

Problem formulation. In temporal data, each object has at least

one score attribute A whose value changes over time, e.g., the

temperature readings in a sensor database. An example of real

temperature data from the MesoWest project appears in Figure 1.
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Figure 1: MesoWest data.

In general, we can represent the

score attribute A of an object as

an arbitrary function f : R →
R (time to score), but for ar-

bitrary temporal data, f could

be expensive to describe and

process. In practice, applica-

tions often approximate f us-

ing a piecewise linear function

g [6, 1, 12, 11]. The problem of

approximating an arbitrary function f by a piecewise linear func-

tion g has been extensively studied (see [12,16,6,1] and references

therein). Key observations are: 1) more segments in g lead to better

approximation quality, but also are more expensive to represent; 2)

adaptive methods, by allocating more segments to regions of high

volatility and less to smoother regions, are better than non-adaptive

methods with a fixed segmentation interval.

In this paper, for the ease of discussion and illustration, we focus

on temporal data represented by piecewise linear functions. Nev-

ertheless, our results can be extended to other representations of

time series data, as we will discuss in Section 4. Note that a lot

of work in processing temporal data also assumes the use of piece-

wise linear functions as the main representation of the temporal

data [6, 1, 12, 11, 14], including the prior work on the instant top-

k queries in temporal data [15]. That said, how to approximate f
with g is beyond the scope of this paper, and we assume that the

data has already been converted to a piecewise linear representa-

tion by any segmentation method. In particular, we require neither

them having the same number of segments nor them having the

aligned starting/ending time instances for segments from different

functions. Thus it is possible that the data is collected from a vari-

ety of sources after each applying different preprocessing modules.

That said, formally, there are m objects in a temporal database;

the ith object oi is represented by a piecewise linear function gi

with ni number of (linear line) segments. There are a total of

N =
Pm

i=1 ni segments from all objects. The temporal range

of any object is in [0, T ]. An aggregate top-k query is denoted

as top-k(t1, t2, σ) for some aggregation function σ, which is to

retrieve the k objects with the k highest aggregate scores in the
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range [t1, t2], denoted as an ordered set A(k, t1, t2) (or simply A
when the context is clear). The aggregate score of oi in [t1, t2] is

defined as σ(gi(t1, t2)), or simply σi(t1, t2), where gi(t1, t2) de-

notes the set of all possible values of function gi evaluated at every

time instance in [t1, t2] (clearly an infinite set for continuous time

domain). For example, when σ = sum, the aggregate score for

oi in [t1, t2] is
R t2

t1
gi(t)dt. An example of a sum top-2 query is

shown in Figure 2, and its answer is {o3, o1}.

t1 t2

Score

Time

o1

o2

o3

t3

Figure 2: A top-2(t1, t2, sum) query example.

For ease of illustration, we assume non-negative scores by de-

fault. This restriction is removed in Section 4. We also assume a

max possible value kmax for k.

Our contributions. A straightforward observation is that a solu-

tion to the instant top-k query cannot be directly applied to solve

the aggregate top-k query since: 1) the temporal dimension can be

continuous; and 2) an object might not be in the top-k set for any

top-k(t) query for t ∈ [t1, t2], but still belong to A(k, t1, t2) (for

example, A(1, t2, t3) in Figure 2 is {o1}, even though o1 is never a

top-1(t) object for any t ∈ [t2, t3]). Hence, the trivial solution (de-

noted as EXACT1) is for each query to compute σi(t1, t2) of every

object and insert them into a priority queue of size k, which takes

O(m(N + log k)) time per query and is clearly not scalable for

large datasets (although our implementation slightly improves this

query time as described in Section 2). Our goal is then to design

IO and computation efficient algorithms which can outperform the

trivial solution and work well regardless if data fits in main mem-

ory or not. A design principle we have followed is to leverage on

existing indexing structures whenever possible (so these algorithms

can be easily adopted in practice). Our work focuses specifically on

σ = sum, and we make the following contributions:

• We design a novel exact method in Section 2, based on using

a single interval tree (EXACT3).

• We present two approximate methods (and several variants)

in Section 3. Each offers an approximation eσi(t1, t2) on the

aggregate score σi(t1, t2) for objects in any query interval.

We say X̃ is an (ε, α)-approximation of X if X/α− εM ≤

X̃ ≤ X +εM for user-defined parameters α ≥ 1, ε > 0 and

where M =
Pm

i=1 σi(0, T ). Now, for i ∈ [1, m], [t1, t2] ⊆
[0, T ], the APPX1 method guarantees that eσi(t1, t2) is an

(ε, 1)-approximation of σi(t1, t2), and the APPX2 method

guarantees eσi(t1, t2) is an (ε, 2 log(1/ε))-approximation of

σi(t1, t2). We show an (ε, α)-approximation on σi(t1, t2)

implies an approximation eA(k, t1, t2) of A(k, t1, t2) such

that the aggregate score of the jth ranked (1 ≤ j ≤ k) ob-

ject in eA(k, t1, t2) is always an (ε, α)-approximation of the

aggregate score of the jth ranked object in A(k, t1, t2).

• We extend our results to general functions f for temporal

data, other possible aggregates, negative scores, and deal with

updates in Section 4.

• We show extensive experiments on massive real data sets in

Section 5. The results clearly demonstrate the efficiency, ef-

fectiveness and scalability of our methods compared to the

Symbol Description

A(k, t1, t2) ordered top-k objects for top-k(t1, t2, σ).
eA(k, t1, t2) an approximation of A(k, t1, t2).

A(j), eA(j) the jth ranked object in A or eA.

B block size.

B set of breakpoints (B1 and B2 are special cases).

B(t) smallest breakpoint in B larger than t.
gi the piecewise linear function of oi.

gi,j the jth line segment in gi, j ∈ [1, ni].
gi(t1, t2) the set of all possible values of gi in [t1, t2].
kmax the maximum k value for user queries.

ℓ(t) the value of a line segment ℓ at time instance t.
m total number of objects.

M M =
Pm

i=1 σi(0, T ).

ni number of line segments in gi.

n, navg max{n1, n2, . . . , nm}, avg{n1, n2, . . . , nm}
N number of line segments of all objects.

oi the ith object in the database.

qi number of segments in gi overlapping [t1, t2].
r number of breakpoints in B, bounded O(1/ε).

(ti,j , vi,j) jth end-point of segments in gi, j ∈ [0, ni].
σi(t1, t2) aggregate score of oi in an interval [t1, t2].
eσi(t1, t2) an approximation of σi(t1, t2).

[0, T ] the temporal domain of all objects.

Table 1: Frequently used notations.

baseline. Our approximate methods are especially appealing

when approximation is admissible, given their better query

costs than exact methods and high quality approximations.

We survey the related work in Section 6, and conclude in Section

7. Table 1 summarizes our notations. Figure 3 summarizes the up-

per bounds on the preprocessing cost, the index size, the query cost,

the update cost, and the approximation guarantee of all methods.

2. EXACT METHODS
As explained in Section 1, a trivial exact solution EXACT1 is to

find the aggregate score of each object in the query interval and

insert them into a priority queue of size k. We can improve this

approach by indexing line segments from all objects with a B+-tree,

where the key for a data entry e is the value of the time-instance for

the left-end point of a line segment ℓ, and the value of e is just ℓ.

Given a query interval [t1, t2], this B+-tree allows us to find all line

segments that contains t1 in O(logB N) IOs. A sequential scan (till

t2) then can retrieve all line segments whose temporal dimensions

overlap with [t1, t2] (either fully or partially). In this process, we

simply maintain m running sums, one per object in the database.

Suppose the ith running sum of object oi is si and it is initialized

with the value 0. Given a line segment ℓ defined by (ti,j , vi,j) and

(ti,j+1, vi,j+1) from oi (see an example in Figure 4), we define an

interval I = [t1, t2] ∩ [ti,j , ti,j+1], let tL = max{t1, ti,j} and

tR = min{t2, ti,j+1}, and update si = si + σi(I), where

σi(I) =

(

0, if t2 < tL or t1 > tR;
1
2
(tR − tL)(ℓ(tR) + ℓ(tL)), else.

(1)

Note that ℓ(t) is the value of the line segment ℓ at time t. Note

that if we follow the sequential scan process described above, we

will only deal with line segments that do overlap with the tem-

poral range [t1, t2], in which the increment to si corresponds to

the second case in (1). It is essentially an integral from tL =
max{t1, ti,j} to tR = min{t2, ti,j+1} w.r.t. ℓ, i.e.,

R tR

tL
ℓ(t)dt.

This range [tL, tR] of ℓ also defines a trapezoid, hence, it is equal

to the area of this trapezoid, which yields the formula in (1).

When we have scanned all line segments up to t2 from the B+-

tree, we stop and assign σi(t1, t2) = si for i = 1 to m. Finally,
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index size construction cost query cost update cost approximation

EXACT1 O(N
B

) O(N
B

logB N) O(logB N +
Pm

i=1
qi

B
) O(logB N) (0, 1)

EXACT2 O(N
B

) O(
Pm

i=1
ni

B
logB ni) O(

Pm

i=1 logB ni) O(logB n) (0, 1)

EXACT3 O(N
B

) O(N
B

logB N) O(logB N + m
B

) O(logB N) (0, 1)

APPX1 O( r2

B
kmax) O(N

B
(logB N + r)) O( k

B
+ logB r) O( 1

B
(logB N + r)) (ε, 1)

APPX2 O( r
B

kmax) O(N
B

(logB N + log r)) O(k log r) O( 1
B

(logB N + log r)) (ε, 2 log r)

Figure 3: IO costs, with block size B; for simplicity, logB kmax terms are absorbed in O(·) notation.

t1 t2

Score
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o3

(t3,1, v3,1)

(t3,2, v3,2)

t3,1 t3,2I

σ3(I)

tL tR

ℓ(tR)
ℓ(tL)

Figure 4: Compute σi([t1, t2] ∩ [ti,j , ti,j+1]).

we insert (i, σi(t1, t2)), for i = 1 to m, into a priority queue of

size k sorted in the descending order of σi(t1, t2). The answer

A(k, t1, t2) is the (ordered) object ids in this queue when the last

pair (m, σm(t1, t2)) has been processed.

This method EXACT1 has a cost of O((N/B) logB N) IOs for

building the B+-tree, an index size of O(N/B) blocks, and a query

cost of O(logB N +
Pm

i=1 qi/B+(m/B) logB k) IOs where qi is

the number of line segments from oi overlapping with the temporal

range [t1, t2] of a query q=top-k(t1, t2, sum). In the worst case,

qi = ni for each i, then the query cost becomes O(N/B)!

A forest of B+-trees. EXACT1 becomes quite expensive when

there are a lot of line segments in [t1, t2], and its asymptotic query

cost is actually O(N/B) IOs, which is clearly non-scalable. The

bottleneck of EXACT1 is the computation of the aggregate score

of each object. One straight forward idea to improve the aggre-

gate score computation is to leverage on precomputed prefix-sums

[7]. We apply the notion of prefix-sums to continuous temporal

data by precomputing the aggregate scores of some selected in-

tervals in each object; this preprocessing helps reduce the cost of

computing the aggregate score for an arbitrary interval in an ob-

ject. Let (ti,j , vi,j) be the jth end-point of segments in gi, where

j ∈ {0, . . . , ni}; clearly, the jth segment in gi is then defined

by ((ti,j−1, vi,j−1), (ti,j , vi,j)) for j ∈ {1, . . . , ni}, which we

denote as gi,j . Then define intervals Ii,ℓ = [ti,0, ti,ℓ] for ℓ =
1, . . . , ni, and compute the aggregate score σi(Ii,ℓ) for each.

t1 t2

Score

Time

o3

t3,1 t3,2 t3,3t3,0 t3,4

t3,5 t3,6

I3,1
I3,2

I3,3
I3,4
I3,5

I3,6

e3,ℓ = (t3,ℓ, (g3,ℓ, σ3(I3,ℓ)))

g3,2

g3,1

g3,3
g3,4

g3,5

g3,6σ3(t1, t3,2) σ3(t2, t3,4)

I3,L = I3,2, t3,L = t3,2; I3,R = I3,4, t3,R = t3,4

Figure 5: The method EXACT2.

Once we have (Ii,ℓ, σi(Ii,ℓ))s, we build a B+-tree to index them.

Specifically, we make a leaf-level data entry ei,ℓ for (Ii,ℓ, σi(Ii,ℓ)),

where the key in ei,ℓ is ti,ℓ (the right end-point of Ii,ℓ), and the

value of ei,ℓ includes both gi,ℓ and σi(Ii,ℓ). Given {ei,1, . . . , ei,ni
}

for oi, we bulk-load a B+-tree Ti using them as the leaf-level data

entries (see Figure 5 for an example).

We do this for each object, resulting in m B+-trees. Given Ti, we

can compute gi(t1, t2) for any interval [t1, t2] efficiently. We first

find the data entry ei,L such that its key value ti,L is the first suc-

ceeding key value of t1; we then find the data entry ei,R such that its

key value ti,R is the first succeeding key value of t2. Next, we can

calculate σi(t1, ti,L) using gi,L (stored in ei,L), and σi(t2, ti,R)
using gi,R (stored in ei,R), simply based on (1). Finally,

σi(t1, t2) = σi(Ii,R)−σi(Ii,L)+σi(t1, ti,L)−σi(t2, ti,R), (2)

where σi(Ii,R), σi(Ii,L) are available in ei,R, ei,L respectively.

Figure 5 also gives a query example using o3.

Once all σi(t1, t2)’s are computed for i = 1, . . . , m, the last

step is the same as that in EXACT1.

We denote this method as EXACT2. Finding ei,L and ei,R from

Ti takes only logB ni cost, and calculating (2) takes O(1) time.

Hence, its query cost is O(
Pm

i=1 logB ni+m/B logB k) IOs. The

index size of this method is the size of all B+-trees, where Ti’s size

is linear to ni; so the total size is O(N/B) blocks. Note that com-

puting {σi(Ii,1), . . . , σi(Ii,ni
)} can be easily done in O(ni/B)

IOs, by sweeping through the line segments in gi sequentially from

left to right, and using (1) incrementally (i.e., computing σi(Ii,ℓ+1)
by initializing its value to σi(Ii,ℓ)). Hence, the construction cost is

dominated by building each tree Ti with cost O((ni/B) logB ni).

The total construction cost is O(
Pm

i=1(ni/B) logB ni).

Using one interval tree. When m is large (as is the case for the real

data sets we explore in Section 5), querying m B+-trees becomes

very expensive, partly due to the overhead of opening and closing

m disk files storing these B+-trees. Hence, an important improve-

ment is to somehow index the data entries from all m B+-trees in a

single disk-based data structure.

Consider any object oi, let intervals Ii,1, . . . , Ii,ni
be the same

as that in EXACT2, where Ii,ℓ = [ti,0, ti,ℓ]. Furthermore, we define

intervals I−

i,1, . . . , I
−

i,ni
, such that I−

i,ℓ = Ii,ℓ − Ii,ℓ−1 (let Ii,0 =

[ti,0, ti,0]), i.e., I−

i,ℓ = [ti,ℓ−1, ti,ℓ].

Next, we define a data entry ei,ℓ such that its key is I−

i,ℓ, and its

value is (gi,ℓ, σi(Ii,ℓ)), for ℓ = 1, . . . , ni. Clearly, an object oi

yields ni such data entries. Figure 6 illustrates an example using

the same setup in Figure 5. When we collect all such entries from

all objects, we end up with N data entries in total. We denote these

data entries as a set I−; and it is interesting to note that the key

value of each data entry in I− is an interval. Hence, we can index

I− using a disk-based interval tree S [13, 4, 3].

Time

I3,1
I3,2

I3,3
I3,4
I3,5

I3,6

e3,ℓ = (I−
3,ℓ, (g3,ℓ, σ3(I3,ℓ)))

I−
3,1 I−

3,2 I−
3,3 I−

3,4 I−
3,5I

−

3,6

t1 t2

Figure 6: The method EXACT3.

Given this interval tree S, computing σi(t1, t2) can now be re-

duced to two stabbing queries, using t1 and t2 respectively, which
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return the entries in S whose key values (intervals in I−) con-

tain t1 or t2 respectively. Note that each such stabbing query re-

turns exactly m entries, one from each object oi. This is because

that: 1) any two intervals I−

i,x, I−

i,y for x 6= y from oi satisfies

I−

i,x ∩ I−

i,y = ∅; 2) and I−

i,1 ∪ I−

i,2 ∪ · · · ∪ I−

i,ni
= [0, T ].

Now, suppose the stabbing query of t1 returns an entry ei,L from

oi in S, and the stabbing query of t2 returns an entry ei,R from oi in

S. It is easy to see that we can calculate σi(t1, t2) just as (2) does

in EXACT2 (see Figure 6). Note that using only these two stabbing

queries are sufficient to compute all σi(t1, t2)’s for i = 1, . . . , m.

Given N data entries, the external interval tree has a linear size

O(N/B) blocks and takes O((N/B) logB N) IOs to build [4]

(building entries {ei,1, . . . , ei,ni
} for oi takes only O(ni/B) cost).

The two stabbing queries take O(logB N + m/B) IOs [4]; hence,

the total query cost, by adding the cost of inserting σi(t1, t2)’s into

a priority queue of size k, is O(logB N + (m/B) logB k).

Remarks. One technique we do not consider is indexing temporal

data with R-trees to solve aggregate top-k queries. R-trees con-

structed over temporal data have been shown to perform orders

of magnitude worse than other indexing techniques for answering

instant top-k queries, even when branch-and-bound methods are

used [15]. Given this fact, we do not attempt to extend the use of

R-trees to solve the harder aggregate top-k query.

Temporal aggregation with range predicates has been studied in

the classic work [22, 21], however, with completely different ob-

jectives. Firstly, they dealt with multi-versioned keys instead of

time-series data, i.e., each key is alive with a constant value dur-

ing a time period before it gets deleted. One can certainly model

these keys as temporal objects with constant functions following

our model (or even piecewise constant functions to model also up-

dates to keys, instead of only insertions and deletions of keys). But

more importantly, their definitions of the aggregation [22, 21] are

fundamentally different from ours. The goal in [21] is to compute

the sum of key values alive at a time instance, or alive at a time in-

terval intersecting a query interval. The work in [22] extends [21]

by allowing a range predicate on the key dimension as well, i.e., its

goal is to compute the sum of key values that 1) are alive at a time

instance, or alive at a time interval intersecting a query interval; 2)

and are within a specified query range in the key dimension.

Clearly, these aggregations [22,21] are different from ours. They

want to compute a single aggregation of all keys that “fall within”

(are alive in) a two-dimensional query rectangle; while our goal is

to compute the aggregate score values of many individual objects

over a time interval (then rank objects based on these aggregations).

Zhang et al. [22] also extended their investigation to compute the

sum of weighted key values, where each key value (that is alive in

a two-dimensional query rectangle) is multiplied by a weight pro-

portional to how long it is alive on the time dimension within the

query interval. This weighted key value definition will be the same

as our aggregation definition if an object’s score is a constant in

the query interval. They also claimed that their solutions can still

work when the key value is not a constant, but a function with cer-

tain types of constraints. Nevertheless, even in these cases, their

goal is to compute a single sum over all weighted key values for

an arbitrary two-dimensional query rectangle, rather than each in-

dividual weighted key value over a time interval. Constructing m
such structures, a separate one for each of the m objects in our

problem, and only allowing an unbounded key domain can be seen

as similar to our EXACT2 method, which on large data corpuses is

the least efficient technique we consider. These fundamental dif-

ferences make these works almost irrelevant in providing helpful

insights for solving our temporal aggregation problems.

3. APPROXIMATE METHODS
The exact approaches require explicit computation of σi(t1, t2)

for each of m objects, and we manage to reduce the IO cost of this

from roughly N/B to m to m/B. Yet, on real data sets when m
is quite large, this can still be infeasible for fast queries. Hence

we now study approximate methods that allow us to remove this

requirement of computing all m aggregates, while still allowing

any query [t1, t2] over the continuous time domain.

Our approximate methods focus on constructing a set of break-

points B = {b1, b2, . . . , br}, bi ∈ [0, T ] in the time domain, and

snapping queries to align with these breakpoints. We prove the re-

turned value σ̃i(t1, t2) for any curve (ε, 1)-approximates σi(t1, t2).

The size of the breakpoints and time for queries will be independent

of the total number of segments N or objects m.

In this section we devise two methods for constructing r break-

points BREAKPOINTS1 and BREAKPOINTS2. The first method

BREAKPOINTS1 guarantees r = Θ(1/ε) and is fairly straight-

forward to construct. The second method requires more advanced

techniques to construct efficiently and guarantees r = O(1/ε), but

can be much smaller in practice.

Then given a set of breakpoints, we present two ways to answer

approximate queries on them: QUERY1 and QUERY2. The first ap-

proach QUERY1 constructs O(r2) intervals, and uses a two-level

B+-tree to retrieve the associated top k objects list from the one in-

terval snapped to by the query. The second approach QUERY2 only

builds O(r) intervals and their associated kmax top objects, and on

a query narrows the list of possible top k-objects to a reduced set

of O(k log r) objects. Figure 7 shows an outline of these methods.

N segments

m objects

BreakPoints1

BreakPoints2

Query1

Query2

Figure 7: Outline of approximate methods.

We define the following approximation metrics.

Definition 1 G is an (ε, α)-approximation algorithm of the ag-

gregate scores if for any i ∈ [1, m], [t1, t2] ⊆ [0, T ], G returns

eσi(t1, t2) such that σi(t1, t2)/α−εM ≤ eσi(t1, t2) ≤ σi(t1, t2)+
εM , for user-defined parameters α ≥ 1, ε > 0.

Definition 2 For A(k, t1, t2) (or eA(k, t1, t2)), let A(j) (or eA(j))

be the jth ranked object in A (or eA). R is an (ε, α)-approximation

algorithm of top-k(t1, t2, σ) queries if for any k ∈ [1, kmax], [t1, t2]

⊆ [0, T ], R returns eA(k, t1, t2) and eσ
eA(j)(t1, t2) for j ∈ [1, k],

s.t. eσ
eA(j)(t1, t2) is an (ε, α)-approximation of σ

eA(j)(t1, t2) and

σA(j)(t1, t2).

Definition 2 states that eA will be a good approximation of A if

(ε, α) are small, since at each rank the two objects from eA and A
respectively will have really close aggregate scores. This implies

that the exact ranking order in A will be preserved well by eA unless

many objects having very close (smaller than the gap defined by

(ε, α)) aggregate scores on some query interval; and this is unlikely

in real datasets when users choose small values of (ε, α).

Appendix (Section 10) shows that an algorithm G satisfying Def-

inition 1 implies an algorithm R satisfying Definition 2. That said,

for either BREAKPOINTS1 or BREAKPOINTS2, QUERY1 is an (ε,
1)-approximation for σi(t1, t2) and A(k, t1, t2); QUERY2 is an

(ε, 2 log r)-approximation for σi(t1, t2) and A(k, t1, t2). Despite

the reduction in guaranteed accuracy for QUERY2, in practice its

accuracy is not much worse than QUERY1, and it is 1-2 orders of

magnitude better in space and construction time; and QUERY1 im-

proves upon EXACT3, the best exact method.
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3.1 Breakpoints
Our key insight is that σi(t1, t2) does not depend on the number

of segments between the boundary times t1 and t2; it only depends

on the aggregate σ applied to that range. So to approximate the ag-

gregate score of any object within a range, we can discretize them

based on the accumulated σ value. Specifically, we ensure between

no two consecutive breakpoints in bj , bj+1 ∈ B does the value

σi(bj , bj+1) become too large for an object. Both sets of break-

points B1 for BREAKPOINTS1 and B2 for BREAKPOINTS2 start

with b0 = 0 and end with br = T . Given b0, they sweep forward

in time, always constructing bj before bj+1, and define:

bj+1 so

(

Pm

i=1 σi(bj , bj+1) = εM, in BREAKPOINTS1,

maxm
i=1 σi(bj , bj+1) = εM, in BREAKPOINTS2,

where M =
Pm

i=1 σi(0, T ). Note that these breakpoints bj are

not restricted to, and in general will not, occur at the end points of

segments of some oi.

Since the total aggregate
Pm

i=1 σi(0, T ) = M , for BREAK-

POINTS1 there will be exactly r = ⌈1/ε + 1⌉ breakpoints as each

(except for the last br) accounts for εM towards the total inte-

gral. For ease of exposition we will assume that 1/ε is integral

and drop the ⌈·⌉ notation, hence 1/ε · εM = M . Next we no-

tice that BREAKPOINTS2 will have at most as many breakpoints

as BREAKPOINTS1 since maxm
i=1 Xi ≤

Pm

i=1 Xi for any set of

Xi > 0. However, the inequality is not strict and these quanti-

ties could be equal; this implies the two cases could have the same

number of breakpoints. This is restricted to the special case where

between every consecutive pair bj , bj+1 ∈ B exactly one object oi

has σi(bj , bj+1) = εM and for every other object oi′ for i 6= i′

has zero aggregate σi′(bj , bj+1) = 0. As we will demonstrate on

real data in Section 5 in most reasonable cases the size of BREAK-

POINTS2 is dramatically smaller than the size of BREAKPOINTS1.

Construction of BREAKPOINTS1. We first need to preprocess all

of the objects according to individual tuples for each vertex be-

tween two line segments. Consider two line segments s1 and s2

that together span from time tL to time tR and transition at time

tM . If they are part of object oi then they have values vL = gi(tL),

vM = gi(tM ), and vR = gi(tR). Then for the vertex at (tM , vM )
we store the tuple (tL, tM , tR, vL, vM , vR). Then we sort all tu-

ples across all objects according to tM in ascending order and place

them in a queue Q. The breakpoints B1 will be constructed by pop-

ping elements from Q.

We need to maintain some auxiliary information while process-

ing each tuple. For each tuple, we can compute the slope of its two

adjacent segments as wL = (vM−vL)/(tM−tL) and wR = (vR−
vM )/(tR − tM ). Between each pair of segment boundaries the

value of an object gi(t) varies linearly according to the slope wi,ℓ

in segment gi,ℓ. Thus the sum
Pm

i=1 gi(t) varies linearly according

to W (t) =
Pm

i=1 wi,ℓi
if each ith object is currently represented

by segment gi,ℓi
. Also, at any time t we can write the summed

value as V (t) =
Pm

i=1 gi(t). Now for any two time points t1 and

t2 such that no segments starts or ends in the range (t1, t2), and

given V (t1) and W (t1) we can calculate in constant time the sum
Pm

i=1 σi(t1, t2) = 1
2
W (t1)(t2 − t1)

2 + V (t1)(t2 − t1). Thus we

always maintain V (t) and W (t) for the current t.
Since b0 = 0, to construct B1 we only need to show how to

construct bj+1 given bj . Starting at bj we reset to 0 a running

sum up to a time t ≥ bj written I(t) =
Pm

i=1 σi(bj , t). Then

we pop a tuple (tL, tM , tR, vL, vM , vR) from Q and process it as

follows. We update the running sum to time tM as I(tM ) = I(t)+
1
2
W (t)(tM −t)2+V (t)(tM −t). If I(tM ) < εM , then we update

V (tM ) = V (t)+W (t)(tM−t), then W (tM ) = W (t)−wL+wR,

and pop the next tuple off of Q.

If I(tM ) ≥ εM , that means that the break point bj+1 occurred

somewhere between t and tM . We can solve for this time bj+1 in

the equation I(bj+1) = εM as

bj+1 = t +
V (t)

W (t)
+

1

W (t)

p

(V (t))2 − 2W (t)(I(t) − εM).

The slope W (t) has not changed, but we have to update V (bj+1) =
V (t) + W (t) · (bj+1 − t). Now we reinsert the tuple at the top of

Q to begin the process of finding bj+2. Since each of N tuples is

processed in linear time, the construction time is dominated by the

O((N/B) logB N) IOs for sorting the tuples.

Baseline construction of BREAKPOINTS2. While construction of

BREAKPOINTS1 reduces to a simple scan over all segments (rep-

resented as tuples), computing BREAKPOINTS2 is not as easy be-

cause of the replacement of the sum operation with a max. The dif-

ficulties come in resetting the maintained data at each breakpoint.

Again, we first need to preprocess all of the objects according to

individual tuples for each line segment. We store the ℓth segment of

oi as the tuple si,ℓ = (tL, tR, vL, vR, i) which stores the left and

right endpoints of the segment in time as tL and tR, respectively,

and also stores the values it has at those times as vL = gi(tL)
and vR = gi(tR), respectively. Note for each segment si,ℓ we can

compute its slope wi,ℓ = (vR − vL)/(tR − tL). Then we sort

all tuples across all objects according to tL in ascending order and

place them in a queue Q. The breakpoints B2 will be constructed

by popping elements from Q.

By starting with b0 = 0, we only need to show how to compute

bj+1 given bj . We maintain a running integral Ii(t) = σi(bj , t) for

each object. Thus at the start of a new break point bj , each integral

is set to 0. Then for each new segment si,ℓ that we pop from Q,

we update Ii(t) to Ii(tR) = Ii(t) + (vR − vL)(tR − tL)/2. If

Ii(tR) < εM , then we pop the next tuple from Q and continue.

However, if the updated Ii(tR) ≥ εM , then it means we have

an event before the next segment will be processed from oi. As

before with BREAKPOINTS1, we calculate b̂j+1,i = t + gi(t)
wi,ℓ

+
1

wi,ℓ

p

(gi(t))2 − 2wi,ℓ(Ii(t) − εM). This is not necessarily the

location of the next breakpoint bj+1, but if the breakpoint is caused

by oi, then this will be it. We call such objects for which we have

calculated b̂j+1,i as dangerous. We let b̂j+1 = min b̂j+1,i (where

b̂j+1,i is implicitly ∞ if it is not dangerous). To determine the true

next breakpoint we keep popping tuples from Q until for the current

tuple tL > b̂j+1. This indicates no more segment endpoints occur

before some object oi reaches Ii(t) = εM . So we set bj+1 =

b̂j+1, and reset maintained values in preparation for finding bj+2.

Assuming Ω(m/B) internal memory space, this method runs in

O((N/B) logB N) IOs, as we can maintain m running sums in

memory. We can remove this assumption in O((N/B) logB N)
IOs with some technical tricks which we omit the details of for

space. To summarize, after sorting in O(logB N) passes on the

data, we determine for each segment from each oi how many seg-

ments occur again before another segment from oi is seen. We then

keep the auxiliary information for each object (e.g. running sums)

in an IO-efficient priority queue [5] on the objects sorted by the

order in which a segment from each object will next appear.

However, with limited internal space or in counting internal run-

time, this method is still potentially slower than finding BREAK-

POINTS1 since it needs to reset each Ii(bj+1) = 0 when we reach

a new breakpoint. This becomes clear when studied from an in-

ternal memory runtime perspective, where this method may take

O(rm + N log N) time.
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Efficient construction of BREAKPOINTS2. We can avoid the ex-

tra O(rm) term in the run time by using clever bookkeeping that

ensures we do not have to reset too much each time we find a break

point. Appendix in Section 9.1 of our technical report [10] shows:

Lemma 1 BREAKPOINTS2 can be built in O(N log N) time (for

N > 1/ε). Its size is r = O(1/ε); and it takes O((N/B) logB N)
IOs to construct.

Remarks. For specific datasets there may be other specialized

ways of choosing breakpoints. For real world datasets, such as the

MesoWest data as shown in Figure 1, our methods are both efficient

and have excellent approximation quality (see Section 5).

3.2 Index Breakpoints and Queries
Given a set of breakpoints B (either B1 or B2), we show how

to answer queries on the full dataset approximately. The approx-

imation guarantees are based on the following property that holds

for BREAKPOINTS1 B1 and BREAKPOINTS2 B2. For any query

interval (t1, t2), let (B(t1),B(t2)) be the associated approximate

interval, where B(t1) (resp. B(t2)) is the smallest breakpoints in

B such that B(t1) ≥ t1 (resp. B(t2) ≥ t2); see Figure 8.

Time

t1 t2

B(t2)B(t1)

Figure 8: Associated approximate interval.

Lemma 2 For any query [t1, t2] and associated approximate in-

terval [B(t1),B(t2)]: ∀oi, |σi(t1, t2) − σi(B(t1),B(t2))| ≤ εM.

PROOF. Both B1 and B2 guarantee that between any two con-

secutive breakpoints bj , bj+1 ∈ B that for any object σi(bj , bj+1)
≤ εM . This property is guaranteed directly for BREAKPOINTS2,

and is implied by BREAKPOINTS1 because for any object oi it

holds that σi(t1, t2) ≤
Pm

j=1 σj(t1, t2) for each σj(t1, t2) ≥ 0,

which is the case since we assume positive scores (this restriction

is removed in Section 4).

Hence, by changing the query interval from [t1, t2] to [B(t1), t2]
the aggregate can only decrease, and can decrease by at most εM .

Also, by changing the interval from [B(t1), t2] to [B(t1),B(t2)] the

aggregate can only increase, and can increase by at most εM . Thus

the inequality holds since each endpoint change can either increase

or decrease the aggregate by at most εM .

We now present two query methods, and associate data struc-

tures, called QUERY1 and QUERY2.

Nested B+-tree queries. For QUERY1 we consider all
`

r

2

´

inter-

vals with a breakpoint from B at each endpoint. For each of these

intervals [bj , bj′ ], we construct the kmax objects with the largest

aggregate σi(bj , bj′). Now we can show that this nested B+-tree

yields an (ε, 1)-approximation for both the aggregate scores and

A(k, t1, t2) for any k ≤ kmax.

To construct the set of kmax objects associated with each inter-

val [bj , bj′ ] we use a single linear sweep over all segments using

operations similar to EXACT1. Starting at each breakpoint bj , we

initiate a running integral for each object to represent the intervals

with bj as their left endpoint. Then at each other breakpoints bj′

we output the kmax objects with largest running integrals starting

at each bj up to bj′ to represent [bj , bj′ ]. That is, we maintain

O(r) sets of m running integrals, one for each left break point

bj we have seen so far (to avoid too much internal space in pro-

cessing all N segments, we use a single IO-efficient priority queue

as in constructing BREAKPOINTS2, where each of m objects in

the queue now also stores O(r) running sums.) We also main-

tain O(r) priority queues of size kmax for each left endpoint bj ,

over each set of m running integrals on different objects. This

takes O((N/B)(logB(mr) + r logB kmax) + r(rkmax/B + 1))
IOs, where the last item counts for the output size (since we have

O(r2) intervals and each interval stores kmax objects). We assume

rkmax < N (to simplify and so index size O(r2kmax) is feasible);

hence, the last term is absorbed in O(·).

To index the set of these intervals, we use nested set of B+-trees.

We first build a B+-tree Ttop on the breakpoints B. Then for each

leaf node associated with bj , we point to another B+-tree Tj on B′
j ,

where B′
j = {b ∈ B | b > bj}. The top level B+-tree Ttop indexes

the left endpoint of an interval [bj , bj′ ] and the lower level B+-tree

Tj pointed to by bj in Ttop indexes the right end point bj′ (for all

bj′ > bj). We build O(r) B+-trees of size O(r), hence, this step

takes O(r2/B) IOs (by bulkloading). Again, we assume r2 < N ,

and this cost will also be absorbed in the construction cost.

Now we can query any interval in O(logB r) time, since each

B+-tree requires O(logB r) to query, and for a query top-k(t1, t2,
σ), we use Ttop to find B(t1), and the associated lower level B+-

tree of B(t1) to find B(t2), which gives the top kmax objects in

interval [B(t1),B(t2)]. We return the top k objects from them as
eA (see Figure 9). The above and Lemma 2 imply the following

results.

Ã(k, t1, t2)

T
im

e

B(t1)

B(t2)

t1

t2

Figure 9: Illustration of QUERY1.

Lemma 3 Given breakpoints B of size r (r2 < N and rkmax <
N ), QUERY1 takes O((N/B) (logB(mr) + r logB kmax)) IOs to

build, has size Θ(r2kmax/B), and returns (ε, 1)-approximate top-

k queries, for any k ≤ kmax, in O(k/B + logB r) IOs.

Dyadic interval queries. QUERY1 provides very efficient queries,

but requires Ω(r2kmax/B) blocks of space which for small val-

ues of ε can be too large (as r = O(1/ε) in both types of break-

points). For arbitrarily small ε, it could be that r2 > N . It also

takes Ω(rN log kmax) time to build. Thus, we present an alterna-

tive approximate query structure, called QUERY2, that uses only

O(rkmax /B) space, still has efficient query times and high em-

pirical accuracy, but has slightly worse accuracy guarantees. It is a

(ε, 2 log r)-approximation for both σi(t1, t2) and A(k, t1, t2).

We consider all dyadic intervals, that is all intervals [bj , bj′ ]

where j = h2ℓ + 1 and j′ = (h + 1)2ℓ for some integer 0 ≤
ℓ < log r and 0 ≤ h ≤ r/2ℓ − 1. Intuitively, these intervals repre-

sent the span of each node in a balanced binary tree. At each level ℓ
the intervals are of length 2ℓ, and there are ⌈r/2ℓ⌉ intervals. There

are less than 2r + log r such intervals in total since there are r at

level 0, ⌈r/2⌉ at level 1, and so on, geometrically decreasing.

As with QUERY1 for each dyadic interval [bj , bj′ ] we find the

kmax objects with the largest σi(bj , bj′) in a single sweep over all

N segments. There are log r active dyadic intervals at any time,

one at each level, so we maintain log r running integrals per ob-

ject. We do so again using two IO-efficient priority queues. One

requires O((1/B) logB(m log r)) IOs per segment, the elements

correspond to objects sorted by which have segments to processes

next, and each element stores the log r associated running integrals.
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The second is a set of log r IO-efficient priority queues of size

kmax, sorted by the value of the running integral; each requires

O((1/B) logB kmax) IOs per segment. The total construction is

O((N/B)(logB(m log r) + log r logB kmax)) IOs.

B(t1) B(t2)

Figure 10: Illustration of QUERY2.

In dyadic intervals any interval [b1, b2] can be formed as the dis-

joint union of at most 2 log r dyadic intervals. We use this fact as

follows: for each query interval [t1, t2] we determine the at most

2 log r dyadic intervals that decompose the associated approximate

query interval [B(t1),B(t2)]. For each such dyadic interval, we

retrieve the top-k objects and scores from its associated top-kmax

objects (k ≤ kmax), and insert them into a candidate set K, adding

scores of objects inserted more than once. The set K is of size

at most k2 log r. We return the k objects with the top k summed

aggregate scores from K.

Lemma 4 QUERY2 (ε, 2 log r)-approximations A(k, t1, t2).

PROOF. Converting [t1, t2] to [B(t1),B(t2)] creates at most εM
error between σi(t1, t2) and σi(B(t1),B(t2)), as argued in Lemma

2. This describes the additive εM term in the error, and allows us

to hereafter consider only the lower bound on score over the ap-

proximate query interval [B(t1),B(t2)].
The relative 2 log r factor is contributed to by the decomposi-

tion of [B(t1),B(t2)] into at most 2 log r disjoint intervals. For

each object oi ∈ A(t1, t2), some such interval [bj , bj′ ] must sat-

isfy σi(bj , bj′) ≥ σi(B(t1),B(t2))/(2 log r). For this interval,

if oi is in the top-k then we return a value at least σi(bj , bj′) ≥
σi(B(t1),B(t2))/(2 log r). If oi is not in the top-k for [bj , bj′ ]
then each object oi′ that is in that top-k set has

σi′(B(t1),B(t2))≥σi′(bj , bj′)≥σi(bj , bj′)≥
σi(B(t1),B(t2))

2 log r
.

Thus, there must be at least k objects oi′ ∈ Ã(B(t1),B(t2)) with

σi′(B(t1),B(t2)) ≥ σi(B(t1),B(t2))/(2 log r).

To efficiently construct the set K of at most k2 log r potential

objects to consider being in Ã(k, t1, t2), we build a balanced bi-

nary tree over B. Each node (either an internal node or leaf node)

corresponds to a dyadic interval (see Figure 10). We construct the

set of such intervals that form the disjoint union over [B(t1),B(t2)]
as follows. In phase 1, starting at the root, if [t1, t2] is completely

contained within one child, we recurse to that child. Phase 2 begins

when [t1, t2] is split across both children of a node, so we recur on

each child. On the next step Phase 3 begins, we describe the pro-

cess for the left child; the process is symmetric for the right child.

If t1 is within the right child, we recur to that child. If t1 is within

the left child, we return the dyadic interval associated with right

child and recur on the left child. Finally, if t1 separates the left

child from the right child, we return the dyadic interval associated

with the right child and terminate. Since the height of the tree is at

most log r, and we return at most one dyadic interval at each level

for the right and left case of phase 3, then there are at most 2 log r
dyadic intervals returned. The above idea can be easily generalized

to a B+-tree (simply with larger fanout) if r is large.

Lemma 5 Given breakpoints B of size r, QUERY2 requires size

Θ(rkmax/B), takes O((N/B)(logB(m log r)+log r logB kmax))
cost to build, and answers (ε, 2 log r)-approximate top-k queries,

for any k ≤ kmax, in O(k log r logB k) IOs.

PROOF. The error bound follows from Lemma 4, and the con-

struction time is argued above. The query time is dominated by

maintaining a size k priority queue over the set K with O(k log r)
objects inserted, from k objects in O(log r) dyadic intervals.

3.3 Combined Approximate Methods
Finally we formalize different approximate methods: APPX1-B,

APPX2-B, APPX1, APPX2. As shown in Figure 7 the methods vary

based on how we combine the construction of breakpoints and the

query structure on top of them. APPX1 and APPX2 use BREAK-

POINTS2 followed by either QUERY1 or QUERY2, respectively. As

we will demonstrate in Section 5, BREAKPOINTS2 is superior to

BREAKPOINTS1 in practice; so, we designate APPX1-B (BREAK-

POINTS1 +QUERY1) the basic version of APPX1, and APPX2-B

(BREAKPOINTS1 +QUERY2) the basic version of APPX2.

The analysis between the basic and improved versions are largely

similar, hence, we only list the improved versions in Table 3. In

particular, for the below results, since r = Θ(1/ε) in BREAK-

POINTS1, we can replace r with 1/ε for the basic results.

APPX1 computes r = O(1/ε) breakpoints B2 using BREAK-

POINTS2 in O((N/B) logB(N/B)) IOs. Then QUERY1 requires

O(r2kmax/B) space, O((N/B)(logB(mr)+ r logB kmax)) con-

struction IOs, and can answer (ε, 1)-approximate queries in O(k/B
+ logB r) IOs. Since m, r < N , this simplifies the total construc-

tion IOs to O((N/B)(logB N + r logB kmax), the index size to

O(r2kmax/B) and the IOs for an (ε, 1)-approximate top-k query

to O(k/B + logB r).

In APPX2, QUERY2 has O(rkmax/B) space, builds in O((N/B)
(logB(m log r)+ log r logB kmax)) IOs, and answers (ε, 2 log r)-

approximate queries in O(k log r logB k) IOs. As m, r < N , the

bounds simplify to O((N/B) (logB N + log r logB kmax)) build

cost, O(k log r logB k) query IOs, and O(rkmax/B) index size.

We also consider a variant APPX2+, which discovers the exact ag-

gregate value for each object in K using a B+-tree from EXACT2.

This increases the index size by O(N/B) (basically just storing

the full data), and increases the query IOs to O(k log r logB k),

but significantly improves the empirical query accuracy.

4. OTHER REMARKS
Updates. In most applications, temporal data receive updates only

at the current time instance, which extend a temporal object for

some specified time period. In this case, we can model an update

to an object oi as appending a new line segment gi,ni+1 to the end

of gi, where that gi,ni+1’s left end-point is (ti,ni
, vi,ni

) (the right

end-point of gi,ni
); gi,ni+1’s right end-point is (ti,ni+1, vi,ni+1).

Handling updates in exact methods are straightforward. In EX-

ACT1, we insert a new entry (ti,ni
, gi,ni+1) into the B+-tree; hence

the update cost is O(logB N) IOs. In EXACT2, we insert a new en-

try (ti,ni+1, (gi,ni+1, σi(Ii,ni+1)) to the B+-tree Ti, where Ii,ni+1

= [ti,0, ti,ni+1]. We can compute σi(Ii,ni+1) based on σi(Ii,ni
)

and gi,ni+1 in O(1) cost; and σi(Ii,ni
) is retrieved from the last en-

try in Ti in O(logB ni) IOs. So, the update cost is O(logB ni) IOs.

In EXACT3, a new entry ([ti,ni
, ti,ni+1], (gi,ni+1, σi(Ii,ni+1))) is

inserted into the interval tree S. For similar arguments, σi(Ii,ni
) is

retrieved from S in O(logB N) IOs; and then σi(Ii,ni+1) is com-

puted in O(1). The insertion into S is O(logB N) IOs [4]. Thus

the total update is O(logB N) IOs.

Handling updates in approximate methods is more complicated.

As such, we described amortized analysis for updates. This ap-

proach can be de-amortized using standard technical tricks. The

construction of breakpoints depends on a threshold τ = εM ; how-

ever, M increases with updates. We handle this by always con-

structing breakpoints (and the index structures on top of them) us-

7



ing a fixed value of τ , and when M doubles, we rebuild the struc-

tures. For this to work, we assume that it takes Ω(N) segments

before M doubles; otherwise, a segment ℓ could have an aggregate

of M/2, and one has to rebuild the entire query structure imme-

diately after seeing ℓ. Thus in an amortized sense, we can amor-

tize the construction time C(N) over Ω(N) segments, and charge

O(C(N)/N) to the update time of a segment.

We also need to maintain a query structure and set of breakpoints

on top of the segments just added. Adding the breakpoints can

be done by maintaining the same IO-efficient data structures as in

their initial construction, using O( 1
B

logB N) IOs per segment. To

maintain the query structures, we again maintain the same auxiliary

variables and running integrals as in the construction. Again, as-

suming that there are Ω(N/r) segments between any pair of break-

points, we can amortize the building of the query structures to the

construction cost divided by N . The amortized reconstruction or

incremental construction of the query structures dominate the cost.

For APPX1 we need O( 1
B

(logB N + r logB kmax)) IOs to update

QUERY1. For APPX2 we need O( 1
B

(logB N + log r logB kmax))
IOs to update QUERY2.

General time series with arbitrary functions. In some time se-

ries data, objects are described by arbitrary functions f , instead of

piecewise linear functions g. However, as we explained in Section

1, a lot of efforts have been devoted to approximate an arbitrary

function f using a piecewise linear function g in general time se-

ries (see [17] and references therein). Furthermore, to understand

the flexibility of our methods, it is important to observe that all

of our methods also naturally work with any piecewise polynomial

functions p: the only change is that we need to deal with polynomial

curve segments, instead of linear line segments. This only affects,

in all our methods, how to compute σi(I) of an interval I , which

is a subinterval of the interval defined by the two end-points of a

polynomial curve segment pi,j (the jth polynomial function in the

ith object). But this can be easily fixed. Instead of using (1) based

on a trapezoid, we simply compute it using the integral over pi,j ,

i.e., σi(I) =
R

t∈I
pi,j(t)d(t). Given that pi,j(t) is a polynomial

function, this can be easily computed. That said, when one needs

more precision in representing an arbitrary time series, either one

can use more line segments in a piecewise linear representation,

or one can use a piecewise polynomial representation. All of our

methods work in both cases.

Negative values. We have assumed positive score values so far.

But this restriction can be easily removed. Clearly, it does not affect

our exact methods at all. In the approximate methods, when com-

puting the breakpoints (in either approach), we use the absolute

values instead to define M and when searching for a breakpoint.

We omit technical details due to the space constraint, but we can

show that doing so will still guarantee the same approximations.

Other aggregates. Our work focuses on the sum aggregation. This

automatically implies the support to the avg aggregation, and many

other aggregations that can be expressed as linear combinations of

the sum (such as F2, the 2nd frequency moment). However, rank-

ing by some holistic aggregates is hard. An important one in this

class is the quantile (median is a special case of the quantile). We

leave the question of how to rank large temporal data using some

of the holistic aggregates (e.g., quantile) as an open problem.

5. EXPERIMENTS
We design all of our algorithms to efficiently consider disk IOs;

in particular, we implemented all our methods using the TPIE-

library in C++ [2]. This allows our methods to scale gracefully

to massive data that does not fit in memory. All experiments were

performed on a Linux machine with an Intel Core i7-2600 3.4GHz

CPU, 8GB of memory, and a 1TB hard drive.

Datasets. We used two large real datasets. The first dataset is a

temperature dataset, Temp, from the MesoWest project [8]. It con-

tains temperature measurements from Jan 1997 to Oct 2011 from

26,383 distinct stations across the United States. There are almost

N=2.6 billion total readings from all stations with an average of

98,425 readings per station. For our experiments, we preprocessed

the Temp dataset to treat each year of readings from a distinct sta-

tion as a distinct object. By aligning readings in this manner we

can ask which k stations had the highest aggregate temperatures in

a (same) time interval amongst any of the recorded years. After pre-

processing, Temp has m=145,628 objects with an average number

of readings per object of navg=17,833. In each object, we connect

all consecutive readings to obtain a piecewise-linear representation.

The second real dataset, Meme, was obtained from the Meme-

tracker project. It tracks popular quotes and phrases which appear

from various sources on the internet. The goal is to analyze how

different quotes and phrases compete for coverage every day and

how some quickly fade out of use while others persist for long pe-

riods of time. A record has 4 attributes, the URL of the website

containing the memes, the time Memetracker observed the memes,

a list of the observed memes, and links accessible from the website.

We preprocess the Meme dataset, converting each record to have a

distinct 4-byte integer id to represent the URL, an 8-byte double to

represent the time of the record, and an 8-byte double to represent a

record’s score. A record’s score is the number of memes appearing

on the website, i.e. it is the cardinality of the list of memes. Af-

ter preprocessing, Meme has almost m=1.5 million distinct objects

(the distinct URLs) with N=100 million total records, an average

of navg=67 records per object. For each object, we connect every

two of its consecutive records in time (according to the date) to

create a piecewise linear representation of its score.

Setup. We use Temp as the default dataset. To test the impact

of different variables, we have sampled subsets of Temp to create

datasets of different number of objects (m), different number of

average line segments per object (navg, by limiting the maximum

value T ). By default, m = 50, 000 and navg = 1, 000 in Temp,

so all exact methods can finish in reasonable amount of time. Still,

there are a total of N = 50×106 line segments! The default values

of other important variables in our experiments are: kmax = 200,

k = 50, r = 500 (number of breakpoints in both BREAKPOINTS1

and BREAKPOINTS2), and (t2−t1) = 20%T . The disk block size

in TPIE is set to 4KB. For each query-related result, we generated

100 random queries and report the average. Lastly, in all datasets,

all line segments are sorted by the time value of their left end-point.

Number of breakpoints. We first investigate the effect of the num-

ber of breakpoints r on different approximate methods, by chang-

ing r from 100 to 1000. Figure 11 shows the preprocessing results

and Figure 12 shows the query results. Figure 11(a) indicates that

given the same number of breakpoints, the value of the error pa-

rameter ε using BREAKPOINTS2 B2 is much smaller than that in

BREAKPOINTS1 B1 in practice; this confirms our theoretical anal-

ysis, since r = 1/ε in B1, but r = O(1/ε) in B2. This suggests

that B2 offers much higher accuracy than B1 given the same budget

r on real datasets. With 500 breakpoints, ε in B2 reduces to almost

10−8, while it is still 0.02 in B1. Figure 11(b) shows the build

time of B1 and B2. Clearly, building B1 is independent to r since

its cost is dominated by the linear sweeping of all line segments.

The baseline method for building B2, BREAKPOINTS2-B clearly

has a linear dependency on r (on m as well, which is not reflected
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Figure 11: Vary r for approximate methods on Temp: preprocessing results.
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(d) Query time.
Figure 12: Vary r for approximate methods on Temp: query results.

by this experiment). However, our efficient method of building

B2, BREAKPOINTS2-E, has largely removed this dependency on

r as shown in Figure 11(b). It also removed the dependency on m,

though not shown. In what follows, BREAKPOINTS2-E was used

by default. Both B1 and B2 can be built fairly fast, in only 80 and

100 seconds respectfully when r = 500 (over 50×106 segments!).

Next, we investigate the index size and the construction cost of

approximate methods, using EXACT3 as a reference (as it has the

best query performance among all exact methods). Figure 11(c)

shows that all approximate methods have much smaller size than

EXACT3, except APPX2+ which also builds EXACT2 since it cal-

culates the exact aggregate score for candidates in K from APPX2.

Clearly, APPX1-B and APPX1 have the same size, basic and im-

proved versions only differ in which types of breakpoints they in-

dex using the two-level B+-trees. For the same reason, APPX2-B

and APPX2 also have the same size; they index B1 or B2 using a bi-

nary tree over the dyadic intervals. APPX2-B and APPX2 only have

size O(rkmax), while APPX1-B and APPX1 have size O(r2kmax)
and EXACT3 and APPX2+ have linear size O(N), which explains

that the size of APPX2-B and APPX2 is more than 2 orders mag-

nitude smaller than the size of APPX1-B and APPX1, which are

in turn 3-2 orders magnitude smaller than EXACT3 and APPX2+

when r changes from 100 to 1000. In fact, APPX2-B and APPX2

take only 1MB, and APPX1-B and APPX1 take only 100MB, when

r = 1000; while EXACT3 and APPX2+ take more than 10GB.

Construction time (for building both breakpoints and subsequent

query structures) for approximate methods (including APPX2+) are

much faster than EXACT3, as shown in Figure 11(d). All structures

build in only 100 to 1000 seconds. Not surprisingly, APPX2-B and

APPX2 are the fastest, since they only need to find the top kmax ob-

jects for O(r) intervals; while APPX1-B and APPX1 need to find

the top kmax objects for O(r2) intervals. Even APPX2+ is sig-

nificantly faster to build than EXACT3 since EXACT2 builds faster

than EXACT3. All approximate methods are generally faster to

build than EXACT3, by 1-2 orders of magnitude (except for APPX1

when r reaches 1000) since the top kmax objects can be found in a

linear sweep over all line segments as explained in Section 3.2.

In terms of the query performance, we first examine the approxi-

mation quality of all approximate methods, using both the standard

precision/recall (between eA and A), and the average of the approx-

imation ratios defined as eσi(t1, t2)/σi(t1, t2) for any oi returned

in eA. Since | eA| and |A| are both k, the precision and the recall

will have the same denominator value. Figure 12(a) shows that all

approximate methods have precision/recall higher than 90% even

in the worst case when r = 100; in fact, APPX1 and APPX2+

have precision/recall close to 1 in all cases. Figure 12(b) further

shows that APPX1, APPX1-B, and APPX2+ have approximate ra-

tios on the aggregate scores very close to 1, where as APPX2 and

APPX2-B have approximation ratios within 5% of 1. In both fig-

ures, APPX1 and APPX2 using B2 are indeed better than their basic

versions APPX1-B and APPX2-B using B1, since given the same

number of breakpoints, B2 results in much smaller ε values (see

Figure 11(a)). Similar results hold for APPX2+, and are omitted

to avoid clutter. Nevertheless, all methods perform much better

in practice than their theoretical error parameter ε suggests (which

indicates worst-case analysis). Not surprisingly, both types of ap-

proximation qualities from all approximate methods improve when

r increases; but r = 500 already provides excellent qualities.

Finally, in terms of query cost, approximate methods are clear

winners over the best exact method EXACT3, with better IOs in

Figure 12(c) and query time in Figure 12(d). In particular, APPX1-

B and APPX1 (reps. APPX2-B and APPX2) have the same IOs

given the same r values, since they have identical index structures

except different values of entries to index. These four methods

have the smallest number of IOs among all methods, in particu-

lar, 6-8 IOs in all cases. All require only two queries in a B+-tree

of size r; a top-level and lower-level tree for APPX1 and APPX1-

B, and a left- and right-endpoint query for APPX2 and APPX2-B.

APPX2+ is slower with about 100 to 150 IOs in all cases, due to

the fact that after identifying the candidate set K, it needs to ver-

ify the exact score of each candidate. But, since it only needs to

deal with 2k log r candidates in the worst case, and in practice,

|K| ≪ 2k log r, its IOs are still very small. In contrast, the best

exact method EXACT3 takes more than 1000 IOs.

Smaller IO costs lead to much better query performance; all ap-

proximate methods outperform the best exact method EXACT3 by

at least 2 orders of magnitude in Figure 12(d). In particular, they

generally take less than 0.01 seconds to answer a top-50(t1, t2,
sum) query, in 20% time span over the entire temporal domain,

over 50 × 106 line segments from 50, 000 objects; while the best

exact method EXACT3 takes around 1 second for the same query.

The fastest approximate method only takes close to 0.001 second!

From these results, clearly, APPX1 and APPX2 using B2 are bet-

ter than their corresponding basic versions APPX1-B and APPX2-

B using B1, given the same number of breakpoints; and r = 500
already gives excellent approximation quality (the same holds for

APPX2+, which we omit to avoid clutter). As such, we only use

APPX1, APPX2, and APPX2 + for the remaining experiments with

9



10 30 50 100 145
10

4

10
6

10
8

10
10

10
12

Objects m (×103)

In
d
ex

si
ze

(b
y
te

s)

 

 

Exact1 Exact2 Exact3

 

 Appx1 Appx2 Appx2+

(a) Index size.

10 30 50 100 145
10

0

10
1

10
2

10
3

10
4

Objects m (×103)

B
u
il
d

ti
m

e
(s

ec
o
n
d
s)

 

 

Exact1 Exact2 Exact3

 

 Appx1 Appx2 Appx2+

(b) Build time.
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(c) Query I/Os.
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(d) Query time.
Figure 13: Vary number of objects m on Temp.
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(b) Build time.
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(c) Query I/Os.
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(d) Query time.
Figure 14: Vary average number of segments navg on Temp.
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(a) m vs. Precision/Recall.
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(b) m vs. Ratio.
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(c) navg vs. Precision/Recall.
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(d) navg vs. Ratio.
Figure 15: m and navg vs approximation quality for Temp.

r = 500. Among the three, APPX2+ is larger and slower to build

than APPX1, followed by APPX2; the fastest to query are APPX1

and APPX2, then APPX2+; but APPX1 and APPX2+ have better

approximation quality than APPX2 (as shown in later experiments

and as suggested by their theoretical guarantees for APPX1).

Scalability. Next, we investigate the scalability of different meth-

ods, using all three exact methods and the three selected approxi-

mate methods, when we vary the number of objects m, and the av-

erage number of line segments per object navg, in the Temp dataset.

Figures 13, 14, and 15 show the results. In general, the trends are

very consistent and agree with our theoretical analysis. All exact

methods consume linear space O(N) and takes O(N log N) time

to build. EXACT3 is clearly the overall best exact method in terms

of query costs, outperforming the other two by 2-3 orders of mag-

nitude in terms of IOs and query time (even though it costs slightly

more to build). In general, EXACT3 takes hundreds to a few thou-

sand IOs, and about 1 to a few seconds to answer an aggregate

top-k(t1, t2, sum) query in the Temp dataset (with a few hundred

million segments from 145,628 objects). Its query performance is

not clearly affected by navg, but has a linear dependency on m.

The approximate methods consistently beat the best exact algo-

rithm in query performance by more than 2 orders of magnitude

in terms of running time. Even on the largest dataset with few

hundred million segments from 145,628 different objects, they still

take less than 0.01 seconds per query! Among the three, APPX1

and APPX2 clearly take fewer IOs, since their query cost is actually

independent of both m and navg! APPX2+’s query IO does depend

on log navg, but is independent of m; hence, it is still very small.

APPX1 (and even more so APPX2+) occupy much more space, and

takes much longer to build. Nevertheless, both APPX1 and APPX2

have much smaller index size than EXACT3, by 4 (APPX1) and 6

(APPX2) orders of magnitude respectively. More importantly, their

index size is independent of both m and n! In terms of the con-

struction cost, APPX2-B is the most efficient to build (1-2 orders

of magnitude faster than all other methods except APPX2).

Figure 15 shows that both APPX1 and APPX2+ retain their high

approximation quality when m or navg vary; despite some fluc-

tuation, precision/recall and approximation ratios in both APPX1

and APPX2+ stay very close to 1. APPX2 remains at an accept-

able level of accuracy, especially considering the index size is 1MB

from 50GB of data! Although the precision/recall drops as navg

and m increases, the very accurate approximation ratio indicates

this is because there are many very similar objects.

Query time interval. Based on our cost analysis, clearly, the length

of the query time interval does not affect the query performance of

most of our methods, except for EXACT1 that has a linear depen-

dency on (t2 − t1) (since it has to scan more line segments). In

Figure 16(a) and 16(b) we notice EXACT1 has a linear increase in

both I/Os and running time (note the log-scale of the plots) and

even for small (2%T ) query intervals, it is still much slower than

EXACT3 and approximate methods.

In Figures 16(c) and 16(d) we analyze the quality of all approx-

imation techniques as the query interval increases. APPX1 and

APPX2+ clearly have the best precision/recall and approximation

ratio with a precision/recall above 99% and ratio very close to 1
in all cases. APPX2 shows a slight decline in precision/recall from

roughly 98% to above 90% as the size of (t2 − t1) increases from

2% to 50% of the maximum temporal value T . This decrease in

precision/recall is reasonable since as we increase (t2 − t1) the

number of dyadic intervals which compose the approximate query

interval [B(t1),B(t2)] typically increases. As the number of dyadic

intervals increases there is an increased probability that not every

candidate in K will be in the top-kmax over each of the dyadic

intervals and so APPX2 will be missing some of a candidate’s ag-

gregate scores. This can cause an item to be falsely ejected from

the top k. The effect of missing aggregate scores is clearly seen
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(c) Precision/Recall.
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Figure 16: Vary size of (t2 − t1) as % of T on Temp.
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(b) Query time.
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(c) Precision/Recall.
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(d) Ratio.
Figure 17: Vary k values on Temp.
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(a) Index size.
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(b) Construction time.
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(c) Query IO.
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(d) Query time.
Figure 18: Vary kmax on Temp.
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(b) Build time.
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(d) Query time.

Figure 19: Meme dataset evaluation.

in Figure 16(d), which shows APPX2’s approximation ratio drops

slightly as the time range increases.

k and kmax. We studied the effect of k and kmax; the results are

shown in Figures 17 and 18. Figures 17(a) and 17(b) show that the

query performance of most methods is not affected by the value of

k when it changes from 10 to kmax = 200 (a relatively small to

moderate change w.r.t. the database size) except for APPX2 and

APPX2+. This results since larger k values lead to more candidates

in K, which results in higher query cost. Nevertheless, they still

have better IOs than the best exact method EXACT3, and much

better query cost (still 2 orders of magnitude improvement in the

worst case, which can be attributed to the caching effect by the

OS). Figure 17(c) and 17(d) show some fluctuation, but no trending

changes in accuracy due to variation in k.

We vary kmax from 50 to 500 in Figure 18. kmax obviously

has no effect on exact methods. It linearly affects the construction

cost and the size of index for APPX1 and APPX2, but they are still

much better than exact methods even when kmax = 500. In terms

of query cost, given the same k values, kmax does not clearly affect

any approximate methods when it only changes moderately w.r.t.

the database size.

Updates. As suggested by the cost analysis, the update time for

each index structure is roughly proportional to the build time di-

vided by the number of segments. Relative to these build times

over N , however, EXACT1 is slower because it cannot bulk load,

and EXACT2 and APPX2+ are faster because they only update a

single B+-tree. For space, we omit these results.

Meme dataset. We have also tested all our methods on the full

Meme dataset (using still r = 500 breakpoints for all approximate

methods), and the results are shown in Figure 19. In terms of the

index size, three exact methods (and APPX2+) are comparable, as

seen in Figure 19(a), while other approximate methods take much

less space, by 3-5 orders of magnitude! In terms of the construction

cost, it is interesting to note that EXACT1 is the fastest to build in

this case, due to the bulk-loading algorithm in the B+-tree (since

all segments are sorted); while all other methods have some depen-

dency on m. But approximate methods (excluding APPX2+) gen-

erally are much faster to build than other exact methods as seen in

Figure 19(b). They also outperform all exact methods by 3-5 orders

of magnitude in IOs in Figure 19(c) and 3-4 orders of magnitude in

running time in Figure 19(d). The best exact method for queries is

still EXACT3, which is faster than the other two exact methods by

1-2 orders of magnitude. Finally, all approximate methods main-

tain their high (or acceptable for APPX2) approximation quality on

this very bursty dataset, as seen in Figure 20. Note APPX2 achieves

this 90% precision/recall and close to 1 approximation ratio while
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compressing to about 1MB. Also, APPX1 and APPX2 using B2

show better results than their basic versions APPX1-B and APPX2-

B using B1, given the same number of breakpoints, which agrees

with the trend from the Temp dataset.
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Figure 20: Quality of approximations on Meme.

6. RELATED WORK
To the best of our knowledge, ranking temporal data based on

their aggregation scores in a query interval has not been studied

before. Ranking temporal data based on the instant top-k definition

has been recently studied in [15], however, as we have pointed out

in Section 1, one cannot apply their results in our setting. In another

work on ranking temporal data [14], they retrieve k objects that are

always amongst the top-k list at every time instance over a query

time interval. Clearly, this definition is very restrictive and may not

even have k objects satisfying this condition in a query interval.

This could be relaxed to require an object to be in the top-k list at

most time instances of an interval, instead of at all time instances,

like the intuition used in finding durable top-k documents [20], but

this has yet to be studied in time series/temporal data. Even then,

ranking by aggregation scores still offers quite different semantics,

is new, and, is useful in numerous applications.

Our study is related to work on temporal aggregation [22,21]. As

mentioned in Section 2, [22,21] focus on multi-versioned keys (in-

stead of time series data), and their objective is to compute a single

aggregation of all keys alive in a query time interval and/or a query

key range, which is different from our definition of aggregation,

which is to compute an aggregation over a query time interval, one

per object (then rank objects based on their aggregation values).

Approximate versions of [22,21] were presented in Tao et.al. [18,

19], which also leveraged on a discretization approach (the general

principle behind the construction of our breakpoints). As their goal

is to approximate aggregates over all keys alive in any query rect-

angles over the time and the key dimensions (a single aggregate

per query rectangle), instead of time-aggregates over each element

individually, their approach is not appropriate for our setting.

Our methods require the segmentation of time series data, which

has been extensively studied, and the general principles appear in

Section 1. A more detailed discussion of this topic is beyond the

scope of this work and we refer interested readers to [17,12,16,6,1].

7. CONCLUSION
We have presented a comprehensive study on ranking large tem-

poral data using aggregate scores of temporal objects over a query

interval which has numerous applications. Our best exact method

EXACT3 is much more efficient than baseline methods, and our ap-

proximate methods offer further improvements. Interesting open

problems include ranking with holistic aggregations (e.g. median

and quantiles), and extending to the distributed setting.
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10. APPENDIX
Lemma 6 An algorithm G that satisfies Definition 1 implies an

algorithm R that satisfies Definition 2.

PROOF. G creates eA(k, t1, t2) by finding the top k objects and

approximate scores ranked by eσi(t1, t2). By the definition of G,

eσ
eA(j)(t1, t2) is an (ε, α)-approximation of σ

eA(j)(t1, t2). To see

eσ
eA(j)(t1, t2) is an (ε, α)-approximation of σA(j)(t1, t2), note that

all j objects A(j′) for j′ ∈ [0, j] satisfy that eσA(j′)(t1, t2) ≥
σA(j′)(t1, t2)/α−εM ≥ σA(j)(t1, t2)/α−εM , so eσ

eA(j)(t1, t2)
is at least as large this lower bound. There must be m−j−1 objects

i with eσi(t1, t2) ≤ σA(j)(t1, t2) + εM , implying eσ
eA(j)(t1, t2)

≤ σA(j)(t1, t2) + εM .
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