
Ranking Large Temporal Data

Jeffrey Jestes Jeff M. Phillips Feifei Li Mingwang Tang

1School of Computing
University of Utah

August 29, 2012

Introduction

Temporal data is important in numerous domains:

financial market
scientific applications
biomedical field

Extensive efforts have been made towards efficiently storing,
processing, and querying temporal data.

Ranking temporal data has only recently been studied. [LYL10]

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Introduction

Temporal data is important in numerous domains:

financial market
scientific applications
biomedical field

Extensive efforts have been made towards efficiently storing,
processing, and querying temporal data.

Ranking temporal data has only recently been studied. [LYL10]

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Introduction

Temporal data is important in numerous domains:

financial market
scientific applications
biomedical field

Extensive efforts have been made towards efficiently storing,
processing, and querying temporal data.

Ranking temporal data has only recently been studied. [LYL10]

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Related Work

The instant top-k query returns objects oi s with the k highest scores
at query time t. [LYL10]

Score

Time

o1

o2

o3

Example: Return top-10 weather stations with highest average
temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Related Work

The instant top-k query returns objects oi s with the k highest scores
at query time t. [LYL10]

Score

Time

o1

o2

o3

t1

rank 1 rank 2

Example: Return top-10 weather stations with highest average
temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Related Work

The instant top-k query returns objects oi s with the k highest scores
at query time t. [LYL10]

Score

Time

o1

o2

o3

t1

rank 1 rank 2

What is a good value for t?

Example: Return top-10 weather stations with highest average
temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Related Work

The instant top-k query returns objects oi s with the k highest scores
at query time t. [LYL10]

Score

Time

o1

o2

o3

t1

rank 1 rank 2

What is a good value for t?

Example: Return top-10 weather stations with highest average
temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Related Work

The instant top-k query returns objects oi s with the k highest scores
at query time t. [LYL10]

Score

Time

o1

o2

o3

t1

rank 1 rank 2

What is a good value for t?

Example: Return top-10 weather stations with highest average
temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Related Work

The instant top-k query returns objects oi s with the k highest scores
at query time t. [LYL10]

Score

Time

o1

o2

o3

t2t1

rank 1 rank 2

Use aggregation within a temporal interval instead!!!

Example: Return top-10 weather stations with highest average
temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Related Work

The instant top-k query returns objects oi s with the k highest scores
at query time t. [LYL10]

Score

Time

o1

o2

o3

t2t1

rank 1 rank 2

Use aggregation within a temporal interval instead!!!

Example: Return top-10 weather stations with highest average
temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Problem Formulation

Score

Time

o1

o2

o3

Temporal database consists of m objects o1, o2, . . . , om

oi is represented by piecewise linear function gi with ni segments.

top-k(t1, t2, σ) is an aggregate top-k query for aggregate function σ

gi (t1, t2) represent all possible values of gi in [t1, t2]
σ(gi (t1, t2)) (= σi (t1, t2)) is the aggregate score of oi in [t1, t2]
For σ = sum, σ(gi (t1, t2)) =

∫ t2

t1
gi (t)dt

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Problem Formulation

Score

Time

o1

o2

o3

n1 = 3
n2 = 5
n3 = 6

g3(t) = 90

t

gi : R → R (time → score)

Temporal database consists of m objects o1, o2, . . . , om

oi is represented by piecewise linear function gi with ni segments.

top-k(t1, t2, σ) is an aggregate top-k query for aggregate function σ

gi (t1, t2) represent all possible values of gi in [t1, t2]
σ(gi (t1, t2)) (= σi (t1, t2)) is the aggregate score of oi in [t1, t2]
For σ = sum, σ(gi (t1, t2)) =

∫ t2

t1
gi (t)dt

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Problem Formulation

Score

Time

o1

o2

o3

n1 = 3
n2 = 5
n3 = 6

g3(t) = 90

t

gi : R → R (time → score)

Temporal database consists of m objects o1, o2, . . . , om

oi is represented by piecewise linear function gi with ni segments.

top-k(t1, t2, σ) is an aggregate top-k query for aggregate function σ

gi (t1, t2) represent all possible values of gi in [t1, t2]
σ(gi (t1, t2)) (= σi (t1, t2)) is the aggregate score of oi in [t1, t2]

For σ = sum, σ(gi (t1, t2)) =
∫ t2

t1
gi (t)dt

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Problem Formulation

Score

Time

o1

o2

o3

n1 = 3
n2 = 5
n3 = 6

g3(t) = 90

t

gi : R → R (time → score)

Temporal database consists of m objects o1, o2, . . . , om

oi is represented by piecewise linear function gi with ni segments.

top-k(t1, t2, σ) is an aggregate top-k query for aggregate function σ

gi (t1, t2) represent all possible values of gi in [t1, t2]
σ(gi (t1, t2)) (= σi (t1, t2)) is the aggregate score of oi in [t1, t2]
For σ = sum, σ(gi (t1, t2)) =

∫ t2

t1
gi (t)dt

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Problem Formulation

Score

Time

o1

o2

o3

A(k , t1, t2) : ordered top-k objects for top-k(t1, t2, σ)

Let σ = sum =
∫ t2

t1
g(t)dt

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Problem Formulation

Score

Time

o1

o2

o3

t1 t2

A(2, t1, t2) = {o3, o1}

A(k , t1, t2) : ordered top-k objects for top-k(t1, t2, σ)

Let σ = sum =
∫ t2

t1
g(t)dt

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Problem Formulation

Score

Time

o1

o2

o3

t2t1

A(1, t1, t2) = {o1}

A(k , t1, t2) : ordered top-k objects for top-k(t1, t2, σ)

Let σ = sum =
∫ t2

t1
g(t)dt

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Outline

1 Introduction and Problem Formulation

2 Exact Solutions
Baseline Solution
Improved Solution using Prefix Sums and B-tree Forest
Improved Solution using Prefix Sums and Interval Tree

3 Approximate Solutions
Overview
Breakpoints
Approaches for Approximation Queries
Combining Breakpoints with Queries

4 Experiments

5 Conclusions

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

Compute σi (t1, t2) for all objects by scanning each segment.

Simple improvement: use B-tree to avoid segments outside query
interval.

Query cost: O(logBN +
∑m

i=1 qi
B + (m/B)logBk)

qi = number of segments overlapping [t1, t2]

We denote this query Exact1.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

Compute σi (t1, t2) for all objects by scanning each segment.

Simple improvement: use B-tree to avoid segments outside query
interval.

Query cost: O(logBN +
∑m

i=1 qi
B + (m/B)logBk)

qi = number of segments overlapping [t1, t2]

We denote this query Exact1.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

We can avoid scanning all overlapping segments with [t1, t2] by
using prefix sums:

Index segment and prefix sums for an object in a B-tree.
Compute σi (t1, t2) by retrieving two segments from B-tree.

Query cost is O(
∑m

i=1 logBni + (m/B)logBk)

This solution is denoted Exact2.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

We can avoid scanning all overlapping segments with [t1, t2] by
using prefix sums:

Index segment and prefix sums for an object in a B-tree.
Compute σi (t1, t2) by retrieving two segments from B-tree.

Query cost is O(
∑m

i=1 logBni + (m/B)logBk)

This solution is denoted Exact2.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Score

Timet3,1 t3,2 t3,3t3,0 t3,4

g3,2
g3,1

g3,3
g3,4

I3,2
I3,3

I3,4

I3,1

Consider an object oi with intervals Ii,1, . . . , Ii,ni
gi,j = jth segment of oi is ((ti,j−1, vi,j−1), (ti,j , vi,j))
Ii,` = [ti,0, ti,`] for ` = 1, . . . , ni

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]
The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Time

I3,1
I3,2

I3,3
I3,4

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]

The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Time

I3,1
I3,2

I3,3
I3,4

I−3,1 I−3,2 I−3,3 I−3,4

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]

The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Time

I3,1
I3,2

I3,3
I3,4

I−3,1 I−3,2 I−3,3 I−3,4

o1 –
o2 –
o3 g3,1 : σ3(I3,1)
...

...
om –

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]

The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Time

I3,1
I3,2

I3,3
I3,4

I−3,1 I−3,2 I−3,3 I−3,4

t1 t2

Issue two stabbing queries: t1, t2

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]

The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Time

I3,1
I3,2

I3,3
I3,4

t1 t2

I−3,1 I−3,2 I−3,3 I−3,4

Retrieve associated 2m data entries

o1 –
o2 –
o3 g3,2 : σ3(I3,2)
...

...
om –

o1 –
o2 –
o3 g3,4 : σ3(I3,4)
...

...
om –

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]

The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Score

Time

g3,2
g3,1

g3,3
g3,4

t1 t2

Time

I3,1
I3,2

I3,3
I3,4

t1 t2

I−3,1 I−3,2 I−3,3 I−3,4

o3

We have g3,2; g3,4; I3,2; I3,4

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]

The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Score

Time

g3,2
g3,1

g3,3
g3,4

t1 t2

Time

I3,1
I3,2

I3,3
I3,4

t1 t2

I−3,1 I−3,2 I−3,3 I−3,4

o3

We have g3,2; g3,4; I3,2; I3,4

Compute as I3,4 − I3,2

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]

The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Score

Time

g3,2
g3,1

g3,3
g3,4

t1 t2

Time

I3,1
I3,2

I3,3
I3,4

t1 t2

I−3,1 I−3,2 I−3,3 I−3,4

o3

We have g3,2; g3,4; I3,2; I3,4

Subtract using g3,4

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]

The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Score

Time

g3,2
g3,1

g3,3
g3,4

t1 t2

Time

I3,1
I3,2

I3,3
I3,4

t1 t2

I−3,1 I−3,2 I−3,3 I−3,4

o3

We have g3,2; g3,4; I3,2; I3,4

Subtract using g3,4

Add using g3,2

We define I−i,1, . . . , I
−
i,ni

s.t. I−i,` = [Ii,`−1, Ii,`]

The data entries for i = 1, . . . ,m and ` = 1, . . . , ni are

key: (I−i,`) and value: (gi,`, σi (Ii,`))

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and Interval Tree

Time

I3,1
I3,2

I3,3
I3,4

t1 t2

I−3,1 I−3,2 I−3,3 I−3,4

Retrieve associated 2m data entries

o1 –
o2 –
o3 g3,2 : σ3(I3,2)
...

...
om –

o1 –
o2 –
o3 g3,4 : σ3(I3,4)
...

...
om –

Total stabbing query cost is O(logBN + m/B).

Using priority queue to get top-k is O(logBN + (m/B)logBk).

We denote this query Exact3.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Outline

1 Introduction and Problem Formulation

2 Exact Solutions
Baseline Solution
Improved Solution using Prefix Sums and B-tree Forest
Improved Solution using Prefix Sums and Interval Tree

3 Approximate Solutions
Overview
Breakpoints
Approaches for Approximation Queries

Nested B-tree Approximate Query
Dyadic Interval Approximate Query

Combining Breakpoints with Queries

4 Experiments

5 Conclusions

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Approximate Solution Overview

N segments
m objects

BreakPoints1

BreakPoints2

Query1

Query2

Our most query-efficient technique costs O(logBN + m/B).

Must compute all m aggregates σi (t1, t2).
Still too expensive for large datasets with large m.

Our approximate methods construct breakpoints
B = {b1, . . . , br}, bi ∈ [0,T].

Queries are snapped to align to breakpoints.

A query snapped to (bi , bj) uses σi (bi , bj) as an object’s score.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Approximate Solution Overview

N segments
m objects

BreakPoints1

BreakPoints2

Query1

Query2

Our most query-efficient technique costs O(logBN + m/B).

Must compute all m aggregates σi (t1, t2).
Still too expensive for large datasets with large m.

Our approximate methods construct breakpoints
B = {b1, . . . , br}, bi ∈ [0,T].

Queries are snapped to align to breakpoints.

A query snapped to (bi , bj) uses σi (bi , bj) as an object’s score.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Approximate Solution Overview

N segments
m objects

BreakPoints1

BreakPoints2

Query1

Query2

Our most query-efficient technique costs O(logBN + m/B).

Must compute all m aggregates σi (t1, t2).
Still too expensive for large datasets with large m.

Our approximate methods construct breakpoints
B = {b1, . . . , br}, bi ∈ [0,T].

Queries are snapped to align to breakpoints.

A query snapped to (bi , bj) uses σi (bi , bj) as an object’s score.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Approximate Solution Notations

G is an (ε, α)-approximation algorithm if:

G returns σ̃i (t1, t2) s.t.
σi (t1, t2)/α− εM ≤ σ̃i (t1, t2) ≤ σi (t1, t2) + εM
α ≥ 1, ε > 0
M =

∑m
i=1 σi (0,T)

Must hold for all objects and temporal intevals.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Approximate Solution Notations

t1 t2

Score

Time

o2 Ã(j)

A(j) (Ã(j)) = the jth ranked object in A(k , t1, t2) (Ã(k, t1, t2))

R is an (ε, α)-approximation algorithm of top-k(t1, t2, σ) if:

R returns Ã(k, t1, t2) and σ̃Ã(j)(t1, t2) for j ∈ [1, k], s.t.

1 σ̃Ã(j)
(t1, t2) is an (ε, α)-approximation of σÃ(j)

(t1, t2)

2 σ̃Ã(j)
(t1, t2) is an (ε, α)-approximation of σA(j)(t1, t2)

Must hold for all k and all temporal intervals.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Approximate Solution Notations

σ2(t1, t2)/α− εM ≤ σ̃2(t1, t2) ≤ σ2(t1, t2) + εM

t1 t2

Score

Time

o2 Ã(j)

A(j) (Ã(j)) = the jth ranked object in A(k , t1, t2) (Ã(k, t1, t2))

R is an (ε, α)-approximation algorithm of top-k(t1, t2, σ) if:

R returns Ã(k, t1, t2) and σ̃Ã(j)(t1, t2) for j ∈ [1, k], s.t.

1 σ̃Ã(j)
(t1, t2) is an (ε, α)-approximation of σÃ(j)

(t1, t2)

2 σ̃Ã(j)
(t1, t2) is an (ε, α)-approximation of σA(j)(t1, t2)

Must hold for all k and all temporal intervals.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Approximate Solution Notations

t1 t2

Score

Time

o3

o2 Ã(j)

A(j)

σ3(t1, t2)/α− εM ≤ σ̃2(t1, t2) ≤ σ3(t1, t2) + εM

A(j) (Ã(j)) = the jth ranked object in A(k , t1, t2) (Ã(k, t1, t2))

R is an (ε, α)-approximation algorithm of top-k(t1, t2, σ) if:

R returns Ã(k, t1, t2) and σ̃Ã(j)(t1, t2) for j ∈ [1, k], s.t.

1 σ̃Ã(j)
(t1, t2) is an (ε, α)-approximation of σÃ(j)

(t1, t2)

2 σ̃Ã(j)
(t1, t2) is an (ε, α)-approximation of σA(j)(t1, t2)

Must hold for all k and all temporal intervals.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

Score

Time

o1

o2

o3

breakpoint

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

Score

Time

o1

o2

o3

breakpoint

σ1(bj , bj+1) + σ2(bj , bj+1) + σ3(bj , bj+1) = εM

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

Score

Time

o1

o2

o3

breakpoint

σ1(bj , bj+1) + σ2(bj , bj+1) + σ3(bj , bj+1) = εM

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

Score

Time

o1

o2

o3

breakpoint

σ1(bj , bj+1) + σ2(bj , bj+1) + σ3(bj , bj+1) = εM

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

Score

Time

o1

o2

o3

breakpoint

σ1(bj , bj+1) + σ2(bj , bj+1) + σ3(bj , bj+1) = εM

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

Score

Time

o1

o2

o3

breakpoint

max{σ1(bj , bj+1), σ2(bj , bj+1), σ3(bj , bj+1} = εM

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

Score

Time

o1

o2

o3

breakpoint

max{σ1(bj , bj+1), σ2(bj , bj+1), σ3(bj , bj+1} = εM

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Properties of Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

We show how to efficiently construct both types of breakpoints

A cost of O((N/B)logBN) IOs for both types.

The theoretical number of breakpoints is O(1/ε) for both types.

BreakPoints2 has much fewer breakpoints than BreakPoints1
in practice.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Properties of Breakpoints

Starting from b0 and moving forward we have:

bj+1 so

{∑m
i=1 σi (bj , bj+1) = εM, in BreakPoints1(B1)

maxmi=1 σi (bj , bj+1) = εM, in BreakPoints2(B2)

We show how to efficiently construct both types of breakpoints

A cost of O((N/B)logBN) IOs for both types.

The theoretical number of breakpoints is O(1/ε) for both types.

BreakPoints2 has much fewer breakpoints than BreakPoints1
in practice.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Answering Queries with Breakpoints

Score

Time

o1

o2

o3

breakpoint

We show how to answer queries using B1 or B2 approximately.

∀(t1, t2), let (B(t1),B(t2)) be the approximate interval
B(t1) = minbi∈B s.t. B(t1) ≥ t1

B(t2) = minbi∈B s.t. B(t2) ≥ t2

Lemma

∀(t1, t2) and its approximate interval (B(t1),B(t2)): ∀oi ,
|σi (t1, t2)− σi (B(t1),B(t2))| ≤ εM.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Answering Queries with Breakpoints

Score

Time

o1

o2

o3

breakpoint

t1 t2

We show how to answer queries using B1 or B2 approximately.

∀(t1, t2), let (B(t1),B(t2)) be the approximate interval
B(t1) = minbi∈B s.t. B(t1) ≥ t1

B(t2) = minbi∈B s.t. B(t2) ≥ t2

Lemma

∀(t1, t2) and its approximate interval (B(t1),B(t2)): ∀oi ,
|σi (t1, t2)− σi (B(t1),B(t2))| ≤ εM.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Answering Queries with Breakpoints

Score

Time

o1

o2

o3

breakpoint

t1 t2

B(t1) B(t2)

We show how to answer queries using B1 or B2 approximately.

∀(t1, t2), let (B(t1),B(t2)) be the approximate interval
B(t1) = minbi∈B s.t. B(t1) ≥ t1

B(t2) = minbi∈B s.t. B(t2) ≥ t2

Lemma

∀(t1, t2) and its approximate interval (B(t1),B(t2)): ∀oi ,
|σi (t1, t2)− σi (B(t1),B(t2))| ≤ εM.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Answering Queries with Breakpoints

Score

Time

o1

o2

o3

breakpoint

t1 t2

B(t1) B(t2)

We show how to answer queries using B1 or B2 approximately.

∀(t1, t2), let (B(t1),B(t2)) be the approximate interval
B(t1) = minbi∈B s.t. B(t1) ≥ t1

B(t2) = minbi∈B s.t. B(t2) ≥ t2

Lemma

∀(t1, t2) and its approximate interval (B(t1),B(t2)): ∀oi ,
|σi (t1, t2)− σi (B(t1),B(t2))| ≤ εM.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Answering Queries with Breakpoints

Score

Time

o1

o2

o3

breakpoint

t1 t2

B(t1) B(t2)

We show how to answer queries using B1 or B2 approximately.

∀(t1, t2), let (B(t1),B(t2)) be the approximate interval
B(t1) = minbi∈B s.t. B(t1) ≥ t1

B(t2) = minbi∈B s.t. B(t2) ≥ t2

Lemma

∀(t1, t2) and its approximate interval (B(t1),B(t2)): ∀oi ,
|σi (t1, t2)− σi (B(t1),B(t2))| ≤ εM.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Outline

1 Introduction and Problem Formulation

2 Exact Solutions
Baseline Solution
Improved Solution using Prefix Sums and B-tree Forest
Improved Solution using Prefix Sums and Interval Tree

3 Approximate Solutions
Overview
Breakpoints
Approaches for Approximation Queries

Nested B-tree Approximate Query
Dyadic Interval Approximate Query

Combining Breakpoints with Queries

4 Experiments

5 Conclusions

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint

Left end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint

Time

Left end-point index.

Right end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint

Time

Left end-point index.

Right end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint

Time

Left end-point index.

Right end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint

Time

Left end-point index.

Right end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint
t1

Left end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint

B(t1)

t1

Left end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint

Time

B(t1)

t1

t2

Left end-point index.

Right end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint

Time
B(t2)

B(t1)

t1

t2

Left end-point index.

Right end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

Time

breakpoint

Time
B(t2)

B(t1)

A(kmax,B(t1),B(t2))

t1

t2

Left end-point index.

Right end-point index.

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

oi σi(B(t1),B(t2))
o`1 σ`1(B(t1),B(t2))
...

...

o`kmax
σ`kmax

(B(t1),B(t2))

Objects ordered in descending order of σi(.)

breakpoint

B(t2)

B(t1)

t1

t2

A(kmax,B(t1),B(t2))

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k, t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

oi σi(B(t1),B(t2))
o`1 σ`1(B(t1),B(t2))
...

...

o`kmax
σ`kmax

(B(t1),B(t2))

Objects ordered in descending order of σi(.)

breakpoint

B(t2)

B(t1)

t1

t2

A(kmax,B(t1),B(t2))

Ã(k, t1, t2)

Take top-k

Query1 indexes all
(
n
2

)
intervals of breakpoints B.

For each interval [bj , b
′
j], A(kmax , bj , b

′
j) is computed.

At query time we probe first-level B-tree with t1 to get B(t1).

We probe B(t1)’s associated nested B-tree to get B(t2).

The approximate answer Ã(k , t1, t2) is returned.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

oi σi(B(t1),B(t2))
o`1 σ`1(B(t1),B(t2))
...

...

o`kmax
σ`kmax

(B(t1),B(t2))

Objects ordered in descending order of σi(.)

breakpoint

B(t2)

B(t1)

t1

t2

A(kmax,B(t1),B(t2))

We prove Query1 has the following properties:
Index size O((1/ε)2kmax/B).
Query cost O(k/B + logB(1/ε)).
(ε, 1)-approximation.

Query2 reduces space to O((1/ε)kmax/B).
(ε, 2log(1/ε))-approximation.
Query cost O(k log(1/ε) logB k).

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Nested B-trees

oi σi(B(t1),B(t2))
o`1 σ`1(B(t1),B(t2))
...

...

o`kmax
σ`kmax

(B(t1),B(t2))

Objects ordered in descending order of σi(.)

breakpoint

B(t2)

B(t1)

t1

t2

A(kmax,B(t1),B(t2))

We prove Query1 has the following properties:
Index size O((1/ε)2kmax/B).
Query cost O(k/B + logB(1/ε)).
(ε, 1)-approximation.

Query2 reduces space to O((1/ε)kmax/B).
(ε, 2log(1/ε))-approximation.
Query cost O(k log(1/ε) logB k).

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

t1 t2

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

t1 t2

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

t1 t2

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

t1 t2

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

t1 t2

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

t1 t2

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

t1 t2

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

Time

breakpoint

t1 t2

A(kmax, b2, b3) : σA(j)(b2, b3)∀j ∈ [1, ..., kmax]

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

oi running sum σ′
i

o6 σ′
6

...
...

o19 σ′
19

candidate running sums

t1 t2

at most 2k log(1/ε) candidates!!!

A(kmax, b2, b3) : σA(j)(b2, b3),∀j ∈ [1, ..., kmax]

Query2 indexes all dyadic intervals over the breakpoints B
The intervals represent the span of nodes in a balanced binary tree.

Consider a query over [t1, t2].

At each dyadic interval [bi , bj] we store A(kmax , bi , bj).

There are at most 2log(1/ε) intervals and 2klog(1/ε) candidates.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Querying Breakpoints with Dyadic Intervals

oi running sum σ′
i

o6 σ′
6

...
...

o19 σ′
19

candidate running sums

t1 t2

at most 2k log(1/ε) candidates!!!

A(kmax, b2, b3) : σA(j)(b2, b3),∀j ∈ [1, ..., kmax]

We prove Query2 has the following properties:

Index size O((1/ε)kmax/B).
Query cost O(k log(1/ε) logB k).
(ε, 2 log(1/ε))-approximation.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Combining Breakpoints with Queries

N segments
m objects

BreakPoints1

BreakPoints2

Query1

Query2

We consider the following algorithms:

Appx1-B: (Query1, BreakPoints1)

Appx2-B: (Query2, BreakPoints1)

Appx1: (Query1, BreakPoints2)

Appx2: (Query2, BreakPoints2)

Appx2+: (Query2, BreakPoints2) and Discovers candidates’
exact aggregate score using B-tree from Exact2 (B-tree forest).

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Combining Breakpoints with Queries

N segments
m objects

BreakPoints1

BreakPoints2

Query1

Query2

We consider the following algorithms:

Appx1-B: (Query1, BreakPoints1)

Appx2-B: (Query2, BreakPoints1)

Appx1: (Query1, BreakPoints2)

Appx2: (Query2, BreakPoints2)

Appx2+: (Query2, BreakPoints2) and Discovers candidates’
exact aggregate score using B-tree from Exact2 (B-tree forest).

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiments: Setup

Our algorithms are designed to efficiently handle I/Os.

All algorithms are implemented in C++ using TPIE.

All experiments performed on Linux machine with:

Intel Core i7-2600 3.4GHz CPU
8GB of memory
1TB hard drive

We use two real large datasets:
Temp is a temperature dataset from the MesoWest Project.

contains measurements from Jan 1997 to Oct 2011.
there are m = 145, 628 objects with average navg = 17, 833.

Meme is obtained from the Memetracker Project.

tracks the frequency of popular quotes over time.
there are m = 1.5 million objects with navg = 67.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiments: Setup

Our algorithms are designed to efficiently handle I/Os.

All algorithms are implemented in C++ using TPIE.

All experiments performed on Linux machine with:

Intel Core i7-2600 3.4GHz CPU
8GB of memory
1TB hard drive

We use two real large datasets:
Temp is a temperature dataset from the MesoWest Project.

contains measurements from Jan 1997 to Oct 2011.
there are m = 145, 628 objects with average navg = 17, 833.

Meme is obtained from the Memetracker Project.

tracks the frequency of popular quotes over time.
there are m = 1.5 million objects with navg = 67.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiments: Setup

Our algorithms are designed to efficiently handle I/Os.

All algorithms are implemented in C++ using TPIE.

All experiments performed on Linux machine with:

Intel Core i7-2600 3.4GHz CPU
8GB of memory
1TB hard drive

We use two real large datasets:
Temp is a temperature dataset from the MesoWest Project.

contains measurements from Jan 1997 to Oct 2011.
there are m = 145, 628 objects with average navg = 17, 833.

Meme is obtained from the Memetracker Project.

tracks the frequency of popular quotes over time.
there are m = 1.5 million objects with navg = 67.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiments: Default Values

Parameter Symbol Default value
dataset Temp

number of objects m 50,000
average object line segments navg 1,000

max top-k value kmax 200
top-k value k 50

number of breakpoints r = (1/ε) 500
query interval size (t2 − t1) 20% T

TPIE disk block size 4KB

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiment: Index size.

10 30 50 100 145
104

106

108

1010

1012

Objects m (×103)

In
d
ex

si
ze

(b
y
te
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiment: Build time.

10 30 50 100 145
100

101

102

103

104

Objects m (×103)

B
u
il
d
ti
m
e
(s
ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiment: Query I/Os.

10 30 50 100 145
100

102

104

106

108

Objects m (×103)

I/
O
s

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiment: Query time.

10 30 50 100 145

10−2

100

102

Objects m (×103)

T
im

e
(s
ec
o
n
d
s)

Exact1 Exact2 Exact3

 Appx1 Appx2 Appx2+

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiment: Precision/Recall.

0 10 20 30 40 50

0.90

0.92

0.94

0.96

0.98

1.00

(t2 − t1) as % of T

P
re
ci
si
o
n
/
R
ec
a
ll

Appx1 Appx2 Appx2+

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Experiment: Ratio.

0 10 20 30 40 50
0.94

0.97

1.00

1.03

1.06

1.09

(t2 − t1) as % of T

A
p
p
ro
x
im

at
io
n
ra
ti
o

Appx1 Appx2 Appx2+

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Conclusions

We studied ranking large temporal data using aggregate scores over
a query interval.

Our most efficient exact technique Exact3 is more efficient than
baseline solutions.

Approximations offer even more improvements.

Future work includes ranking with holistic aggregations and
extending to distributed settings.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Conclusions

We studied ranking large temporal data using aggregate scores over
a query interval.

Our most efficient exact technique Exact3 is more efficient than
baseline solutions.

Approximations offer even more improvements.

Future work includes ranking with holistic aggregations and
extending to distributed settings.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Conclusions

We studied ranking large temporal data using aggregate scores over
a query interval.

Our most efficient exact technique Exact3 is more efficient than
baseline solutions.

Approximations offer even more improvements.

Future work includes ranking with holistic aggregations and
extending to distributed settings.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

The End

Thank You

Q and A

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

t1 t2

Score

Time

o3

Computing σ(g3(t1, t2))

1 Initialize sum s3 = 0 for object o3

2 For each segment ` of g3 defined by (t3,j , v3,j), (t3,j+1, v3,j+1)

Define I = [t1, t2] ∩ [t3,j , t3,j+1]
Update s3 = s3 + σ3(I)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

t1 t2

Score

Time

o3

(t3,1, v3,1)

(t3,2, v3,2)

t3,1 t3,2

Computing σ(g3(t1, t2))

1 Initialize sum s3 = 0 for object o3

2 For each segment ` of g3 defined by (t3,j , v3,j), (t3,j+1, v3,j+1)

Define I = [t1, t2] ∩ [t3,j , t3,j+1]
Update s3 = s3 + σ3(I)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

t1 t2

Score

Time

o3

(t3,1, v3,1)

(t3,2, v3,2)

t3,1 t3,2I

Computing σ(g3(t1, t2))

1 Initialize sum s3 = 0 for object o3

2 For each segment ` of g3 defined by (t3,j , v3,j), (t3,j+1, v3,j+1)

Define I = [t1, t2] ∩ [t3,j , t3,j+1]

Update s3 = s3 + σ3(I)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

t1 t2

Score

Time

o3

(t3,1, v3,1)

(t3,2, v3,2)

t3,1 t3,2I

σ3(I)

Computing σ(g3(t1, t2))

1 Initialize sum s3 = 0 for object o3

2 For each segment ` of g3 defined by (t3,j , v3,j), (t3,j+1, v3,j+1)

Define I = [t1, t2] ∩ [t3,j , t3,j+1]
Update s3 = s3 + σ3(I)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

t1 t2

Score

Time

o3

Computing σ(g3(t1, t2))

1 Initialize sum s3 = 0 for object o3

2 For each segment ` of g3 defined by (t3,j , v3,j), (t3,j+1, v3,j+1)

Define I = [t1, t2] ∩ [t3,j , t3,j+1]
Update s3 = s3 + σ3(I)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

t1 t2

Score

Time

o3

Computing σ(g3(t1, t2))

1 Initialize sum s3 = 0 for object o3

2 For each segment ` of g3 defined by (t3,j , v3,j), (t3,j+1, v3,j+1)

Define I = [t1, t2] ∩ [t3,j , t3,j+1]
Update s3 = s3 + σ3(I)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

t1 t2

Score

Time

o3

Computing A(k, t1, t2)

Compute si for all objects i ∈ [1,m].

Insert si ’s into priority queue of size k to get A(k, t1, t2).

Naive cost: O(N + mlogk)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Baseline Solution

t1 t2

Score

Time

o3

Computing A(k, t1, t2)

Compute si for all objects i ∈ [1,m].

Insert si ’s into priority queue of size k to get A(k, t1, t2).

Naive cost: O(N + mlogk)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Baseline Solution using B-tree

t1 t2

Score

Time

o3

For each line segment ` = {(ti,j , vi,j), (ti,j+1, vi,j+1)}
Index left end-point ti,j in B-tree.
The value associated with ti,j is `.

Query cost: O(logBN +
∑m

i=1 qi
B + (m/B)logBk)

qi = number of ` overlapping [t1, t2]

We denote this query Exact1.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Baseline Solution using B-tree

t1 t2

Score

Time

o3

For each line segment ` = {(ti,j , vi,j), (ti,j+1, vi,j+1)}
Index left end-point ti,j in B-tree.
The value associated with ti,j is `.

Query cost: O(logBN +
∑m

i=1 qi
B + (m/B)logBk)

qi = number of ` overlapping [t1, t2]

We denote this query Exact1.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

g3,1

g3,3
g3,4

g3,5

g3,6

t3,3 t3,4

t3,5
t3,1 t3,2

g3,2

gi = ∪gi,j
gi,j is defined by ((ti,j−1, vi,j−1), (ti,j , vi,j)) for j ∈ {1, . . . , ni}

Let Ii,` = [ti,0, ti,`] for ` = 1, . . . , ni and compute σi (Ii,`)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

I3,1

g3,1

g3,3
g3,4

g3,5

g3,6
σ3(I3,1)

t3,3 t3,4

t3,5
t3,1 t3,2

g3,2

gi = ∪gi,j
gi,j is defined by ((ti,j−1, vi,j−1), (ti,j , vi,j)) for j ∈ {1, . . . , ni}
Let Ii,` = [ti,0, ti,`] for ` = 1, . . . , ni and compute σi (Ii,`)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

I3,1
I3,2

g3,1

g3,3
g3,4

g3,5

g3,6
σ3(I3,2)σ3(I3,2)

t3,3 t3,4

t3,5
t3,1 t3,2

g3,2

gi = ∪gi,j
gi,j is defined by ((ti,j−1, vi,j−1), (ti,j , vi,j)) for j ∈ {1, . . . , ni}
Let Ii,` = [ti,0, ti,`] for ` = 1, . . . , ni and compute σi (Ii,`)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

I3,1
I3,2

I3,3
I3,4
I3,5

I3,6

g3,1

g3,3
g3,4

g3,5

g3,6

t3,3 t3,4

t3,5
t3,1 t3,2

g3,2

gi = ∪gi,j
gi,j is defined by ((ti,j−1, vi,j−1), (ti,j , vi,j)) for j ∈ {1, . . . , ni}
Let Ii,` = [ti,0, ti,`] for ` = 1, . . . , ni and compute σi (Ii,`)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

g3,1

g3,3
g3,4

g3,5

g3,6

t2t3,3 t3,4

t3,5

t1t3,1 t3,2

g3,2

Let ti,L = successor(ti,1) and ti,R = successor(ti,2)

σi (t1, t2) = σi (Ii,R)− σi (Ii,L)− σi (t2, ti,R) + σi (t1, ti,L)

Use a B-tree forest to index (t3,`, (gi,`, σi (Ii,`))

Each oi indexed in a separate B-tree
Query cost is O(

∑m
i=1 logBni + (m/B)logBk)

We denote this query Exact2.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

g3,1

g3,3
g3,4

g3,5

g3,6

I3,4

I3,2

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t1t3,1 t3,2

g3,2

σ3(t1, t3,2)

Let ti,L = successor(ti,1) and ti,R = successor(ti,2)

σi (t1, t2) = σi (Ii,R)− σi (Ii,L)− σi (t2, ti,R) + σi (t1, ti,L)

Use a B-tree forest to index (t3,`, (gi,`, σi (Ii,`))

Each oi indexed in a separate B-tree
Query cost is O(

∑m
i=1 logBni + (m/B)logBk)

We denote this query Exact2.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

g3,1

g3,3
g3,4

g3,5

g3,6

I3,4

I3,2

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t1t3,1 t3,2

g3,2

σ3(t1, t3,2)

Let ti,L = successor(ti,1) and ti,R = successor(ti,2)

σi (t1, t2) = σi (Ii,R)− σi (Ii,L)− σi (t2, ti,R) + σi (t1, ti,L)

Use a B-tree forest to index (t3,`, (gi,`, σi (Ii,`))

Each oi indexed in a separate B-tree
Query cost is O(

∑m
i=1 logBni + (m/B)logBk)

We denote this query Exact2.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

g3,1

g3,3
g3,4

g3,5

g3,6

I3,4

I3,2

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t1t3,1 t3,2

g3,2

σ3(t1, t3,2)

Let ti,L = successor(ti,1) and ti,R = successor(ti,2)

σi (t1, t2) = σi (Ii,R)− σi (Ii,L)− σi (t2, ti,R) + σi (t1, ti,L)

Use a B-tree forest to index (t3,`, (gi,`, σi (Ii,`))

Each oi indexed in a separate B-tree
Query cost is O(

∑m
i=1 logBni + (m/B)logBk)

We denote this query Exact2.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

g3,1

g3,3
g3,4

g3,5

g3,6

I3,4

I3,2

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t1t3,1 t3,2

g3,2

σ3(t1, t3,2)

Let ti,L = successor(ti,1) and ti,R = successor(ti,2)

σi (t1, t2) = σi (Ii,R)− σi (Ii,L)− σi (t2, ti,R) + σi (t1, ti,L)

Use a B-tree forest to index (t3,`, (gi,`, σi (Ii,`))

Each oi indexed in a separate B-tree
Query cost is O(

∑m
i=1 logBni + (m/B)logBk)

We denote this query Exact2.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

g3,1

g3,3
g3,4

g3,5

g3,6

I3,4

I3,2

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t1t3,1 t3,2

g3,2

σ3(t1, t3,2)

Let ti,L = successor(ti,1) and ti,R = successor(ti,2)

σi (t1, t2) = σi (Ii,R)− σi (Ii,L)− σi (t2, ti,R) + σi (t1, ti,L)

Use a B-tree forest to index (t3,`, (gi,`, σi (Ii,`))

Each oi indexed in a separate B-tree
Query cost is O(

∑m
i=1 logBni + (m/B)logBk)

We denote this query Exact2.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

g3,1

g3,3
g3,4

g3,5

g3,6

I3,4

I3,2

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t1t3,1 t3,2

g3,2

σ3(t1, t3,2)

Our B-tree forest solution requires m B-trees.

Query time improves from baseline.
Opening/Closing m B-trees expensive for large m.

We show how to solve a query using a single interval tree.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

Improved Solution using Prefix Sums and B-tree Forest

Score

Time

o3

t3,0

t3,6

g3,1

g3,3
g3,4

g3,5

g3,6

I3,4

I3,2

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t2t3,3 t3,4

t3,5

σ3(t2, t3,4)

t1t3,1 t3,2

g3,2

σ3(t1, t3,2)

Our B-tree forest solution requires m B-trees.

Query time improves from baseline.
Opening/Closing m B-trees expensive for large m.

We show how to solve a query using a single interval tree.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data

	Introduction and Problem Formulation
	Exact Solutions
	Baseline Solution
	Improved Solution using Prefix Sums and B-tree Forest
	Improved Solution using Prefix Sums and Interval Tree

	Approximate Solutions
	Overview
	Breakpoints
	Approaches for Approximation Queries
	Combining Breakpoints with Queries

	Experiments
	Conclusions

