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Introduction

@ Temporal data is important in numerous domains:
o financial market
e scientific applications
o biomedical field
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Introduction

@ Temporal data is important in numerous domains:
o financial market
e scientific applications
o biomedical field

o Extensive efforts have been made towards efficiently storing,
processing, and querying temporal data.

@ Ranking temporal data has only recently been studied. [LYL10]

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.
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Related Work

@ The instant top-k query returns objects o;s with the k highest scores
at query time t. [LYL10]

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.
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Related Work

@ The instant top-k query returns objects o;s with the k highest scores
at query time t. [LYL10]

B rank 1 B rank 2

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.
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B rank 1 B rank 2

‘What is a good value for ¢?
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Related Work

@ The instant top-k query returns objects o;s with the k highest scores
at query time t. [LYL10]

B rank 1 B rank 2
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Use aggregation within a temporal interval instead!!!
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Related Work

@ The instant top-k query returns objects o;s with the k highest scores
at query time t. [LYL10]

B rank 1 B rank 2

Score *

|

|

|

‘ >
t1 ty Time
Use aggregation within a temporal interval instead!!!

@ Example: Return top-10 weather stations with highest average
temperature from 1 Aug to 27 Aug.

[LYL10] Li et al., Top-k queries on temporal data. In VLDBJ, 2010.
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Problem Formulation

Score

>
Time

@ Temporal database consists of m objects 01, 00,...,0m
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Problem Formulation

gi : R = R ( time — score )

Score
. g3(t) = 90

"""""""""" - 01
) n =3
Ng = 5
ng = 6
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Time

@ Temporal database consists of m objects 01, 00,...,0m

@ o; is represented by piecewise linear function g; with n; segments.
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Problem Formulation

gi : R = R ( time — score )
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@ Temporal database consists of m objects 01, 00,...,0m

@ o; is represented by piecewise linear function g; with n; segments.

° top—k(tl, to, 0’) is an aggregate top-k query for aggregate function o

o gi(t1, t) represent all possible values of g in [t1, t2]
o o(gi(t, t2)) (= oi(t1, t2)) is the aggregate score of o; in [t1, t2]
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Problem Formulation

gi : R = R ( time — score )

Score
. g3(t) = 90
"""""""""" - 01
0o ny =3
Ng = 5
ng = 6

Ti;e

@ Temporal database consists of m objects 01, 00,...,0m

@ o; is represented by piecewise linear function g; with n; segments.

° top—k(tl, to, 0’) is an aggregate top-k query for aggregate function o

o gi(t1, t) represent all possible values of g in [t1, t2]

o o(gi(t, t2)) (= oi(t1, t2)) is the aggregate score of o; in [t1, t2]
o For o = sum, o(gi(t1, t2)) = f:f gi(t)dt
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Problem Formulation

Score

Time
o A(k,t1,t) : ordered top-k objects for top-k(t1, ta, o)
o Let 0 =sum = :12 g(t)dt
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Problem Formulation

A(2,t1,t2) = {03,01}

Score

>
Time

o A(k,t1,t) : ordered top-k objects for top-k(t1, ta, o)
o Let 0 = sum = fttf g(t)dt
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Problem Formulation

A1, t1,t2) = {o1}

Score

>
Time

o A(k,t1,t) : ordered top-k objects for top-k(t1, ta, o)
o Let 0 = sum = fttf g(t)dt
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Outline

© Exact Solutions
@ Baseline Solution
@ Improved Solution using Prefix Sums and B-tree Forest
@ Improved Solution using Prefix Sums and Interval Tree
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Baseline Solution

e Compute o;(t1, tp) for all objects by scanning each segment.
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Baseline Solution

e Compute o;(t1, tp) for all objects by scanning each segment.

@ Simple improvement: use B-tree to avoid segments outside query
interval.
@ Query cost: O(loggN + % + (m/B)loggk)
e g; = number of segments overlapping [t1, t2]

@ We denote this query EXacTl.
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Improved Solution using Prefix Sums and B-tree Forest

@ We can avoid scanning all overlapping segments with [t1, t2] by
using prefix sums:
o Index segment and prefix sums for an object in a B-tree.
o Compute oi(t1, t2) by retrieving two segments from B-tree.
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Improved Solution using Prefix Sums and B-tree Forest

@ We can avoid scanning all overlapping segments with [t1, t2] by
using prefix sums:

o Index segment and prefix sums for an object in a B-tree.
o Compute oi(t1, t2) by retrieving two segments from B-tree.

o Query cost is O(>_1", loggn; + (m/B)loggk)
@ This solution is denoted EXACT2.

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Improved Solution using Prefix Sums and Interval Tree
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o Consider an object o; with intervals [;1,..., /i p,
o gij = jth segment of o; is ((tij—1, vi,j-1), (ti;, vij))
o /,',g = [t,"o, t,',[] for ¢ = 1,...,n;
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Improved Solution using Prefix Sums and Interval Tree
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o We define /;1,.... [ st I, = ie—1, lie]
@ The data entriesfor i =1,... . mand { =1,..., n; are
o key: (I,.Te) and value: (gi¢,0i(li¢))
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Improved Solution using Prefix Sums and Interval Tree
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Improved Solution using Prefix Sums and Interval Tree
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Improved Solution using Prefix Sums and Interval Tree
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Issue two stabbing queries: tq, to

o We define /;1,.... [ st I, = ie—1, lie]
@ The data entriesfor i =1,... . mand { =1,..., n; are
o key: (I,.Te) and value: (gi¢,0i(li¢))
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Improved Solution using Prefix Sums and Interval Tree
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Retrieve associated 2m data entries

o We define /;1,.... [ st I, = ie—1, lie]
@ The data entriesfor i =1,... . mand { =1,..., n; are
o key: (I,.Te) and value: (gi¢,0i(li¢))
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Improved Solution using Prefix Sums and Interval Tree
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Improved Solution using Prefix Sums and Interval Tree
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Improved Solution using Prefix Sums and Interval Tree
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Improved Solution using Prefix Sums and Interval Tree
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Improved Solution using Prefix Sums and Interval Tree
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Retrieve associated 2m data entries

e Total stabbing query cost is O(loggN + m/B).
o Using priority queue to get top-k is O(loggN + (m/B)logsk).

@ We denote this query ExacT3.
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Outline

© Approximate Solutions
@ Overview
@ Breakpoints

@ Approaches for Approximation Queries
@ Nested B-tree Approximate Query
@ Dyadic Interval Approximate Query

@ Combining Breakpoints with Queries
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Approximate Solution Overview

BREAKPOINTS1

BREAKPOINTS2
a3

S X X X X

e Our most query-efficient technique costs O(loggN + m/B).

e Must compute all m aggregates oi(t1, t2).
o Still too expensive for large datasets with large m.
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Approximate Solution Overview

BREAKPOINTS1

BREAKPOINTS2
a3

S X X X X

e Our most query-efficient technique costs O(loggN + m/B).

e Must compute all m aggregates oi(t1, t2).
o Still too expensive for large datasets with large m.

@ Our approximate methods construct breakpoints
B= {bl, .. .,br}, b; € [07 T]
@ Queries are snapped to align to breakpoints.
e A query snapped to (b, b;) uses oi(bj, bj) as an object’s score.
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Approximate Solution Notations

e G is an (g, a)-approximation algorithm if:

e G returns gi(t1, t) s.t.
oi(ti, 2)/a —eM < Gi(t1, &) < oi(tr, t2) + eM
ea>1,e>0
o M=3",0i0,T)
@ Must hold for all objects and temporal intevals.

Ranking Large Temporal Data
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Approximate Solution Notations

Score

o A(j) (A(j)) = the jth ranked object in A(k, t1, 1) (A(k, t1, t2))
@ R is an (&, «)-approximation algorithm of top-k(t1, tz, o) if:
o R returns A(k, t;, t2) and 0 zj(t1, t2) for j € [1,K], s.t.
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Approximate Solution Notations

Score + *

%2 A(j)
t1 2 Time
O'Q(tl,tg)/O{—EMS < Ug(tl,t2)+€M

o A(j) (A(j)) = the jth ranked object in A(k, t1, 1) (A(k, t1, t2))
@ R is an (&, «)-approximation algorithm of top-k(t1, tz, o) if:
o R returns A(k, t;, t2) and 0 zj(t1, t2) for j € [1,K], s.t.

(] Ej(j)(tl, t2) is an (&, a)-approximation of Uj(j)(tl, t)
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Approximate Solution Notations

Score

o2 A(j)
o3 A(j)
11 ta Time
Og(tl,tg)/Cl{—éEMS SUg(tl,t2)+€M

o A(j) (A(j)) = the jth ranked object in A(k, t1, 1) (A(k, t1, t2))
@ R is an (&, «)-approximation algorithm of top-k(t1, tz, o) if:
o R returns A(k, t;, t2) and 0 zj(t1, t2) for j € [1,K], s.t.
(] 5j0)(f1, t2) is an (&, a)-approximation of Uj(j)(tl, t)
Q 5j(j)(t1, t2) is an (e, a)-approximation of o 4(;)(t1, t2)
@ Must hold for all k and all temporal intervals.
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Breakpoints

Starting from by and moving forward we have:

Sr,oi(bj, bjr1) =M, in BREAKPOINTS1(/)

bj+1 so
o max? , oi(bj, bjt1) =eM, in BREAKPOINTS2(B,)

Score

X breakpoint
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Breakpoints

Starting from by and moving forward we have:

Sr,oi(bj, bjr1) =M, in BREAKPOINTS1(/)

bj+1 so
o max? , oi(bj, bjt1) =eM, in BREAKPOINTS2(B,)

Score d

X breakpoint

a1(bj, bj+1) + 02(bj, bj1) + 03(bj. bjy1) = M
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Breakpoints

Starting from by and moving forward we have:

Sr,oi(bj, bjr1) =M, in BREAKPOINTS1(/)

bj+1 so
o max? , oi(bj, bjt1) =eM, in BREAKPOINTS2(B,)

Score d

Time

X breakpoint

0'1(bj,bj+1) + 09 bl"biil + Ug(bj,b]‘+1) =ecM
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Breakpoints

Starting from by and moving forward we have:

Sr,oi(bj, bjr1) =M, in BREAKPOINTS1(/)

bj+1 so
o max? , oi(bj, bjt1) =eM, in BREAKPOINTS2(B,)

Score d

X >
Time

X breakpoint

0'1(bj,bj+1) + 09 bl"biil + Ug(bj,b]‘+1) =ecM
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Breakpoints

Starting from by and moving forward we have:

Sr,oi(bj, bjr1) =M, in BREAKPOINTS1(/)

bj+1 so
o max? , oi(bj, bjt1) =eM, in BREAKPOINTS2(B,)

Score d

X breakpoint

o1(bj, bj1) + (s, bj1) + a3(bj, bjy1) =M
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Breakpoints

Starting from by and moving forward we have:

S oi(bj, bjy1) =eM,  in BREAKPOINTS1(B;)

bj;+1 so
o max, oi(bj, bjy1) = eM,  in BREAKPOINTS2(13,)

Scored

X breakpoint

max{al(bj, bj+1),0'2(bj,bj+1), 0'3([)]‘, b]‘+1} =eM
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Breakpoints

Starting from by and moving forward we have:

S oi(bj, bjy1) =eM,  in BREAKPOINTS1(B;)

bj;+1 so
o max, oi(bj, bjy1) = eM,  in BREAKPOINTS2(13,)

Scored

Time

X breakpoint

maz{o1(bj,bj+1), 02(b;,bj41), 03(bj, b1} = eM
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Properties of Breakpoints

Starting from by and moving forward we have:

— S oi(bj, bjy1) =eM,  in BREAKPOINTS1(B;)
o max, oi(bj, bjt1) =eM, in BREAKPOINTS2(,)

@ We show how to efficiently construct both types of breakpoints
e A cost of O((N/B)logsN) 10s for both types.
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Properties of Breakpoints

Starting from by and moving forward we have:

: S oi(bj, bjy1) =eM,  in BREAKPOINTS1(B;)

i+1 SO

o max, oi(bj, bjt1) =eM, in BREAKPOINTS2(,)

@ We show how to efficiently construct both types of breakpoints
e A cost of O((N/B)logsN) 10s for both types.

@ The theoretical number of breakpoints is O(1/¢) for both types.

o BREAKPOINTS2 has much fewer breakpoints than BREAKPOINTS1
in practice.
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Answering Queries with Breakpoints

Score

»

R >
Time

X breakpoint
@ We show how to answer queries using 31 or B, approximately.
e V(t1, tp), let (B(t1), B(tz)) be the approximate interval

o B(t1) = minpen s.t. B(ty) >t
° B(tz) = minb,.eg s.t. B(tz) >t
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Answering Queries with Breakpoints

Score

] et &

Time

X breakpoint

@ We show how to answer queries using 31 or B, approximately.
e V(t1, tp), let (B(t1), B(tz)) be the approximate interval

o B(t1) = minpen s.t. B(ty) >t

o B(tz) = minb,.eg s.t. B(tz) >t
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Answering Queries with Breakpoints

Score

’ [ “\‘_.

-
é('l) 15:(22) Time

X breakpoint

@ We show how to answer queries using 31 or B, approximately.
e V(t1, tp), let (B(t1), B(tz)) be the approximate interval

o B(t1) = minpen s.t. B(ty) >t

o B(tz) = minb,.eg s.t. B(tz) >t

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Answering Queries with Breakpoints

X breakpoint

@ We show how to answer queries using 31 or B, approximately.
e V(t1, tp), let (B(t1), B(tz)) be the approximate interval

o B(t1) = minpen s.t. B(ty) >t

o B(tz) = minbr.eg s.t. B(tz) >t

V(t1, t2) and its approximate interval (B(t1), B(t2)): Vo;,
|0’,’(t']_7 tg) = 0';(6(t1),8(t2))| <eM.
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Answering Queries with Breakpoints

Score

[
V= Time
X breakpoint B(t1) B(t2)
@ We show how to answer queries using 31 or B, approximately.
e V(t1, tp), let (B(t1), B(tz)) be the approximate interval
o B(t1) = minpen s.t. B(ty) >t
° B(tz) = minbr.eg s.t. B(tz) >t

V(t1, t2) and its approximate interval (B(t1), B(t2)): Vo;,
|0’,’(t']_7 tg) = 0';(6(t1),8(t2))| <eM.
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Outline

© Approximate Solutions

@ Approaches for Approximation Queries
@ Nested B-tree Approximate Query
@ Dyadic Interval Approximate Query
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Querying Breakpoints with Nested B-trees

x breakpoint

Left end-point index.

Time

@ QUERY1 indexes all (g) intervals of breakpoints B.
o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
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Querying Breakpoints with Nested B-trees

x breakpoint

Left end-point index.

Time

g

Right end-point index.

% X Time

@ QUERY1 indexes all (g) intervals of breakpoints B.
o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
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Querying Breakpoints with Nested B-trees

x breakpoint

Left end-point index.

B Time

—

Right end-point index.

x Time

@ QUERY1 indexes all (g) intervals of breakpoints B.
o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
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@ QUERY1 indexes all (g) intervals of breakpoints B.
o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
o At query time we probe first-level B-tree with t; to get B(t).
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@ QUERY1 indexes all (g) intervals of breakpoints B.
o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
o At query time we probe first-level B-tree with t; to get B(t).
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Querying Breakpoints with Nested B-trees
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@ QUERY1 indexes all (g) intervals of breakpoints B.

o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
o At query time we probe first-level B-tree with t; to get B(t).
@ We probe B(t;)'s associated nested B-tree to get B(t,).
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Querying Breakpoints with Nested B-trees
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@ QUERY1 indexes all (g) intervals of breakpoints B.

o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
o At query time we probe first-level B-tree with t; to get B(t).
@ We probe B(t;)'s associated nested B-tree to get B(t,).
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Querying Breakpoints with Nested B-trees
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@ QUERY1 indexes all (g) intervals of breakpoints B.

o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
o At query time we probe first-level B-tree with t; to get B(t).
@ We probe B(t;)'s associated nested B-tree to get B(t,).
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Querying Breakpoints with Nested B-trees
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@ QUERY1 indexes all (g) intervals of breakpoints B.

o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
o At query time we probe first-level B-tree with t; to get B(t).
@ We probe B(t;)'s associated nested B-tree to get B(t,).
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Querying Breakpoints with Nested B-trees

t
x breakpoint k !
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@ QUERY1 indexes all (g) intervals of breakpoints B.
o For each interval [bj, bj], A(Kkmax, bj, b}) is computed.
o At query time we probe first-level B-tree with t; to get B(t).

@ We probe B(t;)'s associated nested B-tree to get B(t,).

@ The approximate answer A(k, ty, tp) is returned.
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Querying Breakpoints with Nested B-trees
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@ We prove QUERY1 has the following properties:
o Index size O((1/2)*kmax/B).
o Query cost O(k/B + logg(1/¢)).
o (&, 1)-approximation.
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Querying Breakpoints with Nested B-trees

t
x breakpoint k !

0; ai(B(t1), B(t2))
oy | 0 (B(t),B(t2)

o0, | o0, (B(t1), B(t2))
B(t
®) L .o K Objects ordered in descending order of o;(.)

A<km(w¢y B(tl)y B(tQ))

@ We prove QUERY1 has the following properties:
o Index size O((1/2)*kmax/B).
o Query cost O(k/B + logg(1/¢)).
o (&, 1)-approximation.
e QUERY2 reduces space to O((1/&)kmax/B).
o (g,2log(1/c))-approximation.
o Query cost O(klog(1/¢) logg k).
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Querying Breakpoints with Dyadic Intervals

X breakpoint

3 N A2 Av2 »
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.
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Querying Breakpoints with Dyadic Intervals
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.
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Querying Breakpoints with Dyadic Intervals
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.

o Consider a query over [ty, to].
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.

o Consider a query over [ty, to].
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.

o Consider a query over [ty, to].
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.

o Consider a query over [ty, to].
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.

o Consider a query over [ty, to].
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@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.

o Consider a query over [ty, to].

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Querying Breakpoints with Dyadic Intervals

- § 3
7N L J
7/ N 7 N
a N 7 A
7 N e N
d F e——— d A
t -
/ \\ 7\ s\ / \\
/ \ /N / .
, \ S , \ S X breakpoint

e a ———
A A Time

tl t2

@ QUERY?2 indexes all dyadic intervals over the breakpoints B
o The intervals represent the span of nodes in a balanced binary tree.

o Consider a query over [ty, to].
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A(Emaz; b2,03) : 0.4(5)(b2,b3)V] € [1, ..., kimaaz)

@ QUERY?2 indexes all dyadic intervals over the breakpoints B

o The intervals represent the span of nodes in a balanced binary tree.
o Consider a query over [ty, to].
o At each dyadic interval [b;, bj] we store A(kmax, bj, bj).

o There are at most 2/log(1/<) intervals and 2klog(1/<) candidates.
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Querying Breakpoints with Dyadic Intervals
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A(Emaz;b2,03) : 0.4(5)(b2,03), V5 € [1, ..., kmaaz)

@ QUERY?2 indexes all dyadic intervals over the breakpoints B

o The intervals represent the span of nodes in a balanced binary tree.
o Consider a query over [ty, to].
o At each dyadic interval [b;, bj] we store A(kmax, bj, bj).

o There are at most 2/log(1/<) intervals and 2klog(1/<) candidates.
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Querying Breakpoints with Dyadic Intervals

7 RN candidate running sums
. 0; | running sum o}
06 o
/ !
; 019 O19

at most 2k log(1/e) candidates!!!

-A(kmam b27 bS) SO A>G) (b27 bS)vv.] € [17 ceny kmaz}

@ We prove QUERY2 has the following properties:
o Index size O((1/€)kmax/B).
o Query cost O(klog(1/¢) logg k).
o (g,2log(1/¢))-approximation.
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Combining Breakpoints with Queries

We consider the following algorithms:
Appx1-B: (QUERY1, BREAKPOINTS1)
APpPx2-B: (QUERY2, BREAKPOINTS1)
AppPx1: (QUERY1, BREAKPOINTS2)
APPx2: (QUERY2, BREAKPOINTS2)

APPx2+: (QUERY2, BREAKPOINTS2) and Discovers candidates’
exact aggregate score using B-tree from ExacT2 (B-tree forest).
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Experiments: Setup

@ Our algorithms are designed to efficiently handle 1/Os.
o All algorithms are implemented in C++ using TPIE.
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@ All experiments performed on Linux machine with:

o Intel Core i7-2600 3.4GHz CPU
o 8GB of memory
o 1TB hard drive
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Experiments: Setup

@ Our algorithms are designed to efficiently handle 1/Os.
o All algorithms are implemented in C++ using TPIE.
@ All experiments performed on Linux machine with:
o Intel Core i7-2600 3.4GHz CPU
o 8GB of memory
o 1TB hard drive
o We use two real large datasets:
o Temp is a temperature dataset from the MesoWest Project.
@ contains measurements from Jan 1997 to Oct 2011.
o there are m = 145,628 objects with average na,; = 17,833.
o Meme is obtained from the Memetracker Project.
o tracks the frequency of popular quotes over time.
o there are m = 1.5 million objects with nay,; = 67.
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Experiments: Default Values

Parameter Symbol Default value

dataset Temp

number of objects m 50,000

average object line segments Navg 1,000
max top-k value Kmax 200
top-k value k 50
number of breakpoints r=(1/e) 500

query interval size (tr — t1) 20% T
TPIE disk block size 4KB
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Experiment: Index size.
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Experiment: Build time.
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Experiment: Query 1/Os.
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Experiment: Query time.
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Experiment: Precision/Recall.
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Experiment: Ratio.
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Conclusions

@ We studied ranking large temporal data using aggregate scores over
a query interval.
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Conclusions
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baseline solutions.

o Approximations offer even more improvements.
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Conclusions

@ We studied ranking large temporal data using aggregate scores over
a query interval.

@ Our most efficient exact technique EXACT3 is more efficient than
baseline solutions.

o Approximations offer even more improvements.

@ Future work includes ranking with holistic aggregations and
extending to distributed settings.
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Thank You

Q and A

Feifei Li, Mi Ranking Large



Baseline Solution

Computing o(g3(t1,t2))

@ Initialize sum s3 = 0 for object o3
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Baseline Solution

Computing o(g3(t1,t2))

@ Initialize sum s3 = 0 for object o3
@ For each segment ( of g3 defined by (3, v3), (3,41, v3,j+1)
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Baseline Solution

Computing o(g3(t1,t2))

Score

(t3,1,v3,1)

. | .
L : -
13,1 tg v t3,2 2 Time

@ Initialize sum s3 = 0 for object o3

@ For each segment ¢ of g3 defined by (t3, va ), (t3,41, v3,j+1)
o Define T = [t1, 2] N [t3,, t3,+1]
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Baseline Solution

Computing o(g3(t1,t2))

Score

(t3,1,v3,1)

13,1 i} v t3,2 2 Time

@ Initialize sum s3 = 0 for object o3
@ For each segment ( of g3 defined by (3, v3), (3,41, v3,j+1)

o Define T = [t1, to] N [t3/, t3,j11]
o Update s3 = s3 + 03(Z)
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Baseline Solution

Computing o(g3(t1,t2))

Time

@ Initialize sum s3 = 0 for object o3
@ For each segment ( of g3 defined by (3, v3), (3,41, v3,j+1)

o Define T = [t1, to] N [t3/, t3,j11]
o Update s3 = s3 + 03(Z)
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Baseline Solution

Computing A(k, t,t)

03

t1 Time

e Compute s; for all objects i € [1, m].
o Insert s;’s into priority queue of size k to get A(k, t1, t2).
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Baseline Solution

Computing A(k, t,t)

03

Time

e Compute s; for all objects i € [1, m].
o Insert s;’s into priority queue of size k to get A(k, t1, t2).
o Naive cost: O(N + mlogk)
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Improved Baseline Solution using B-tree

Score

@ For each line segment ¢ = {(¢; j, vij), (ti j+1, Vij+1)}
o Index left end-point t;; in B-tree.
o The value associated with t; is ¢.
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Improved Baseline Solution using B-tree

Score

|

l

!

t ta Time
@ For each line segment ¢ = {(¢; j, vij), (ti j+1, Vij+1)}

o Index left end-point t;; in B-tree.
o The value associated with t; is ¢.

@ Query cost: O(loggN + # + (m/B)loggk)
e gi = number of £ overlapping [t1, t]

@ We denote this query ExacTl.
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Improved Solution using Prefix Sums and B-tree Forest

Score

! 1 't3,5 1t3,6
S
t3,0 t3,1 t32 t3.3 13,4 Time

@ gi =Ugi;
@ gij is defined by ((t,',j_l, V,',J'_l), (ti7j7 V,'J)) fOFj S {1, RN n,-}
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Improved Solution using Prefix Sums and B-tree Forest

131

Score A

0'3(.[3’1) 03
1 't3,5 1t3,6
t3,0 t3,1 t32 t3.3 13,4 Time

o gi =Ugi,;
@ gij is defined by ((t,',j_l, V,',J'_l), (ti7j7 V,'J)) fOFj S {1, RN n,-}
o Let i, =[tig, ti¢] for £=1,...,n; and compute o;(/; ¢)
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Improved Solution using Prefix Sums and B-tree Forest

132

131

Score A
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@ gi=Ugi;
@ gij is defined by ((t,',j_l, V,',J'_l), (ti7j7 V,'J)) fOFj c {1, RN n,-}
o Let i, =[tig, ti¢] for £=1,...,n; and compute o;(/; ¢)
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Improved Solution using Prefix Sums and B-tree Forest

Score
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13,0 13,1 t3,2 t3,3 13,4 Time
o gi =Ugi,;
@ gij is defined by ((t,',j_l, V,',J'_l), (ti7j7 V,'J)) fOFj S {1, RN n,-}
o Let i, =[tig, ti¢] for £=1,...,n; and compute o;(/; ¢)
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Improved Solution using Prefix Sums and B-tree Forest

Score

: ‘ ‘ 13,5 13,6

t3.0 3,1 t1 t32 t3,3 1o (3.4 Time

@ Let t;; = successor(tj 1) and t; g = successor(t; )
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@ Let t;; = successor(tj 1) and t; g = successor(t; )
o oi(t1, ) = oi(lir) — gi(liL) — oi(ta, ti.r) + oi(t1, tiL)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Improved Solution using Prefix Sums and B-tree Forest

13,4
I3 2
Score
93,5
o3(ti,t3,2) o3(ta,t3,4) | 93,6 03
— |
't3,5 13,6
t3,0 3.1t t32 t3,3

ty t3,a Time
@ Let t;; = successor(tj 1) and t; g = successor(t; )
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@ Let t;; = successor(tj 1) and t; g = successor(t; )
o oi(t1, ) = 0i(lir) — oi(li,L) — oi(ta, ti,r) + oi(ts, tir)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Improved Solution using Prefix Sums and B-tree Forest

13,4
I3 2
Score %9&4
93,2
93,5
93,1
| os(ti,t3,2) oa(taitsa) | 936, .
: \ A I 't3,5 13,6
t3,0 3.1t t32 t3,3 1o 3.4 Time

@ Let t;; = successor(tj 1) and t; g = successor(t; )
o oi(ti, ) = oi(lir) — oi(liL) — oi(ta, tir) + oi(t1, tir)

Jeffrey Jestes, Jeff M. Phillips, Feifei Li, Mingwang Tang Ranking Large Temporal Data



Improved Solution using Prefix Sums and B-tree Forest

13,4

Score

93,5

0'3(t2 t3.4) | 93,6

X 03
A I 't3,5 13,6
t3,0 3.1t t32 t3,3 1o 3.4 Time

@ Let t;; = successor(tj 1) and t; g = successor(t; )
o oi(t1, ) = oi(lir) — gi(liL) — oi(ta, ti.r) + oi(t1, tiL)
@ Use a B-tree forest to index (t3,¢, (gi.¢, 0i(lie))
o Each o; indexed in a separate B-tree
o Query cost is O(>_T, loggni + (m/B)logsk)
@ We denote this query EXACT2.
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@ Our B-tree forest solution requires m B-trees.

o Query time improves from baseline.
e Opening/Closing m B-trees expensive for large m.
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@ Our B-tree forest solution requires m B-trees.
o Query time improves from baseline.
e Opening/Closing m B-trees expensive for large m.

@ We show how to solve a query using a single interval tree
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