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@ New challenge in the DTM problem: uncertainty naturally exist in
distributed data

o data integration produces fuzzy matches

e noisy sensor readings

@ The Shipboard Automated Meteorological and Oceanographic
System(SAMOS)
(a) Ships (b)

Data Towers

v satellite,
\ /( radio frequency!
Applications

Applications



Introduction

@ Attribute-level uncertain model (with a single attribute score)

tuples | attribute score
dy X1 = {(vi1,p11)s (V1.2,P1.2)--(V1pys P11, ) }
dsy Xy = {(v2.1,P21), (V2.2, P2.2) - (V2.y, P2,) }
dy Xi = {(ve,1, 1), (U2, Pr2)--(Vep, Pro) }
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Introduction

@ Distributed probabilistic threshold monitoring (DPTM):

H PriY =/ X;>4] > 67

oS o 00

t X1 Xo1 Xg1
ty X2 X X2
tr P(l.T Xor Xyr

@ Naive Method:
e ¢ sends X; to H at each time instance t;
o H computes Pr[Y > 7] based on X;'s
e expensive in terms of both communication (O(gT)) and
computation (O(né T)).
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o Computing Pr[Y > 7] exactly is expensive
o Incorporates pruning techniques.
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o Exact Methods:
o Computing Pr[Y > 7] exactly is expensive
o Incorporates pruning techniques.
o Combine the adaptive threshold algorithm for deterministic data

when it's applicable.

@ Approximate Methods:

o Replace the exact computation of Pr[Y > 7] using sampleing
method (but with the same monitoring instance).
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Baseline method (Madaptive)

e Markov's inequality: Pr[Y > ~] < @ < ? — ture ( no alarm)

/
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@ Leverage on the adaptive thresholds algorithm for deterministic data
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@ Combine the Chebyshev bound and Chernoff bound pruning.
@ Chebyshev gives one-sided bound using E(X;) and Var(X;)
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Improved method

@ Combine the Chebyshev bound and Chernoff bound pruning.
@ Chebyshev gives one-sided bound using E(X;) and Var(X;)
@ Chernoff bound using the moment generating function
o M(B) = E(e?Y), Mi(B) = E(e?X) for any B € R
o M(B) =TI, Mi(B)
@ 31 > 0, Chernoff gives an upper bound
B2 < 0, Chernoff gives a lower bound

" PrY > 4] < e M) <57
PrlY > 4] > 1—e @MW) > 57

Sl cRe]

M. (1) Mo(51)
Mi(532) Ma(32) ([32)
t X1 X5 oo Xg
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Improved Adaptive Method (ladaptive)

o > % InM;(51) <Ind+ B17, (monitoring instance J;).
o Y% InM;(3) <In(1— )+ B2y, (monitoring instance J).

@ Practical considerations
o Use the adaptive thresholds algorithm
o Get a tight upper bound (lower bound)
o Running J; and J, together is communication expensive.

@ Approaches
o Fix the values of 81 and (32 in each period of k time instance.
o Reset the optimal values of 31 and (3> periodically.
o Periodically decides which monitoring instance to run



e Approximate Methods
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@ Exact Methods:

e Computing Pr[Y > 7] exactly is expensive in terms of both
communication (O(gT)) and computation (O(n®T)).

e Incorporates pruning techniques.

o Combine the adaptive threshold algorithm for deterministic data
when it's applicable.

@ Approximate Methods:
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@ Exact Methods:
e Computing Pr[Y > 4] exactly is expensive in terms of both
communication (O(gT)) and computation (O(n®T)).
e Incorporates pruning techniques.
o Combine the adaptive threshold algorithm for deterministic data

when it's applicable.

@ Approximate Methods:

o We use e-Sampling methods to estimate the condition when
monitoring instances fail to make a decision

o Replace the exact computation using sampling based method (but
with the same monitoring instance): we get MadapativeS,
ImprovedS, ladaptiveS



Random Distributed e-Sample (RDeS)

H asks for a random sample x; from each client according to the
distribution of X;

Pr[Y = 324, x; > 7] is an unbiased estimate of Pr[Y > 4]

Repeating this sampling & = O(Z In ) times.

Pr[PrlY > 4] = Pr[Y > ]| <] > 1 — ¢ using O(% In %) bytes.



Deterministic Distributed e-Sample (DDeS)

o Using © = O(£) evenly spaced sample points from each X;.
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A

A
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€
g

T1T9T3 I'K;Xi
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Deterministic Distributed e-Sample (DDeS)

o Using © = O(£) evenly spaced sample points from each X;.
° ;f; PriXi = x]dx = £
=X g

e The evaluation space Pr[Y > ~] is in O(x#)

C1: 51{® 513172, Ce ,1’175}
C Sg{fg’l,@ ce ,.I‘Q,,{}
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Deterministic Distributed e-Sample (DDeS)

Using k = O(£) evenly spaced sample points from each X;.
o [ Pr[Xi = x]dx = :

=

The evaluation space Pr[Y > 4] is in O(k#)

In practice, O(x™)(e.g., m = 2) random selected evaluations.
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Deterministic Distributed e-Sample (DDeS)

Using k = O(£) evenly spaced sample points from each X;.

° f;’;; Pr[Xi = x]dx = é

The evaluation space Pr[Y > 4] is in O(k#)

In practice, O(x™)(e.g., m = 2) random selected evaluations.

C1: 51{® 513172, Ce . ,1’175}
Co . Sg{fg’l,@ ce ,.I‘Q,,{}

Cy Sg{ Lgo, .. Lyt

@ DDes gives | Pr[Y > 7] — Pr[Y > 4]| < & with probability 1 in
O(g?/¢) bytes.
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A randomized improvement of DDeS (aDDeS)

o f;;l;:i Pr[X,- = X]dX =«

pdf

\
=

.%‘]{I?]‘_,_l
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A randomized improvement of DDeS (aDDeS)

o ;’71;1 Pr[X,- = X]dx =
=Xi.J

e Computes x, where the integral of pdf first reaches «

pdf

\
s

Lo xjxj-i-l e Tg
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A randomized improvement of DDeS (aDDeS)
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A randomized improvement of DDeS (aDDeS)

o [FHH Pr[X; = x]dx = «
X—X,J
e Computes x, where the integral of pdf first reaches «

@ Chooses the smallest sample point at random (within x,).

PL LT jLj+1+ « - L,

o Pr|Pr[Y >~] —Pr[Y > 1] <e] >1—¢in O(%@) bytes.



@ Experiments
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Experiment setup

@ A Linux machine with an Intel Xeon CPU at 2.13GHz and 6GB of
memory. GMP library are used in calculating M;(5).

@ Server-to-client using broadcast and client-to-server using unicast.

@ Data sets:

o Real datasets (11.8 million records in the Wecoma research vessels)
from the SAMOS project.

e Each record contain four measurements: wind direction (WD), wind
speed (WS), sound speed (SS), and temperature (TEM), which
leads to four single probabilistic attribute datasets.

o Group the records every 7 consecutive seconds and represent it using
a pdf.



Experiment setup

@ The default experimental parameters:

Symbol Definition Default Value
T grouping interval 300
T number of time instances 3932
g number of clients 10
1) probability threshold 0.7
v score threshold 30% alarms (230.g for WD)
K sample size per client 30
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Response time:

@ ~: score threshold
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Communication

@ ~: score threshold

3500, - -
n 16 *MadapuveelmprovedVladapuve
g 3000)
1%

< Q
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£ 5 2000
G 8 @
. é 1500)
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€ 4 2
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Precision

@ k: number of samples

o
©
©

precision
o
(o)
[2)

0.94! ]
ARDsS £ DDeS ¥ aDDeS
0'920 20 40 60

K
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Recall

@ k: number of samples

1r B/B/E D D D ]

ARDsS £ DDeS ¥ aDDeS
0.95 ‘ : ‘

0 20 40 60
K
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Performance of all methods
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Performance of all methods

[ IMadaptiveS [l ImprovedS [l ladaptiveS
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Conclusion

o Future work:

o Other aggregation constraints (e.g.,max) beside sum constraint.

o Extend our study to the hierarchical model that is often used in a
sensor network.

o Handle the case when data from different sites are correlated.
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