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ABSTRACT
Prior work on private data release has only studied counting queries

or linear queries, where each tuple in the dataset contributes a value

in [0, 1] and a query returns the sum of the values. However, many

data analytical tasks involve numerical values that are arbitrary real

numbers. In this paper, we present a new mechanism to privatize

a dataset 𝐷 for a given set 𝑄 of numerical queries, achieving an

error of 𝑂̃ (
√
𝑛 · Δ𝑤 (𝐷)) for each query 𝑤 ∈ 𝑄 , where Δ𝑤 (𝐷) is

the maximum contribution of any tuple in 𝐷 queried by 𝑤 . This

instance- and query-specific error bound not only is theoretically

appealing, but also leads to excellent practical performance.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.
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1 INTRODUCTION
We study the following fundamental problem in private data release:

Let 𝐷 ∈ X𝑛 be a private dataset consisting of 𝑛 tuples from a

universe X. A query is a function 𝑤 : X → R that assigns a

numerical value to each tuple in the universe, and the answer of𝑤

on 𝐷 is defined as𝑤 (𝐷) = ∑
𝑡 ∈𝐷 𝑤 (𝑡). Note that𝑤 is defined over

the entire universe X and is public; the query answer on 𝐷 , namely

𝑤 (𝐷), is private as it depends on 𝐷 . Given a set of queries 𝑄 , the

goal is to release 𝐷̃ , a differentially private (DP) version of 𝐷 , such

that the answers of all queries in 𝑄 on 𝐷̃ are as close to those on 𝐷

as possible.

By appropriately defining𝑤 , this problem captures a variety of

aggregation queries of interest in private data analysis.
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Example 1.1. Consider a dataset of personal incomes, in which

each tuple 𝑡 has an “age” attribute and an “income” attribute, de-

noted by 𝑡 [age] and 𝑡 [income] respectively. Then all the following

queries are instantiations of the problem above:

(1) The number of people with income between 𝑎 and 𝑏 can be

obtained by defining

𝑤 (𝑡) = 1[𝑎 ≤ 𝑡 [income] ≤ 𝑏],
where 1[·] is the indicator function.

(2) The total (hence the average, by dividing the result by the

count obtained from above) income of people whose income

is between 𝑎 and 𝑏:

𝑤 (𝑡) = 1[𝑎 ≤ 𝑡 [income] ≤ 𝑏] · 𝑡 [income] .
(3) The following query can be used to compute the variance of

income of people in a certain age range:

𝑤 (𝑡) = 1[𝑎 ≤ 𝑡 [age] ≤ 𝑏] · 𝑡 [income]2 .
(4) The total (or average) weighted income:

𝑤 (𝑡) = UDF(𝑡 [age], 𝑡 [income]) · 𝑡 [income],
where UDF(·, ·) is an arbitrary user-defined function that

specifies the weight of each person depending on his/her

age and income. □

Counting queries, linear queries, and numerical queries. Two spe-

cial cases of the problem have been studied extensively in the

literature [8, 10, 12, 14, 15, 19, 21, 23, 24]: When the codomain of

𝑤 is {0, 1}, it is called a counting query; more generally, when the

codomain is [0, 1], it is called a linear query. For a set L of arbitrary

linear queries, the Private Multiplicative Weights (PMW) mecha-

nism [10] is the state-of-the-art solution, which guarantees that ev-

ery query in L can be answered with error𝑂 (
√
𝑛 log |L| log |X|).1

This error bound is the best achievable (up to polylogarithmic fac-

tors) if L is arbitrary; for queries with special structures (such

as range queries, e.g., query (1) in Example 1.1), the error can be

further lowered [15, 17, 18].

This paper is concerned with the case where the codomain of𝑤 is

the entire R, hence called a numerical query to differentiate it from

the two special cases above. Queries (2), (3), (4) in Example 1.1 are all

numerical queries, while (1) is a counting query. Numerical queries

are very common, especially when the data itself is numerical. In

fact, even if the data is categorical, 𝑤 (𝑡) can still take numerical

values, e.g.,𝑤 (𝑡) may be the credit score of a customer based his/her

categorical attributes.

1
We suppress the dependency on the privacy parameters in the introduction, which

will be spelled out in the technical sections.
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For simplicity, for most parts of the paper we consider a discrete,

bounded codomain for 𝑤 , i.e., 𝑤 : X → [Δ] = {0, 1, . . . ,Δ}, for
some potentially large integer Δ that is a power of 2 (such as 2

32

in practice); we show how to deal with the entire real codomain in

Section 5.

Normalization. Although prior work has not considered numeri-

cal queries explicitly, a standardmethod to reduce a numerical query

𝑤 to a linear query is normalization: Letting Δ𝑤 := max𝑡 ∈X 𝑤 (𝑡),
we can normalize𝑤 to a linear query ℓ𝑤 (𝑡) := 𝑤 (𝑡)/Δ𝑤 . Then we

invoke an existing DP mechanism (e.g., PMW) to compute a priva-

tized 𝐷̃ over the set of linear queries L = {ℓ𝑤 : 𝑤 ∈ 𝑄}. Finally, we
scale the answer back, i.e., returning Δ𝑤 · ℓ𝑤 (𝐷̃) as an answer for

𝑤 (𝐷). The error of this method (assuming we use PMW) is thus

𝑂̃ (
√
𝑛 · Δ𝑤).2

However, this error bound can be very large, since Δ𝑤 is the

maximum 𝑤 (𝑡) over the entire universe X, not just the tuples in
the dataset 𝐷 . For instance, in the context of Example 1.1, 𝐷 is a

particular private dataset obtained by some organization, while X
would be all the people in the world; or more formally, it consists of

all the valid (age, income) combinations that may appear in any 𝐷 .

For queries with special structures, such as query (2) in Example 1.1,

we may have Δ𝑤 = 𝑏; in general, however, Δ𝑤 can be as large as

Δ. A natural attempt is to normalize with Δ𝑤 (𝐷) := max𝑡 ∈𝐷 𝑤 (𝑡)
taking the maximum𝑤 (𝑡) only over 𝐷 , which would yield an error

bound of 𝑂̃ (
√
𝑛 · Δ𝑤 (𝐷)). Note that this instance-specific bound

is much more desirable since Δ𝑤 (𝐷) ≪ Δ𝑤 on most real-world

datasets 𝐷 . However, normalization with Δ𝑤 (𝐷) has two issues:

(1) Δ𝑤 (𝐷) is sensitive to 𝐷 , so using it directly violates DP. (2)

Although ℓ𝑤 (𝑡) := 𝑤 (𝑡)/Δ𝑤 (𝐷) ∈ [0, 1] for all 𝑡 ∈ 𝐷 , it is no

longer a linear query, which requires ℓ𝑤 (𝑡) ∈ [0, 1] for all tuples
𝑡 in the universe X. Fundamentally, all DP mechanisms for linear

queries rely on the sensitivity of ℓ𝑤 (𝐷) being 1, i.e., changing any

tuple in 𝐷 to an arbitrary other tuple in X (which may or may

not exist in 𝐷) changes the value of ℓ𝑤 (𝐷) by at most 1. Since the

sensitivity of 𝑤 (·) is Δ𝑤 , we have to normalize with Δ𝑤 in order

to bring its sensitivity down to 1.

Truncation. In this paper, we show how to achieve the 𝑂̃ (
√
𝑛 ·

Δ𝑤 (𝐷)) error bound. Our starting point is the special case where
𝑄 consists of just one numerical query 𝑤 , for which a recently

proposed DP mechanism achieves 𝑂̃ (Δ𝑤 (𝐷)) error [13]. The idea
is very simple: We first find a privatized Δ̄𝑤 (𝐷) such that Δ̄𝑤 (𝐷) ≤
Δ𝑤 (𝐷) and only 𝑂̃ (1) tuples 𝑡 in 𝐷 have 𝑤 (𝑡) ≥ Δ̄𝑤 (𝐷). This
addresses issue (1) above. Then, we truncate the query as 𝑤̄ (𝑡) :=

min{𝑤 (𝑡), Δ̄𝑤 (𝐷)}. After truncation, we can normalize using Δ̄𝑤 (𝐷),
which guarantees that the normalized query has sensitivity 1, solv-

ing issue (2) above. The truncation introduces an error of 𝑂̃ (Δ𝑤 (𝐷))
while normalization has error𝑂 (Δ̄𝑤 (𝐷)) ≤ 𝑂 (Δ𝑤 (𝐷)), so the total
error is 𝑂̃ (Δ𝑤 (𝐷)).

However, extending this idea to multiple queries is nontrivial.

There are two straightforward methods, neither of which yields

satisfactory error bounds. The first is to use the DP mechanism of

[13] to answer each query in 𝑄 , after dividing the privacy budget

using DP composition theorems. Even with advanced DP compo-

sition [7], this method has an error of 𝑂̃ (
√
|𝑄 | · Δ𝑤 (𝐷)). This is

2
The 𝑂̃ notation suppresses polylogarithmic factors.

undesirable since |𝑄 | can be much (even exponentially) larger than

𝑛. In fact, all past work on multiple linear queries aims at reducing

the dependency on |𝑄 | from polynomial to logarithmic, as achieved

by PMW as well as other mechanisms designed for special classes

of linear queries.

The second straightforward adaptation of [13] is to use it only

once (thus avoiding the composition problem) to find a global pri-

vatized Δ̄(𝐷) ≤ Δ(𝐷) := max𝑡 ∈𝐷,𝑤∈𝑄 𝑤 (𝑡). Then we use Δ̄(𝐷)
to truncate all queries in 𝑄 , i.e., replace each 𝑤 ∈ 𝑄 with 𝑤̄ (𝑡) :=

min{𝑤 (𝑡), Δ̄(𝐷)}. Finally, we normalize all the truncated queries us-

ing Δ̄(𝐷) and invoke PMW. The error of this method is 𝑂̃ (
√
𝑛·Δ(𝐷)).

Although this bound has a logarithmic dependency on |𝑄 |, it is not
necessarily better than the composition-based method, as Δ(𝐷)
can be much larger than Δ𝑤 (𝐷) for many queries, e.g., query (2)

in Example 1.1, or when only a small number of tuples in 𝐷 are

queried by𝑤 .

The new mechanism. In this paper, we present a new DP mech-

anism for numerical queries achieving the 𝑂̃ (
√
𝑛 · Δ𝑤 (𝐷)) error

bound. Table 1 compares our result with the three baseline ap-

proaches mentioned above. We note that while the three baseline

error bounds are incomparable to each other, our error bound dom-

inates all of them as long as |𝑄 | > 𝑛. The table also lists the three

main reasons why the 𝑂̃ (
√
𝑛 · Δ𝑤 (𝐷)) bound is better: it has a

logarithmic dependency on |𝑄 |, and the Δ𝑤 (𝐷) term is specific to

both the query𝑤 and the instance 𝐷 .

Example 1.2. Consider all the range-income queries formed by

query (2) in Example 1.1. Then |𝑄 | = Θ( |X|2) ≥ Ω(𝑛2), so clearly

𝑂̃ (
√
𝑛·Δ𝑤 (𝐷)) is much smaller than 𝑂̃ (

√
|𝑄 |·Δ𝑤 (𝐷)). For a query𝑤

with income range [𝑎, 𝑏], we have Δ𝑤 = 𝑏; Δ(𝐷) = highest income

of any person in the dataset 𝐷 ; and Δ𝑤 (𝐷) = highest income of

any person in 𝐷 whose income is in the range [𝑎, 𝑏]. Clearly, we
have Δ𝑤 (𝐷) < Δ𝑤 < Δ(𝐷).

Next consider all range-variance queries formed by query (3) in

Example 1.1. For these queries, we have Δ𝑤 = Δ = highest income

(squared) of any person in the world, while Δ𝑤 (𝐷) is the highest
income of any person in 𝐷 aged between 𝑎 and 𝑏. Now we have

Δ𝑤 (𝐷) < Δ(𝐷) < Δ𝑤 . These two examples illustrate that, while

there is no clear winner between Δ(𝐷) and Δ𝑤 , Δ𝑤 (𝐷) is always
better, since it takes the advantage of both the specific 𝐷 (the actual

incomes in 𝐷 can be much smaller than Δ) and the specific𝑤 (in an

actual 𝐷 , smaller ages tend to correspond to smaller incomes). □

To summarize, we make the the following contributions in this

paper:

(1) We initiate the study of private data release for numeri-

cal queries, which generalize counting queries and linear

queries, and are important for many private data analysis

tasks involving numerical data.

(2) We put forward three baseline solutions for the problem by

adapting prior methods, and point out their deficiencies.

(3) We design newDPmechanisms for the problemwith an error

bound of 𝑂̃ (
√
𝑛 · Δ𝑤 (𝐷)) for an arbitrary set𝑄 of numerical

queries, which dominates all the three baseline methods.

(4) We show how to further improve the mechanism, in terms of

both running time and the error bound, for a decomposable
set of queries.
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Mechanism Error Bound for𝑤 ∈ 𝑄 Many Queries? Query-Specific? Instance-Specific?

Normalization 𝑂̃ (
√
𝑛 · Δ𝑤) ✓ ✓ ×

Composition 𝑂̃ (
√
|𝑄 | · Δ𝑤 (𝐷)) × ✓ ✓

Global truncation 𝑂̃ (
√
𝑛 · Δ(𝐷)) ✓ × ✓

New method 𝑂̃ (
√
𝑛 · Δ𝑤 (𝐷)) ✓ ✓ ✓

Table 1: Comparison of error bounds.

(5) Through an extensive experimental study, we demonstrate

that our methods are not only theoretically superior, but also

perform very well in practice.

2 PRELIMINARIES
Two datasets 𝐷,𝐷 ′ ∈ X𝑛 are neighboring instances if they differ

by one tuple.

Definition 2.1 (Differential Privacy [7]). AmechanismM : X𝑛 →
O satisfies (𝜀, 𝛿)-differential privacy if for any pair of neighboring

datasets 𝐷 ∼ 𝐷 ′ and any subset of outputs 𝑂 ⊂ O,

Pr[M(𝐷) ∈ 𝑂] ≤ 𝑒𝜀 · Pr[M(𝐷 ′) ∈ 𝑂] + 𝛿 . (1)

It is well known that adding noise calibrated to the (global)

sensitivity of a query protects differential privacy.

Lemma 2.2. Given a function 𝑓 : X𝑛 → R, a mechanism that
outputsM(𝐷) = 𝑓 (𝐷) + Lap(GS/𝜀) satisfies (𝜀, 0)-DP, where GS =

max𝐷,𝐷′∈X𝑛
:𝐷∼𝐷′ |𝑓 (𝐷) − 𝑓 (𝐷 ′) | is the sensitivity of 𝑓 .

We will need the following useful properties of differential pri-

vacy:

Lemma 2.3 (Composition Theorem [7]). IfM is an adaptive
composition of differentially private mechanismsM1, . . . ,M𝑇 , where
eachM𝑖 satisfies (𝜀0, 0)-DP, thenM satisfies (𝜀 (𝜀0, 𝛿,𝑇 ), 𝛿)-DP, where

(1) 𝜀 (𝜀0, 𝛿,𝑇 ) = 𝑇𝜀0 for 𝛿 = 0;

(2) 𝜀 (𝜀0, 𝛿,𝑇 ) = 𝜀0

√
2𝑇 log

1

𝛿
+𝑇𝜀0 (𝑒𝜀0 − 1) for any 𝛿 > 0.

Lemma 2.4 (Group Privacy [7]). IfM is an (𝜀0, 0)-DP mecha-
nism, then for any two datasets 𝐷,𝐷 ′ that differ by at most 𝑘 tuples,
M satisfies (1) with 𝜀 = 𝑘𝜀0 and 𝛿 = 0.

Wewill use the PMWmechanism as an important building block:

Lemma 2.5 (PMW [10]). For any set L of linear queries over a
universe X and every 𝜀0 > 0 and an integer 𝑇 ≥ 1, there exists a
mechanismM such that for any dataset 𝐷 ∈ X𝑛 , with probability
1 − 𝛽 , all queries ℓ ∈ L can be answered on 𝐷̃ =M(𝐷) within error
at most

𝛼 (𝜀0, 𝑛, |X|, |L|) = 𝑂

(
𝑛

√
log |X|

𝑇
+ log( |L|/𝛽)

𝜀0

)
.

The mechanism runs in 𝑇 rounds, with each round being (𝜀0, 0)-DP
and taking 𝑂̃ ( |X| · |L|) time.

The explicit error bounds of the PMW mechanism follow by

combining Lemma 2.3 and 2.5: After running for 𝑇 rounds, PMW

satisfies (𝜀 (𝜀0, 𝛿,𝑇 ), 𝛿)-DP by Lemma 2.3. For this to be (𝜀, 𝛿)-DP
with 𝛿 > 0, one may set 𝑇 = Θ̃(𝜀𝑛) and 𝜀0 = Θ(𝜀/

√
𝑇 ln(1/𝛿)) to

achieve an optimal error bound

𝛼 (𝜀0, 𝑛, |X|, |L|) = 𝑂
©­«
√
𝑛 · log ( |L|/𝛽) ·

√
log |X| log(1/𝛿)

𝜀

ª®¬ .
For 𝛿 = 0, the best choice is 𝑇 = Θ̃((𝜀𝑛)2/3) and 𝜀0 = 𝜀/𝑇 , which
yields

𝛼 (𝜀0, 𝑛, |X|, |L|) = 𝑂

((
𝑛2 · log ( |L|/𝛽) · log |X|

𝜀

)1/3)
.

Nevertheless, it has been observed that setting 𝑇 to a constant

tends to work well in practice [10]. Note that 𝛼 also depends on

𝛿, 𝛽 , but we omit them in the notation as they will be fixed in

the later development, while we will invoke PMW with different

𝜀0, 𝑛, |X|, |L|.

3 ARBITRARY NUMERICAL QUERIES
In this section, we describe our mechanism for an arbitrary set 𝑄

of numerical queries. To achieve the query- and instance-specific

error bound proportional to Δ𝑤 (𝐷), we need to find a truncation

threshold Δ̄𝑤 (𝐷) for each𝑤 . However, we cannot afford to do so

for each𝑤 ∈ 𝑄 as in the composition-based baseline method. Our

idea is to find all these truncation thresholds in a “batching” mode

by employing PMW. Specifically, our new algorithm consists of

the following steps. First, we generate a set of counting queries

C(𝑄) from 𝑄 , which contain enough information for us to find

an approximate truncation threshold for every query in 𝑄 . These

counting queries will then be answered by PMW. From the answers

on C(𝑄), we extract the truncation thresholds Δ̄𝑤 (𝐷) for all𝑤 ∈ 𝑄 .

Finally, we truncate and normalize each𝑤 using Δ̄𝑤 (𝐷), converting
them to a set of linear queriesL(𝑄), which are answered by another
PMW instance, before scaling the answers back. For conceptual

simplicity, this outline uses two separate PMW instances; later we

show that they can actually be combined into one.

3.1 Finding Truncation Thresholds
We will find, in a DP fashion, a truncation threshold Δ̄𝑤 (𝐷) for
each𝑤 such that (1) Δ̄𝑤 (𝐷) is not too much larger than Δ𝑤 (𝐷) :=

max𝑡 ∈𝐷 𝑤 (𝑡), and (2) not too many tuples 𝑡 ∈ 𝐷 have 𝑤 (𝑡) >

Δ̄𝑤 (𝐷). The first condition bounds the error due to normalization

while the second condition bounds the truncation error. The follow-

ing lemma summarizes these two conditions more quantitatively.

Lemma 3.1. Let 𝛼 (𝜀0, 𝑛, |X|, |L|) be defined as in Lemma 2.5. For
any 𝑇, 𝛿 , there exists an (𝜀 (𝜀0, 𝛿,𝑇 ), 𝛿)-DP mechanism that, given a
dataset𝐷 and numerical queries𝑄 , returns a Δ̄𝑤 (𝐷) for every𝑤 ∈ 𝑄 ,
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such that with probability 1 − 𝛽 , we have Δ̄𝑤 (𝐷) ≤ 2Δ𝑤 (𝐷) and∑
𝑡 ∈𝐷

1[𝑤 (𝑡) > Δ̄𝑤 (𝐷)] ≤ 2𝛼 (𝜀0, 𝑛, |X|, (1 + logΔ) |𝑄 |),

for all𝑤 ∈ 𝑄 .

We now describe the mechanism. Given a set 𝑄 of numerical

queries, we define the following set of counting queries

C(𝑄) := {𝑐𝑤,𝜏 : 𝑤 ∈ 𝑄, 𝜏 ∈ {0, 1, 2, 4, . . . ,Δ/2}},
where

𝑐𝑤,𝜏 (𝑡) = 1[𝑤 (𝑡) > 𝜏] .
Note that |C| = (1 + logΔ) |𝑄 |. Then we invoke PMW to return a 𝐷̃

that can be used to answer all counting queries in C within error

𝛼 := 𝛼 (𝜀0, 𝑛, |X|, |C|). Next, for each𝑤 ∈ 𝑄 , we perform a doubling

search to find the largest 𝜏 such that 𝑐𝑤,𝜏 (𝐷̃) ≤ 𝛼 . Algorithm 1

describes the process more precisely. Below we prove Lemma 3.1.

Algorithm 1: Finding Approximate Maximum Weight

Input: Numerical queries 𝑄 , dataset 𝐷 , universe X
Input: Privacy budget (𝜀, 𝛿)
Output: Δ̄𝑤 (𝐷) for every𝑤 ∈ 𝑄

1 C ← {𝑐𝑤,𝜏 : 𝑤 ∈ 𝑄, 𝜏 ∈ {0, 1, 2, 4, . . . ,Δ/2}};
2 𝐷̃, 𝛼 ← PMW𝜀,𝛿 (X, 𝐷, C);
3 for𝑤 ∈ 𝑄 do
4 if 𝑐𝑤,0 (𝐷̃) ≤ 𝛼 then
5 Output Δ̄𝑤 (𝐷) = 0;

6 else
7 𝜏 ← 1;

8 while 𝜏 < Δ do
9 if 𝑐𝑤,𝜏 (𝐷̃) ≤ 𝛼 then
10 Output Δ̄𝑤 (𝐷) = 𝜏 ;

11 else
12 𝜏 ← 2𝜏 ;

13 end
14 end
15 Output Δ̄𝑤 (𝐷) = Δ;

16 end
17 end

Proof. Privacy is straightforward: Note that the only access

to the dataset 𝐷 happens at line 2. The remaining steps do not

consume privacy by the post-processing property of DP. The whole

mechanism thus satisfies (𝜀, 𝛿)-DP.
We next prove the two utility guarantees in the lemma, condi-

tioned on the event that all queries in C can be answered on 𝐷̃ with

error at most 𝛼 , which happens with probability 1 − 𝛽 .
Consider any𝑤 ∈ 𝑄 .We first show that

∑
𝑡 ∈𝐷 1[𝑤 (𝑡) > Δ̄𝑤 (𝐷)] ≤

2𝛼 . If themechanism outputs Δ̄𝑤 (𝐷) = Δ at line 15, then

∑
𝑡 ∈𝐷 1[𝑤 (𝑡) >

Δ] = 0 as Δ is an upper bound on𝑤 (𝑡). Otherwise, it must be that

𝑐𝑤,𝜏 (𝐷̃) ≤ 𝛼 for the output 𝜏 = Δ̄𝑤 (𝐷). By the accuracy guar-

antee of 𝐷̃ , we know 𝑐𝑤,𝜏 (𝐷) − 𝛼 ≤ 𝑐𝑤,𝜏 (𝐷̃) ≤ 𝛼 , which gives

𝑐𝑤,𝜏 (𝐷) =
∑
𝑡 ∈𝐷 1[𝑤 (𝑡) > 𝜏] ≤ 2𝛼 .

We now prove that Δ̄𝑤 (𝐷) ≤ 2Δ𝑤 (𝐷). When 0 is returned

at line 5, 0 ≤ 2Δ𝑤 (𝐷) is trivial. Otherwise, let 𝜏 ′ = ⌊Δ̄𝑤 (𝐷)/2⌋

be the previous value checked before returning Δ̄𝑤 (𝐷). We must

have 𝛼 < 𝑐𝑤,𝜏′ (𝐷̃) ≤ 𝑐𝑤,𝜏′ (𝐷) + 𝛼 , otherwise 𝜏 ′ would have been

the output. This gives 𝑐𝑤,𝜏′ (𝐷) =
∑
𝑡 ∈𝐷 1[𝑤 (𝑡) > 𝜏 ′] > 0, so

we have 𝜏 ′ < Δ𝑤 (𝐷) = max𝑡 ∈𝐷 𝑤 (𝑡). When Δ̄𝑤 (𝐷) = 1 and

𝜏 ′ = 0, this gives Δ𝑤 (𝐷) ≥ 1 so that Δ̄𝑤 (𝐷) < 2Δ𝑤 (𝐷). Otherwise,
Δ̄𝑤 (𝐷) = 2𝜏 ′ < 2Δ𝑤 (𝐷). □

The running time of Algorithm 1 is dominated by that of PMW.

After that, we issue at most 𝑂 ( |𝑄 | logΔ) counting queries on 𝐷̃ .

3.2 Truncation and Normalization
After finding the truncation thresholds Δ̄𝑤 (𝐷), we truncate and
normalize each numerical query𝑤 ∈ 𝑄 into a linear query ℓ𝑤 (𝑡) :=

min{𝑤 (𝑡)/Δ̄𝑤 (𝐷), 1}. Then we invoke PMW again on the set of

linear queries L(𝑄) := {ℓ𝑤 : 𝑤 ∈ 𝑄}, and scale the answers back

by Δ̄𝑤 (𝐷).
The error consists of two parts. First, running PMW on L(𝑄)

has an error of 𝛼 (𝜀0, 𝑛, |X|, |𝑄 |), which translates into an error of

Δ̄𝑤 (𝐷) ·𝛼 (𝜀0, 𝑛, |X|, |𝑄 |) = 𝑂 (Δ𝑤 (𝐷) ·𝛼 (𝜀0, 𝑛, |X|, |𝑄 |)) by the first
condition in Lemma 3.1. The truncation introduces an error of at

most 2Δ𝑤 (𝐷) ·𝛼 (𝜀0, 𝑛, |X|, (1+logΔ) |𝑄 |) by the second condition in
Lemma 3.1. This yields the following result on arbitrary numerical

queries.

Theorem 3.2. Let𝛼 (𝜀0, 𝑛, |X|, |L|) be defined as in Lemma 2.5. For
an arbitrary set 𝑄 of numerical queries, and any 𝑇, 𝛿 , there exists an
(𝜀 (𝜀0, 𝛿,𝑇 ), 𝛿)-DP mechanismM that, for any dataset 𝐷 ∈ X𝑛 , an-
swers all queries in𝑄 within error𝑂 (Δ𝑤 (𝐷) ·𝛼 (𝜀0, 𝑛, |X|, |𝑄 | logΔ))
with probability 1 − 𝛽 . The running time ofM is dominated by that
of PMW.

Optimality. Plugging in Lemma 2.3, 2.5, and ignoring polyloga-

rithmic factors, the error bound from Theorem 3.2 is 𝑂̃ (Δ𝑤 (𝐷) ·
√
𝑛).

Below we argue that this is the best one can hope for. For a single

numerical query𝑤 , Δ𝑤 (𝐷) is the downward local sensitivity of𝑤

on 𝐷 [2, 20], which is an instance-specific lower bound in a small

local neighborhood. Thus, an error bound of 𝑂̃ (Δ𝑤 (𝐷)) can be

considered instance-optimal, and such instance-optimal DP mech-

anisms have been developed for a single numerical query [2, 13].

Theorem 3.2 falls short of instance-optimality by an extra 𝑂̃ (
√
𝑛)

factor, which can be considered as the optimality ratio. However,
an 𝑂̃ (

√
𝑛) optimality ratio is unavoidable by the following simple

argument: Suppose there was a DP mechanism that achieves an

error of 𝑜 (Δ𝑤 (𝐷) ·
√
𝑛). Since counting queries are special numeri-

cal queries where Δ𝑤 (𝐷) = 1 for all𝑤 , this would also imply a DP

mechanism for counting queries with error 𝑜 (
√
𝑛), contradicting

the known lower bound [11].

3.3 Combining the Two PMW Instances
The algorithm described above used two PMW instances. Running

two PMW instances consumes not only more time, but also more

privacy (we need to split the privacy budget to the two instances).

We observe that the input to the two PMWmechanisms is the same

dataset𝐷 , although the queries are different: the first PMW instance

runs on the set of counting queries C(𝑄) while the second on the

set of linear queries L(𝑄). We cannot combine the two instances

directly, since the truncation and normalisation in L(𝑄) depends
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on the Δ̄𝑤 (𝐷)’s, which can only be obtained after running the first

PMW instance.

The idea to get around this dependency issue is to simply include

in L(𝑄) all linear queries using all possible truncation thresholds,

i.e., we redefine

L(𝑄) := {ℓ𝑤,𝜏 : 𝑤 ∈ 𝑄, 𝜏 ∈ {1, 2, 4, . . . ,Δ},

where ℓ𝑤,𝜏 (𝑡) := min{𝑤 (𝑡)/𝜏, 1}. This increases the size of L to be

equal to that of C, both of which are now (1 + logΔ) |𝑄 |. Neverthe-
less, since 𝛼 depends on the number of queries only logarithmically,

the impact on the error is negligible. In fact, the increased error

is completely offset by the benefit of using all the privacy bud-

get on a single PMW instance. We formalize the full algorithm in

Algorithm 2, which maintains the error guarantee in Theorem 3.2.

Algorithm 2:Mechanism for Numerical Queries

Input: Numerical queries 𝑄 , dataset 𝐷 , universe X
Input: Privacy budget (𝜀, 𝛿)
Output: Privatized answers 𝑤̃ (𝐷) for every𝑤 ∈ 𝑄

1 C ← {𝑐𝑤,𝜏 := 1[𝑤 (𝑡) > 𝜏] : 𝑤 ∈ 𝑄, 𝜏 ∈ {0,1, 2, 4, . . . ,Δ/2}};
2 L ← {ℓ𝑤,𝜏 := min{𝑤 (𝑡)/𝜏, 1} : 𝑤 ∈ 𝑄, 𝜏 ∈ {1, 2, 4, . . . ,Δ}};
3 𝐷̃, 𝛼 ← PMW𝜀,𝛿 (X, 𝐷, C ∪ L);
4 for𝑤 ∈ 𝑄 do
5 if 𝑐𝑤,0 (𝐷̃) ≤ 𝛼 then
6 Output 𝑤̃ (𝐷) = 0;

7 else
8 𝜏 ← 1;

9 while 𝜏 < Δ𝑤 do
10 if 𝑐𝑤,𝜏 (𝐷̃) ≤ 𝛼 then
11 Output 𝑤̄ (𝐷) = 𝜏 · ℓ𝑤,𝜏 (𝐷̃);
12 else
13 𝜏 ← 2𝜏 ;

14 end
15 end
16 Output 𝑤̄ (𝐷) = Δ𝑤 · ℓ𝑤,Δ𝑤

(𝐷̃);
17 end
18 end

4 DECOMPOSABLE QUERIES
The mechanism from the previous section works for a set of queries

that may define arbitrary mappings 𝑤 : X → [Δ]. It achieves an
error of 𝑂̃ (Δ𝑤 (𝐷) ·

√
𝑛) while taking time 𝑂̃ (𝑇 · |X| · |𝑄 |), neither of

which can be improved if we aim for arbitrary numerical queries. In

this section, we show how to improve both the error and running

time for a set of decomposable queries, which form an important

class of numerical queries commonly encountered in practice.

Definition 4.1. A set of queries 𝑄 is said to be decomposable
if there exists an equivalence relation 𝑅 over X and a function

𝑔 : X → [Δ], such that every𝑤 ∈ 𝑄 can be written as

𝑤 (𝑡) = 𝑓𝑤 ( [𝑡]𝑅) · 𝑔(𝑡), (2)

for some 𝑓𝑤 : X/𝑅 → [0, 1].

Here [𝑡]𝑅 ∈ X/𝑅 denotes the equivalent class induced by 𝑅 that

contains tuple 𝑡 . Note that while 𝑔(·) is common to the entire 𝑄 ,

𝑓𝑤 (·) can be different for each𝑤 ∈ 𝑄 .
By definition, any set of numerical queries 𝑄 is trivially de-

composable, simply by using the identity equivalence relation

𝑅0 = {(𝑡, 𝑡) : 𝑡 ∈ X}. As X/𝑅0 = X, we can set 𝑔(·) ≡ Δ and

𝑓𝑤 ( [𝑡]𝑅) = 𝑤 (𝑡)/Δ to satisfy Definition 4.1. We are more inter-

ested in decompositions where (a) |X/𝑅 | ≪ |X|, and/or (b) the
𝑓𝑤 (·)’s for all 𝑤 ∈ 𝑄 are counting queries with a common struc-

tural property. We will show in this section how (a) reduces the

running time and (b) leads to improved error bounds.

Example 4.2. Consider the four (sets of) queries in Example 1.1.

Query (1) satisfies (b) using the identity 𝑅0 and 𝑔(·) ≡ 1, while

the 𝑓𝑤 (·)’s are all range queries. Query (2) satisfies (b) using the

identity 𝑅0 and 𝑔(𝑡) = 𝑡 [income], while the 𝑓𝑤 (·)’s are also range

queries. Query (3) satisfies both (a) and (b), with 𝑅 putting all tuples

of the same age into an equivalence class (so thatX/𝑅 = dom(age))
and 𝑔(𝑡) = 𝑡 [income]2, while the 𝑓𝑤 (·)’s are range queries on the

age attribute. Query (4) is only trivially decomposable if there is no

restriction on UDF(·, ·). □

4.1 Reducing Universe Size
The running time of PMW is proportional to |X|, the universe size.
The issue can be particularly bad for numerical queries as |X| is
usually at least Δ. Consider query (3) in Example 1.1. Suppose the

domain of age is [1, 128] and the domain of income (squared) is

[1,Δ = 2
32]. Then we have |X| = 2

40
, which renders it impossible

to run PMW. Below we show how to reduce the effective universe

for PMW to | ˆX| = (1 + logΔ) |X/𝑅 |, at the cost of increasing the

error bound by a log(Δ) factor. For query (3) in Example 1.1, we

haveX/𝑅 = dom(age), so the reduced universe has size | ˆX| = 4224,

and PMW can now run in a reasonable amount of time.

The reduction works as follows. We define a new universe
ˆX =

X/𝑅 × {1, 2, 4, . . . ,Δ}. Clearly | ˆX| = (1 + logΔ) |X/𝑅 |. An instance

𝐷 ∈ X𝑛 is transformed to 𝐷̂ ∈ ˆX (1+logΔ)𝑛
as follows. For each

𝑡 ∈ 𝐷 , we write 𝑔(𝑡) in binary representation: 𝑔(𝑡) = ∑logΔ
𝑖=0

𝑔𝑖 (𝑡)2𝑖
where 𝑔𝑖 (𝑡) ∈ {0, 1}. For each 𝑖 = 0, 1, . . . , logΔ, we place a tuple
( [𝑡]𝑅, 𝑔(𝑖)2𝑖 ) in 𝐷̂ . Formally,

𝐷̂ = ⊎𝑡 ∈𝐷 ⊎
logΔ
𝑖=0
{([𝑡]𝑅, 𝑔(𝑖)2𝑖 )} ,

where ⊎ denotes multiset union.

For any query 𝑤 ∈ 𝑄 , we also define a transformed query

𝑤̂ (𝑥,𝑦) := 𝑓𝑤 (𝑥) ·𝑦 on the transformed dataset 𝐷̂ . It can be verified

that

𝑤̂ (𝐷̂) =
∑
𝑡 ∈𝐷

logΔ∑
𝑖=0

𝑓𝑤 ( [𝑡]𝑅)𝑔(𝑖)2𝑖 =
∑
𝑡 ∈𝐷

𝑓𝑤 ( [𝑡]𝑅)𝑔(𝑡) = 𝑤 (𝐷).

Finally, we run Algorithm 2 on 𝐷̂ over the universe
ˆX to answer

queries {𝑤̂}, which provide answers to𝑤 ∈ 𝑄 . The running time is

now 𝑂̃ (𝑇 · | ˆX| · |𝑄 |) = 𝑂̃ (𝑇 · |X/𝑅 | · |𝑄 |).
On the other hand, since each original tuple 𝑡 ∈ 𝐷 generates

(1+ logΔ) tuples in 𝐷̂ . To ensure privacy for the original dataset 𝐷 ,

we need to apply group privacy (Lemma 2.4) and use 𝜀0 = 𝜀0/(1 +
logΔ) for each round of the PMW mechanism. Then following a

similar analysis as for Theorem 3.2, we obtain the following result:
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Theorem 4.3. For any set of numerical queries 𝑄 that is decom-
posable by equivalence relation 𝑅, and any𝑇 , 𝛿 , there is an (𝜀 (𝜀0/(1+
logΔ), 𝛿,𝑇 ), 𝛿)-DP mechanism that runs in 𝑂̃ (𝑇 · |X/𝑅 | · |𝑄 |) time,
and with probability 1 − 𝛽 , it answers every 𝑤 ∈ 𝑄 within error
𝑂 (Δ𝑤 (𝐷) · 𝛼 (𝜀0/logΔ, 𝑛 logΔ, |X/𝑅 |, |𝑄 | logΔ)).

Remark. Compared with Theorem 3.2, Theorem 4.3 has an extra

𝑂 (logΔ) factor to both 𝜀0 and 𝑛. However, since they are in two

separate terms in the error bound 𝛼 (see Lemma 2.5), we have only

one𝑂 (logΔ) factor increase in the total error. Meanwhile, since the

universe size has been reduced to |X/𝑅 |, this offsets the increase in
error to some extent.

4.2 Queries with Structural Properties
For an arbitrary set of linear queries, the PMWmechanism achieves

the optimal error 𝑂̃ (
√
𝑛). For counting queries with certain struc-

tural properties, there aremechanisms achieving better error bounds.

Specifically, it is known that for a set of orthogonal range count-

ing queries in constant dimensions, the error can be reduced to

𝛼 = 𝑂̃ (1/𝜀) [6]; for a set of half-space counting queries in 𝑑 dimen-

sions, the optimal error is 𝛼 = 𝑂̃ (𝑛
1

2
− 1

2𝑑 /𝜀) [17]. More generally,

the optimal error bound depends on the hereditary discrepancy of

the query set, and there are DP mechanisms matching this optimal

error up to polylogarithmic factors [15, 18]. However, existing work

only supports counting queries. Although not explicitly stated, they

can be relatively easily modified to support “weighted” counting

queries, where each tuple 𝑡 is assigned a weight 𝑔(𝑡) ∈ [0, 1], and
the query asks for the total weight of all tuples 𝑡 in the query. This

is the same as decomposable numerical queries, except that the

weights 𝑔 : X → [Δ] have a much larger codomain. This means

that directly using normalization would yield an error of 𝑂 (Δ · 𝛼).
Below we show how to reduce it to 𝑂̃ (Δ𝑤 (𝐷) · 𝛼).

Let 𝑐𝑤,𝜏 (𝑡) = 1[𝑤 (𝑡) > 𝜏] and ℓ𝑤,𝜏 (𝑡) = min{𝑤 (𝑡)/𝜏, 1} for all
𝑤 ∈ 𝑄 and 𝜏 = 0, 1, 2, 4, . . . ,Δ, as in Section 3. Recall that Algorithm

2 relies on accurately answering these counting and linear queries.

We consider each in turn.

Answering {𝑐𝑤,𝜏 }. First consider the counting queries {𝑐𝑤,𝜏 }.
For a set 𝑄 of numerical queries that can be decomposed as in (2)

such that each 𝑓𝑤 ( [𝑡]𝑅) is a counting query, we can rewrite 𝑐𝑤,𝜏 as

𝑐𝑤,𝜏 (𝑡) = 𝑓𝑤 ( [𝑡]𝑅) · 1[𝑔(𝑡) > 𝜏] .

Instead of using PMW to answer {𝑐𝑤,𝜏 }, which can only achieve

error 𝛼 = 𝑂̃ (
√
𝑛), we will use a DP mechanism that exploits the

structural properties of {𝑓𝑤}. To do so, we partition the universe

X into 1 + logΔ subsets: X𝑖 = {𝑡 ∈ X : 2
𝑖−1 < 𝑔(𝑡) ≤ 2

𝑖 } for
𝑖 = 1, . . . , logΔ andX0 = {𝑡 ∈ X : 0 < 𝑔(𝑡) ≤ 1}.3 Correspondingly,
the given dataset𝐷 ∈ X𝑛 is also partitioned to𝐷 = ⊎logΔ

𝑖=0
𝐷𝑖 , where

𝐷𝑖 = {𝑡 ∈ 𝐷 : 𝑡 ∈ X𝑖 }. By parallel composition [7], we can afford

to run an (𝜀, 𝛿)-DP mechanism on each 𝐷𝑖 , and the composed

mechanism on 𝐷 still satisfies (𝜀, 𝛿)-DP.
For each𝐷𝑖 , we answer all the counting queries {𝑓𝑤} on𝐷𝑖 using

a DP mechanism tailored designed for {𝑓𝑤} with error bound 𝛼 .

Note that the query result of 𝑓𝑤 on 𝐷𝑖 is 𝑓𝑤 (𝐷𝑖 ) =
∑
𝑡 ∈𝐷𝑖

𝑓𝑤 ( [𝑡]𝑅).

3
We may assume have 𝑔 (𝑡 ) > 0 for all 𝑡 ∈ X. Otherwise such 𝑡 can be removed from

X without affecting any query.

Observe that for any 𝜏 that is a power of 2, we have

𝑐𝑤,𝜏 (𝐷) =
∑
𝑡 ∈𝐷

𝑓𝑤 ( [𝑡]𝑅) · 1[𝑔(𝑡) > 𝜏]

=

logΔ∑
𝑖=1+log𝜏

∑
𝑡 ∈𝐷𝑖

𝑓𝑤 ( [𝑡]𝑅)

=

logΔ∑
𝑖=1+log𝜏

𝑓𝑤 (𝐷𝑖 ).

Thus, each counting query 𝑐𝑤,𝜏 (𝐷) is the sum of𝑂 (logΔ) counting
queries 𝑓𝑤 (𝐷𝑖 ), each of which can be answered with error 𝛼 . So

𝑐𝑤,𝜏 (𝐷) can be answered within error 𝑂 (𝛼 logΔ). Put into the

framework of Section 3, this means that the truncation error is

𝑂 (Δ𝑤 (𝐷) · 𝛼 logΔ).

Answering {ℓ𝑤,𝜏 }. Next, consider the linear queries {ℓ𝑤,𝜏 }. We

rewrite ℓ𝑤,𝜏 (𝐷) as

ℓ𝑤,𝜏 (𝐷) =
∑
𝑡 ∈𝐷

min{𝑤 (𝑡)/𝜏, 1}

=
∑

𝑖≤log𝜏

𝑤 (𝐷𝑖 )/𝜏 +
∑

𝑖>log𝜏

∑
𝑡 ∈𝐷𝑖

𝑓𝑤 ( [𝑡]𝑅)

=
∑

𝑖≤log𝜏

𝑤 (𝐷𝑖 )/𝜏 +
∑

𝑖>log𝜏

𝑓𝑤 (𝐷𝑖 ).

The 𝑓𝑤 (𝐷𝑖 )’s are already available, each with error 𝛼 , so it only

remains to find𝑤 (𝐷𝑖 ). We rewrite it as

𝑤 (𝐷𝑖 ) =
∑
𝑡 ∈𝐷𝑖

𝑓𝑤 ( [𝑡]𝑅)𝑔(𝑡) = 2
𝑖
∑
𝑡 ∈𝐷𝑖

𝑓𝑤 ( [𝑡]𝑅)𝑔(𝑡)/2𝑖 .

Note that

∑
𝑡 ∈𝐷𝑖

𝑓𝑤 ( [𝑡]𝑅)𝑔(𝑡)/2𝑖 is a weighted counting query

where tuple 𝑡 has weight 𝑔(𝑡)/2𝑖 . Since all tuples 𝑡 ∈ 𝐷𝑖 have

𝑔(𝑡) ≤ 2
𝑖
, all these weights are in [0, 1], and we can invoke an

existing DP mechanism to answer all these weighted counting

queries with error 𝛼 , which translates to an error of 2
𝑖𝛼 for each

𝑤 (𝐷𝑖 ). So, the total error for the first term of ℓ𝑤,𝜏 (𝐷) is bounded
by

∑
𝑖≤log𝜏 2

𝑖𝛼/𝜏 = 𝑂 (𝛼), which is dominated by the total error

𝑂 (𝛼 logΔ) in the second term. Put into the framework of Section 3,

this means that the normalization error is also 𝑂 (Δ𝑤 (𝐷) · 𝛼 logΔ).
Finally, note that unlike Algorithm 2, which invokes only one

PMW instance, here we need to invoke an existing DP mechanism

for {𝑓𝑤} twice: the first is for the counting queries and the second

is weighted counting. Thus, we need to split the privacy budget.

Putting everything together, we conclude with the following result.

Theorem 4.4. Given any set of numerical queries 𝑄 that is de-
composable by equivalence relation 𝑅 such that𝑤 (𝑡) = 𝑓𝑤 ( [𝑡]𝑅)𝑔(𝑡)
where {𝑓𝑤} are counting queries that can be answered by an (𝜀, 𝛿)-DP
mechanism within error 𝛼 , there is an (2𝜀, 2𝛿)-DP mechanism that
answers every𝑤 ∈ 𝑄 with error 𝑂 (Δ𝑤 (𝐷) · 𝛼 logΔ).

Remark. When 𝑄 satisfies both condition (a) and (b), Theorem

4.4 is preferable to Theorem 4.3. This is because the 𝛼 in Theorem

4.4 is always smaller than that in Theorem 4.3 when the queries

have certain structural properties. Furthermore, the running times

of existing DP mechanisms for range queries [6] and half-space

queries [17] depend on the universe size only logarithmically, so

the benefit of a reduced universe size is insignificant.



Releasing Private Data for Numerical Queries KDD ’22, August 14–18, 2022, Washington, DC, USA

5 DEALINGWITH THE REAL CODOMAIN
In this section, we describe techniques to deal with the case 𝑤 :

X → R. Firstly, we can separate the positive and negative numerical

values, by splitting each query 𝑤 ∈ 𝑄 into 𝑤+ (𝑡) = max{𝑤 (𝑡), 0}
and 𝑤− (𝑡) = max{−𝑤 (𝑡), 0}. Note that 𝑤 (𝑡) = 𝑤+ (𝑡) −𝑤− (𝑡), so
we can answer any𝑤 ∈ 𝑄 by returning𝑤+ (𝐷) −𝑤− (𝐷). The error
is only scaled up by a factor of 2. Now both 𝑤+ (𝑡) and 𝑤− (𝑡) are
non-negative, so it suffices to consider the case𝑤 : X → {0} ∪ R+.

Next, we consider fractional values. In fact, the only place where

we rely on integer values for the general mechanism in Section

3 is in the doubling search in Algorithm 2. In particular, when

𝑐𝑤,0 (𝐷̃) > 𝛼 , we know that 0 cannot be used as a truncation thresh-

old, and we jumped to 𝜏 = 1. This is because for integer values, any

truncation threshold 𝜏 ∈ (0, 1) will function exactly the same as

𝜏 = 0. However, when𝑤 (𝑡) can take fractional values, this no longer
holds: Suppose Δ𝑤 (𝐷) < 1, and we use 1 as the truncation thresh-

old. The truncation error is not affected, as using a larger threshold

leads to less value getting truncated. Yet, the normalization error

will be proportional to 1 instead of Δ𝑤 (𝐷), resulting in an error

of𝑂 (max{Δ𝑤 (𝐷), 1} · 𝛼 (𝜀0, 𝑛, |X|, |𝑄 | logΔ)), which can be higher

than the desired error guarantee𝑂 (Δ𝑤 (𝐷) ·𝛼 (𝜀0, 𝑛, |X|, |𝑄 | logΔ))
if Δ𝑤 (𝐷) ≪ 1. To handle this very small Δ𝑤 (𝐷), we modify line 8

of Algorithm 2 as 𝜏 ← 𝑏 for a parameter 𝑏 ∈ (0, 1]. There are now
(1 + log(Δ/𝑏)) counting queries for each𝑤 ∈ 𝑄 , and the total error

changes to

𝑂

(
max{Δ𝑤 (𝐷), 𝑏} · 𝛼

(
𝜀0, 𝑛, |X|, |𝑄 | log

Δ

𝑏

))
.

Since 𝛼 depends on the number of queries logarithmically, the

increase from |𝑄 | to |𝑄 | log
Δ
𝑏
has a negligible impact on the er-

ror, which means that we can set 𝑏 conservatively to a very small

value so that 𝑏 < Δ𝑤 (𝐷), hence not affecting our error guarantee
asymptotically.

Our DP mechanism in Section 4.1 also relies on 𝑔(𝑡) being an

integer, since we decompose it into (1 + logΔ) bits. If 𝑔(𝑡) is a real
number, we can simply also decompose the fractional part of 𝑔(𝑡),
up to log(1/𝑏) bits after the decimal point. Correspondingly, we

need to replace every occurrence of (1 + logΔ) to (1 + log
Δ
𝑏
).

Finally, we reduce the codomain to a bounded discrete domain

𝑤 : X → [Δ̄]. Using the private-radius mechanism [3], we can find

a privatized Δ̄ ≤ max{𝑏, 2Δ(𝐷)} such that only 𝑂̃ (1) tuples in 𝐷

have𝑤 (𝑡) > Δ̄. Now we do a global truncation by redefining each

𝑤 as 𝑤̄ := min{𝑤 (𝑡), Δ̄}, which causes at most 𝑂̃ (max{𝑏,Δ𝑤 (𝐷)})
error to each𝑤 . Again using a conservatively small𝑏, this additional

error is negligible.

6 EXPERIMENTAL EVALUATION
We have evaluated our mechanisms on various datasets against the

three baseline methods, using the datasets from [10]. While [10]

only considered counting queries, we study numerical queries. The

Adult [4] dataset, also referred to as the Census Income dataset,

contains 48,842 records over 14 attributes. The Transfusion [4, 22]

dataset contains 748 records over 4 attributes. We also included

another Bank Marketing [4, 16] dataset, which contains 41,445

records over 16 attributes.

We mainly tested the pure-DP setting, i.e., 𝛿 = 0; approximate-

DP (i.e., 𝛿 > 0) would result in similar improvements to all methods.

For each set of queries, we compare the following mechanisms.

• The normalization mechanism, which normalizes every𝑤 ∈
𝑄 by Δ𝑤 , and answers them with the PMW mechanism.

• The composition mechanism, which answers each 𝑤 ∈ 𝑄
using the mechanism in [13] with (𝜀/|𝑄 |, 0) privacy budget

for each query.

• The global truncation mechanism, which first truncates ev-

ery query by Δ̄(𝐷), and then applies the normalization mech-

anism.

• Our general mechanism (Algorithm 2) for arbitrary numeri-

cal queries in Section 3, which uses PMW mechanism as a

subroutine. We always use the universe reduction technique

from Section 4.1 when applicable.

• For 1D range numerical queries, we also compare with the

mechanism in Section 4.2. We find that in two or higher

dimensions, themechanism in Section 4.2 is not as practically

competitive as our general mechanism, despite its better

theoretical error bound.

For the PMW mechanism, we follow implementation in [10]. In

particular, we set𝑇 = 10 as recommended. Note that in Algorithm 2,

we require PMW to also report 𝛼 , the maximum error of all queries.

While this can be directly calculated using the error upper bound,

the bound turns out to be too loose. Therefore, after PMW returns 𝐷̃ ,

we compute the actual maximum error 𝛼 = maxℓ∈L |ℓ (𝐷) − ℓ (𝐷̃) |.
Note that 𝛼 is a sensitive value involving 𝐷 , so we cannot use 𝛼

directly. However, its sensitivity is 1 as on any two neighboring

datasets, we have |ℓ (𝐷) − ℓ (𝐷 ′) | ≤ 1 for any linear query ℓ . So by

sparing a small constant fraction of 𝜀, we can use privatized version

of 𝛼 with only 𝑂 (1/𝜀) noise (Lemma 2.2).

In each set of experiments, we present the errors of all queries

in 𝑄 using a box plot, which shows the maximum, median, and

25%/75% percentiles of the |𝑄 | errors.

6.1 Results on the Adult Dataset
Weused 4 attributes from the dataset: a person’s age (age), education

level (edu), capital loss (loss), and capital gain (gain). The queries

are designed as follows. We first consider a set of rectangle ranges

on dom(age) × dom(edu), while aggregating on loss. We set the

domains of the attributes as dom(age) = [1, 100] and dom(edu) =
[1, 16]. Each query selects a closed interval of ages whose length

is between 0 and 10, and one or two consecutive education levels.

There are 1045 intervals on age and 31 different conditions on

education level, leading to a total of |𝑄 | = 32395 queries. Note that

for this set of queries, Δ𝑤 = Δ for all𝑤 ∈ 𝑄 .
The maximum value on the loss attribute is 4396. In [10], they

simply set dom(loss) = [0,Δ = 4396]. However, this setting actu-

ally violates privacy, since the maximum loss is a sensitive value.

Nevertheless, we still follow this setting, while noting that for strict

privacy, Δ should be set to the largest possible loss that is indepen-

dent of the actual dataset, e.g., 2
32
, which would render the baseline

methods extremely bad. Thus, our experimental comparison actu-

ally gives the largest possible advantage to the baseline methods.
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Figure 1: Adult, Aggregate “loss”
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Figure 2: Adult, Aggregate “gain”
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Figure 3: Bank

With this (non-private) setting of Δ, we have Δ(𝐷) = Δ, so the nor-

malization mechanism coincides with the global truncation mecha-

nism. The whole universe X = dom(age) × dom(edu) × dom(loss)
has size 7 × 10

6
, and we use the universe reduction technique in

Section 4.1 to reduce it to |X′ | = 100 × 16 × (1 + logΔ) = 20, 800.

Figure 1 shows the results on varying 𝜀. Note that the errors

are shown in log-scale. The composition mechanism has the worst

performance in terms of both maximum error and median error.

This is because the privacy budget 𝜀 has to be shared by all the |𝑄 |
queries. For most queries, our mechanism significantly outperforms

the two baseline methods, especially for queries with smaller ranges.

This is precisely due to our both query- and instance-specific error

bound 𝑂̃ (
√
𝑛 · Δ𝑤 (𝐷)). On the other hand, the error box of the

normalization mechanism is much narrower, since its error bound

𝑂̃ (
√
𝑛 · Δ𝑤) = 𝑂̃ (

√
𝑛 · Δ) is the same for all queries.

Nevertheless, our mechanism has a slightly worse maximum

error compared with the normalization mechanism. This is actually

because the normalization mechanism is given the tightest, private-

breaching Δ𝑤 = Δ = max𝑤∈𝑄 Δ𝑤 (𝐷), so the worst query 𝑤 ∈ 𝑄
does not benefit from our mechanism, which selects query-specific

truncation thresholds. If a larger Δ (which respects more privacy)

were used, the errors of all queries for the normalizationmechanism

would grow proportionally.

We also tested the same queries but replacing the aggregation

attribute by “gain”. This time, we set dom(gain) = [0,Δ = 99999]
as opposed to using the maximum gain in 𝐷 . The results are shown

in Figure 2. As expected, the normalization mechanism becomes

much worse in this case.

6.2 Results on the Bank Dataset
For the Bank dataset, we used numerical attributes for a client’s age

(age), average yearly balance (balance), and Boolean attributes for

whether or not the person has housing loan (housing) or personal

loan (loan). Each query still selects an interval of ages whose length

is between 0 to 10, with all possible conditions on “housing” and

“loan”, and finally aggregates on “balance”. This leads to |𝑄 | = 4180

numerical queries. The difference from the Adult dataset is that

the “balance” attribute contains both positive and negative values.

We assume dom(balance) = [−2
13, 217], which is just enough to

include all values appearing in the dataset. We use the technique

from Section 5 to separate each query into two to deal with positive

and negative values respectively.

Figure 3 shows the results. The compositionmechanism is slightly

better in this case, since there are relatively a small number of

queries. Yet, its maximum error is still very large. In terms of me-

dian error, composition and our method are both much better than

the normalization mechanism (or the global truncation mechanism).

This is because this dataset is highly skewed: A small number of

people have very large balances, but they are not queried by most

queries. The normalization technique thus suffers from this skew-

ness as it normalizes all queries using the same Δ. On the other

hand, the composition mechanism and our new mechanism are

able to handle this skewness very nicely.

6.3 Results on the Transfusion Dataset
On the Blood Transfusion dataset, we consider two attributes: the

number of blood donations a person has made (frequency) and num-

ber of months since his/her first donation (time). The domains are

dom(frequency) = [1, 50] and dom(time) = [1, 200]. The universe
therefore has size |X| = 10000. We are interested in the average

duration between two blood donations, which can be calculated

as 𝑡 [time]/𝑡 [frequency] for a person 𝑡 in the dataset. To create

multiple queries, we apply selection conditions on the “frequency”

domain by considering all sub-intervals of [1, 50], which creates

1275 different queries. Each query is written as

𝑤 (𝐷) =
∑
𝑡 ∈𝐷

1[𝑎 ≤ 𝑡 [frequency] ≤ 𝑏] · 𝑡 [time]/𝑡 [frequency] .

For this set of queries, Δ𝑤 is different for each 𝑤 , which is

Δ𝑤 = 200/𝑎. Therefore the normalizationmechanism and the global

truncation mechanism differ. As the universe size is moderate, we

can directly run the PMW mechanism on the original instance

without applying the universe reduction technique which sacrifices

accuracy for time.

Figure 4 shows the results varying 𝜀. The composition mecha-

nism is still bad, as there are more queries than the instance size

𝑛 = 748. For this set of queries, the normalization mechanism is gen-

erally better-performing than the global truncation one, except for

its maximum error. This is because the normalization mechanism is

able to take the advantage of a smaller Δ𝑤 for certain queries. For

example, for a query that selects only people who donated more

than 10 times, its Δ𝑤 is only 20. Our mechanism is slightly better

than the normalization mechanism in this case for the same reason

that the difference between the maximum value in the dataset vs.



Releasing Private Data for Numerical Queries KDD ’22, August 14–18, 2022, Washington, DC, USA

0.5 1.0 2.0

ε

0

100

101

102

103

104

105

106

107

E
rr

or

Composition

Normalization

Global Truncation

Ours

Figure 4: Transfusion, Varying 𝜀
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Figure 5: Transfusion, Varying Δ
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Figure 6: Range Mechanism on Bank

the global sensitivity is small for many queries. It has the smallest

median error over all mechanisms.

In Figure 5, we fix 𝜀 = 1.0, and change the domain of the at-

tribute “time” to [1, 400] and [1, 800] respectively. Correspondingly,
the universe size |X| is increased, as well as the Δ𝑤 of each query.

The instance-independent normalization mechanism is affected the

most, while all the other mechanism are instance-specific, thus is

robust with respect to the change in the universe size. Our mecha-

nism shows significant improvements when the global sensitivity

of queries are large.

6.4 Evaluation on Structured Queries
In previous results, we implemented our general mechanism which

does not take advantage of the structural properties of queries. In

this section, we implement the mechanism in Section 4.2, using 1D

range queries as example. We use queries on the Bank dataset for

evaluation. For simplicity, we only consider positive balances this

time. The basic weighted range counting mechanism we use is the

same as [1, 5], which builds a synopsis using dyadic intervals [9].

Results are shown in Figure 6. The performance of the range

mechanism in practice is similar to that of the general mechanism,

with a smaller maximum error. But there are two advantages. First,

the running time of the mechanism is much smaller than that of

the general mechanism. Second, the range mechanism indeed sup-

ports all range conditions on the “age” attribute with no additional

costs, while the general mechanism uses the number of queries as

a parameter.
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A EXPERIMENTS ON THE TPC-H
BENCHMARK

To test the performance of our mechanism on a larger dataset, we

also run experiments on a 1GB TPC-H dataset. We consider the

following query modified from TPC-H Q6.

select
sum(l_extendedprice * l_discount) as revenue

from
lineitem

where
l_shipdate between '[a]' and '[b]'
and l_discount between '[c]'-0.01 and '[c]'+0.01
and l_quantity = '[d]'

This query involves 4 attributes from the largest table lineitem,

which contains 4 million tuples. The domain of each attribute is ob-

tained from the source code which generates the dataset. For exam-

ple, l_extendedprice can be as large as 105000 and l_discount
ranges from 0% to 10%.

The query set we consider is specified as follows. Let [a] and

[b] iterate through all possible range conditions on shipdate that

contains at most 12 months. This creates 942 intervals. Let [c] take

any value between 2% and 9% as in the standard specification, and

[d] take any value between 1 and 10. There are 75360 queries by

considering all the combinations of [a] to [d] as above. The global

sensitivity of any query is Δ = 105000 ∗ 10% = 10500.

The Cartesian product of related attributes form a universe of

size around 5 billion. So we apply the decomposition mechanism

in Section 4.1. For this query, the decomposition works on the

conceptual column that equals

𝑔(𝑡) = 𝑡 [l_extendedprice] · 𝑡 [l_discount]
for each tuple 𝑡 .
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Figure 7: TPC-H Q6

Figure 7 shows the results. The instance is hugewhile the number

of queries is relatively small. This causes the composition mech-

anism to perform better than the Normalization or Global Trun-

cation mechanism. But its maximum error is still very large. Our

mechanism is still the best performing one, despite the fact that

theoretically 𝑛 is much larger than |𝑄 |.
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