
Graph Analytics Through Fine-Grained Parallelism
Zechao Shang†, Feifei Li‡, Jeffrey Xu Yu†, Zhiwei Zhang§, Hong Cheng†
†The Chinese University of Hong Kong, ‡University of Utah, §Hong Kong Baptist University

The Graph System War

Coarse-grained parallelism vs. fine-grained parallelism
Worker 2Worker 1

Statev

Computing Computing

Buffer

Shuffling

Worker 2Worker 1

Statev

I Partitioned immutable state
I Embarrassingly parallelism
I Suffers from:

I Straggler
I Data shuffling/copy overheads
I No intra-iteration optimizations

Worker 2Worker 1

Statev

I Shared mutable state
I More flexible implementation
I Faster communication

I Could be asymptotically better

I Modularized system design
I Potential problem:

I Data consistency (see below)

Asynchronous vs. synchronous

w

Worker

Stateu v w

u

w

v

0

x

0

v+w≡0

I No consistency control
I Data integrity at risk
I May lead to:

I Slower convergence
I Incorrect results
I Corrupted data

w

Worker

Stateu v w

u

w

v

0

x

0

v+w≡0

I Consistent data
I Performance depends on consistency

controller efficiency

Synchronous Parallel Processing for Fine-Grained Parallelism

System setting:
I In-memory graph analytics
I Static and exclusively owned data
I Target: as fast as possible

Our system components:
I Shared mutable state
I Controlled data consistency
I User-implemented UDF
I Customizable job scheduler

User API:
I A user-defined function
I Read and write shared state
I Add task to job queue
I Optional barrier

Execution Workflow:
I Get task from job queue
I Execute it with consistency guarantee

(serializable)
I Synchronous at barrier if demanded
I Can simulate asynchronous, BSP and

prioritized scheduling

System Features:
I Strong semantics

I Equivalent to serial execution
I No asynchronization, no nondeterministic
I Always-correct results

I Flexible model
I Can simulate asynchronous, BSP and

prioritized scheduling by customizing
schedulers and concurrency controller

I Fast information diffusion
I Enable intra-iteration optimization
I Support asymptotically better algorithm

(for example, stochastic gradient descent
vs. gradient descent)

Frontend

Task Scheduler

UDF

Worker 0

Consistency Control

Shared State

Worker n...

// Vertex Class
class vertex {

abstract void UDF(vertex v);
value_t readVertex(vertex v);
void writeVertex(vertex v, value_t val);

}

// Global Functions
addTask(vertex v, priority = 1.0);
barrier(function f);

in parallel for each worker
if at barrier

wait until all workers reach barrier
execute the function f
continue

if no more tasks in the scheduler queue
exit

retrieve (and remove) task vertex v
begin transaction

execute UDF(v) as a transaction t(v)
end transaction

// A Page Rank example of usage
void UDF(vertex v) {

// calculate the page rank value
double sum = 0, previous = readVertex(v);
for (all neighbors u)

sum += readVertex(u);
sum = sum * (1 - d) + d;
writeVertex(v, sum);

// schedule v with priority
double gap = abs(sum - previous);
if (gap > 1e-6)

addTask(v, gap);

// report vertices with top-k page rank
// values periodically
if (time elapsed 1 sec since last report)

barrier({
// find current top-k vertices and print
});

}

HSync: A Hybrid Scheduler

Why existing ones are not working?
I Graph degree distribution is highly

skewed (see right top)
I The transaction conflict rate is skewed

(see right bottom)
I Traditional schedulers are optimized for

particular homogeneous workload
I Locking-based for high conflict rate
I Optimistic for low conflict rate
I Multi-version for read-only

I None of them works well for
heterogeneous conflict rate workload

10
1

10
3

10
5

10
7

10
0

10
1

10
2

10
3

10
4

10
5

c
o
u
n
t

(
i
n

l
o
g
)

degree (in log)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

Our hybrid scheduler:
I Combines the advantages of two-phase lock (2PL) and optimistic scheduler (OCC)
I Routes transactions to an appropriate one based on the degrees of the vertices.

I Large degree vertex ⇒ 2PL
I Small degree vertex ⇒ OCC

I Ensures the serializability by:
I OCC requests 2PL’s locks at verification step
I If fail, abort

I Check our paper for details and proofs

Experimental Studies

First, we measured the throughput of schedulers. Our HSync outperforms others significantly.
2PL
OCC

Chromatic
TO

MVTO
2V2PL

HSync

0

2

4

6

1 4 8 16 24 32

0

2

4

1 4 8 16 24 32

twitter-mpi dataset. x-axis for number of cores, y-axis for throughput (×106). Left for read-heavy and right for
write-heavy workload.

We also computed the scalability of each scheduler.

0

4

8

12

16

1 4 8 16 24 32

0

4

8

12

16

20

1 4 8 16 24 32

twitter-mpi dataset. x-axis for number of cores, y-axis for throughput normalized by throughput of 1-core. Left for
read-heavy and right for write-heavy workload.

To verify the advantage of fine grained parallelism using synchronous parallel processing (with
HSync) against asynchronous parallel and BSP processing for graph analytics, we tested
PageRank, single source shortest path (SSSP), graph coloring, and alternative least squares
(ALS) for matrix factorization.

1.0

1.5

2.0

2.5

 0 20 40 60 80 100

r
m
s
e

time (in second)

HSync
Async
BSP

1.0

1.5

2.0

2.5

 0 100 200 300 400 500

r
m
s
e

time (in second)

HSync
Async

BSP

ALS. Left for netflix dataset and right for Yahoo! dataset. The smaller the better.

0

100

200

300

400

 0 50 100 150 200 250 300

c
r
o
s
s

e
d
g
e
s

time (in second)

HSync
Async
BSP

0

2*10
5

4*10
5

6*10
5

8*10
5

10
6

 0 50 100 150 200 250

c
r
o
s
s

e
d
g
e
s

time (in second)

HSync
Async
BSP

Graph coloring. Left for twitter-mpi dataset and right for uk-2007-05 dataset. The smaller the better. BSP results
are beyond the figures’ boundaries.

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60

r
e
s
i
d
u
a
l

time (in second)

HSync
Async

BSP

0.0

0.2

0.4

0.6

0.8

1.0

 0 5 10 15 20 25 30

r
e
s
i
d
u
a
l

time (in second)

HSync
Async

BSP

Page Rank. Left for twitter-mpi dataset and right for uk-2007-05 dataset. The smaller the better.

0

10
7

2*10
7

3*10
7

4*10
7

5*10
7

 0 5 10 15 20 25 30 35 40

e
x
p
l
o
i
t
e
d

time (in second)

HSync
Async

BSP

0

2*10
7

4*10
7

6*10
7

8*10
7

 0 5 10 15 20 25 30 35 40

e
x
p
l
o
i
t
e
d

time (in second)

HSync
Async

BSP

SSSP. Left for twitter-mpi dataset and right for uk-2007-05 dataset. The larger the better.

