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ABSTRACT
The trend in the DBMS market is to migrate to the cloud for elas-
ticity, high availability, and lower costs. The traditional, monolithic
database architecture is difficult to meet these requirements. With
the development of high-speed network and newmemory technolo-
gies, disaggregated data center has become a reality: it decouples
various components from monolithic servers into separated re-
source pools (e.g., compute, memory, and storage) and connects
them through a high-speed network. The next generation cloud
native databases should be designed for disaggregated data centers.

In this paper, we describe the novel architecture of PolarDB
Serverless, which follows the disaggregation design paradigm: the
CPU resource on compute nodes is decoupled from remote mem-
ory pool and storage pool. Each resource pool grows or shrinks
independently, providing on-demand provisoning at multiple di-
mensions while improving reliability. We also design our system to
mitigate the inherent penalty brought by resource disaggregation,
and introduce optimizations such as optimistic locking and index
awared prefetching. Compared to the architecture that uses local
resources, PolarDB Serverless achieves better dynamic resource pro-
visioning capabilities and 5.3 times faster failure recovery speed,
while achieving comparable performance.

CCS CONCEPTS
• Information systems → Data management systems; • Net-
works→ Cloud computing.
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1 INTRODUCTION
As enterprises move their applications to the cloud, they are also
migrating their databases to the cloud. The driving force of this
trend is threefold. First, cloud vendors provide the “pay-as-you-go”
model that allows customers to avoid paying for over-provisioned
resources, resulting in significant cost reduction. Second, marketing
activities such as Black Friday and Singles’ Day often demand
rapid but transient resource expansion from the database systems
during peak time, where cloud vendors can offer such elasticity
to customers. Third, cloud vendors are able to quickly upgrade
and evolve the database systems to maintain competitiveness and
repair defects in time while sustaining high availability. Customers
always expect that node failures, especially planned downtime and
software upgrades, will have less impact on their business.

Cloud vendors such as AWS [43], Azure [2], GCP and Alibaba [9]
provide relational database as a services (DBaaS). There are three
typical architectures for cloud databases: monolithic machine (Fig-
ure 1), virtual machine with remote disk (Figure 2(a)), and shared
storage (Figure 2(b)), and the last two can be referred as separation of
compute and storage. Though these architectures have been widely
used, they all suffer from challenges caused by resource coupling.

Under the monolithic machine architecture, all resources (such
as CPU, memory and storage) are tightly coupled. The DBaaS plat-
form needs to solve bin-packing problems when assigning database
instances to machines. It is difficult to make different resources
allocated on a physical machine all have a high utilization rate,
which is prone to fragmentation. Moreover, it is difficult to meet
the demands of customers to adjust individual resources flexibly
according to the load at runtime. Finally, a system with tightly
coupled resources has the problem of fate sharing, i.e., the failure
of one resource will cause the failure of other resources. Resources
cannot be recovered independently and transparently, which leads
to longer system recovery time.

With the separation of compute and storage architecture, DBaaS
can independently improve the resource utilization of the storage
pool. The shared storage subtype further reduces storage costs —
the primary and read replicas can attach and share the same storage.
Read replicas help to serve high volume read traffic and offload ana-
lytical queries from the primary. However, in all these architectures,
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problems like bin-packing of CPU and memory, lacking of flexible
and scalable memory resources, remain unsolved. Furthermore,
each read replica keeps a redundant in-memory data copy, leading
to high memory costs.

In this paper, we propose a novel cloud database design par-
adigm of the disaggregation architecture (Figure 3). It goes one
step further than the shared storage architecture, to address the
aforementioned problems. The disaggregation architecture runs
in the disaggregated data centers (DDC), in which CPU, memory
and storage resources are no longer tightly coupled as in a mono-
lithic machine. Resources are located in different nodes connected
through high-speed network. As a result, each resource type im-
proves its utilization rate and expands its volume independently.
This also eliminates fate sharing, allowing each resource be re-
covered from failure and upgraded independently. Moreover, data
pages in the remote memory pool can be shared among multiple
database processes, analogous to the storage pool being shared
in shared storage architecture. Adding a read replica no longer in-
creases the cost of memory resources, except for consuming a small
piece of local memory.

A trend in recent years is that cloud-native database vendors are
launching serverless variants [3, 4]. The main feature of serverless
databases is on-demand resource provisioning (such as auto-scaling
and auto-pause), which should be transparent and seamless without
interrupting customer workloads. Most cloud-native databases are
implemented based on the shared storage architecture, where CPU
and memory resources are coupled and must be scaled at the same
time. In addition, auto-pause has to release both resources, resulting
in long resumption time. We show that disaggregation architecture
can overcome these limitations.

PolarDB Serverless is a cloud-native database implementation
that follows the disaggregation architecture. Similar to major cloud-
native database products like Aurora, HyperScale, and PolarDB1,
it includes one primary (RW node) and multiple read replicas (RO
nodes) in the database node layer. With the disaggregation architec-
ture, it is possible to support multiple primaries (RW nodes), but
this is not within the scope of this paper.

The design of a multi-tenant scale-out memory pool is intro-
duced in PolarDB Serverless, including page allocation and life cycle
management. The first challenge is to ensure that the system exe-
cutes transactions correctly after adding remote memory to the
system. For example, read after write should not miss any updates
even across nodes. We realize it using cache invalidation. When

1PolarDB Serverless is developed on a fork of PolarDB’s codebase.

RW is splitting or merging a B+Tree index, other RO nodes should
not see an inconsistent B-tree structure in the middle. We protect
it with global page latches. When a RO node performs read-only
transactions, it must avoid reading anything written by uncommit-
ted transactions. We achieve it through the synchronization of read
views between database nodes.

The evolution of the disaggregation architecture could have a
negative impact on the database performance. It is because the
data is likely to be accessed from the remote, which introduces
significant network latency. The second challenge is to execute
transactions efficiently. We exploit RDMA optimization exten-
sively, especially one-sided RDMA verbs, including using RDMA
CAS [42] to optimize the acquisition of global latches. In order
to improve concurrency, both RW and RO use optimistic locking
techniques to avoid unnecessary global latches. On the storage side,
page materialization offloading allows dirty pages to be evicted
from remote memory without flushing them to the storage, while
index-aware prefetching improve query performance.

The disaggregation architecture complicates the system and
hence increases the variety and probability of system failures. As a
cloud database service, the third challenge is to build a reliable sys-
tem, we summarize our strategies to handle single-node crashes of
different node types which guarantee that there is no single-point
failure in the system. Because the states in memory and storage are
decoupled from the database node, crash recovery time of the RW
node becomes 5.3 times faster than that in the monolithic machine
architecture.

We summarize our main contributions as follows:

• We propose the disaggregation architecture and present the
design of PolarDB Serverless, which is the first cloud database
implementation following the architecture. We demonstrate
that this architecture provides new opportunities for the
design of new cloud-native and serverless databases.

• We provide design details and optimizations that make the
systemwork correctly and efficiently, overcoming the perfor-
mance drawbacks brought by the disaggregation architecture.

• We describe our fault tolerance strategies, including the
handling of single-point failures and cluster failures.

The remainder of this paper is organized as follows. In Section 2,
we introduce backgrounds of PolarDB and DDC. Section 3 explains
the design of PolarDB Serverless. Section 4 presents our performance
optimizations. Section 5 discusses our fault tolerance and recov-
ery strategies. Section 6 gives the experimental results. Section 7
reviews the related work, and Section 8 concludes the paper.
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Figure 4: PolarDB Architecture
2 BACKGROUND
2.1 PolarDB
PolarDB [26] is a cloud-native database with shared storage architec-
ture. It is derived from the MySQL code base and uses PolarFS [9] as
the underlying storage pool. It includes one primary (RW node) and
multiple read replicas (RO nodes) in the compute node layer. Like a
traditional database kernel, Each RW or RO node contains a SQL
processor, transaction engines (like InnoDB [35], X-Engine [18]),
and a buffer pool to serve queries and transactions. In addition,
there are some stateless proxy nodes for load balancing.

PolarFS is a durable, atomic and scale-out distributed storage
service. It provides virtual volumes that are partitioned into chunks
of 10GB size which are distributed in multiple storage nodes. A
volume contains up to 10000 chunks, and can provide a maximum
capacity of 100TB. Chunks are provisioned on demand so that
volume space grows dynamically. Each chunk has three replicas,
and linear serializable is guaranteed through Parallel Raft, which is
a consensus protocol derived from Raft.

The RW node and RO nodes synchronize memory status through
redo logs, and coordinate consistency through log sequence num-
ber(LSN), which indicates an offset of redo log files in InnoDB. As
shown in Figure 4, in a transaction 1○, after RW finishes flushing
all redo log records to PolarFS 2○, the transaction can be committed
3○. RW broadcasts messages that the redo log have been updated
and the latest LSN lsnRW to all RO nodes asynchronously 4○. After
the node ROi received the message from RW, it pulls updates of
redo log from PolarFS 5○, and applies them to the buffered page
in buffer pool 6○, so that ROi keeps synchronization with RW.
Then ROi piggybacks the consumed redo log offset lsnROi in the
reply and send it back to RW 7○. RW can purge the redo log be-
fore themin{lsnROi } location, and flush the dirty pages elder than
min{lsnROi } to PolarFS in the background 8○. While ROi can serve
read transactions using the snapshot isolation with version before
lsnROi 9○. Some RO nodes may fall behind because of high CPU
utilization or network congestion. Say there is a certain node ROk ,
whose LSN lsnROk is much lower than that of RW lsnRW (the lag
is larger than one million). Such node ROk will be detected and
kicked out of the cluster to avoid slowing down RW to flush dirty
pages.
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Proxy nodes provide transparent load balancing service for sep-
arating read and write traffics, distribute read requests to RO nodes
and forward write requests to RW.
2.2 Disaggregated Data Centers
In disaggregated data centers, compute nodes, memory nodes, and
storage nodes are interconnected through a high-speed network.
The recent development of RDMA network technology [17] (such
as InfiniBand, RoCE/RoCEv2, and iWARP) makes it possible to build
large-scale disaggregated data centers. Alibaba’s data center net-
work is an Ethernet-based multi-layer clos network, which adopts
RDMA technology RoCEv2 based on Ethernet.

As shown in Figure 5, a typical data center at Alibaba has three
layers: the spine layer, the leaf layer, and the ToR layer. A ToR switch
connects up to 48 nodes. ToR switches connect to leaf switches.
Leaf switches connect to spine switches. Each machine is equipped
with a dual-port RDMA NIC, which is connected to two different
ToR switches to support continuous service in case of single net-
work link failure. A leaf switch group is composed of multiple leaf
switches, which provide services at the same time and serve as back-
ups for each other. The collection of racks and servers managed
by a leaf switches group is called a PoD (Point of Delivery). A PoD
contains up to 32 groups of ToR, thus more than 1500 servers. The
servers in a PoD are interconnected through the RDMA network.

Under the disaggregation architecture, the computation, memory
and storage resources required by a single database instance are
allocated under the same PoD. And, the resources of different in-
stances can be placed to different PoDs. Computation and memory
resources tend to be allocated together under the same ToR for
lower latency and fewer jitters.
2.3 Serverless Databases

Serverless databases are highly elastic derivatives of cloud-native
databases, such as AWSAurora Serverless [3] and Azure SQL Server-
less [4]. Their main design goal is on-demand resource provision-
ing, which enables agile resource adjustment according to actual
workloads and provides a pay-as-you-go payment model. More
specifically, auto-scaling pops up resources during peak periods
and shrinks when the surge subsides. This can helpmany businesses
meet both their performance and budget constraints. Similarly, auto-
pause releases computing resources during inactive periods and
hence only storage consumption is billed. When traffic comes, the
database can be automatically resumed with little recovery time.

The auto-scaling capacity of existing serverless databases have
limitations, due to the underlying shared storage architecture [2, 43].
Their CPU and memory resources are tightly coupled, which must
be scaled up and down simultaneously at the granularity of resource



unit. A resource unit is a package of fixed CPU and memory re-
sources on the compute nodes (virtual machines or containers),
e.g., an ACU (Aurora Compute Unit) contains 2 GiB of memory
and associated virtual processor. This setting fixes the resource
ratio and is inadequate to satisfy all scenarios. For example, ana-
lytical database customers have higher requirement for memory
capacity than for CPU capacity, since large amounts of data should
be cached in memory for fast access. In contrast, transactional
database customers demands more CPU resources to support their
business peaks, where small memory is adequate for a high cache
hit rate. Under the disaggregation architecture, since CPU and mem-
ory are completely decoupled, the resource provision can be more
cost-effective for auto-scaling.

Similarly, the auto-pause capacity of existing serverless databases
are also limited. They have to release both CPU and memory re-
sources, resulting in relatively long resumption time. Under the
disaggregation architecture, CPU and memory no longer share fate.
Hence, memory can be retained during auto-pause and database
resumption becomes much faster, which eliminates the loading of
key data (such as data dictionary and pages) from remote storage.

Moreover, scaling transparency is another design goal for server-
less databases. Ideally, even when the database scales across com-
pute nodes, the migration shall not interrupt customer workloads.
With the disaggregation architecture, ephemeral states of the data-
base (such as dirty pages, transaction status, logical locks, and
intermediate query results) can be stored in the shared memory,
which provides more opportunities for better transparency. PolarDB
Serverless now stores dirty pages in shared memory and others are
left for future work.
3 DESIGN
PolarDB Serverless is a cloud native database of the disaggregation
architecture, evolved from PolarDB. Similar to the PolarDB archi-
tecture described in Section 2.1, each PolarDB Serverless instance
consists of multiple proxy nodes, one RW node, multiple RO nodes,
and uses PolarFS as the underlying storage pool. The biggest differ-
ence with PolarDB is the use of the remote memory pool.

The advantage of shared memory is that it allows pages to be
shared between RW and RO nodes instead of maintaining a private
copy for each node, which improves memory resource usage. The
size of shared memory can be scaled horizontally, allowing the data-
base to have a larger memory pool where data can be completely
cached. This memory pool has lower latency than remote storage
and is conductive to analytic workloads. However, the adoption
of shared memory also brings a performance penalty. In particu-
lar, the following issues are addressed: First, the access speed of
remote memory is much slower than that of local memory, where
a tiering memory system and optimizations like prefetching are
required. Second, the private pages previously managed by RW and
RO now become shared resources, where a mechanism for cross-
node mutual exclusion is required. We extensively use low-latency
one-sided RDMA verbs (like RDMA CAS [42]) and optimistic pro-
tocols to avoid the use of global latches. Third, the transmission
of pages (e.g. flushing dirty pages) brings burden to the network.
Similar to Aurora and Socrates, we write redo logs to the storage
and materialize pages from logs asynchronously.

3.1 Disaggregated Memory
3.1.1 Remote Memory Access Interface. Database processes access
the remote memory pool via the librmem interface. The five most
important APIs are listed below. A Page is identified by the page_id
(space, page_no). page_register and page_unregister manage the life
cycle of cached pages inside the remote memory. The database node
obtains the address of a page in the remote memory pool through
page_register, and increases the page’s reference count by one. If
the page does not exist, this function allocates space for the page
in the remote memory pool, otherwise, the page is copied to the
caller’s local cache. Conversely, page_unregister decreases the page
reference count by one. When the page reference count reaches 0,
the page can be deleted from the remote memory pool. page_read
fetches a page from the remote memory pool to the local cache
using one-sided RDMA read. page_write writes a page from the
local cache to the remote memory pool using one-sided RDMA
write. page_invalidate is called by RW to invalidate all copies of a
given page in RO nodes’ local cache.

int page_register(PageID page_id,
const Address local_addr,
Address& remote_addr,
Address& pl_addr,
bool& exists);

int page_unregister(PageID page_id);
int page_read(const Address local_addr,

const Address remote_addr);
int page_write(const Address local_addr,

const Address remote_addr);
int page_invalidate(PageID page_id);

3.1.2 Remote Memory Management. The memory resources re-
quired by an instance can be provisioned from multiple memory
nodes. The unit of memory allocation is a slab, and the size of each
slab is 1 GB.

Page Array (PA) Each slab is implemented by a PA data struc-
ture. A PA is a contiguous piece of memory containing an array
of 16 KB pages. When a memory node boots, all memory regions
where PAs are located will be registered to the RDMA NIC, so that
the page stored in PAs can be accessed directly by remote nodes
through one-sided RDMA verbs.

The memory node that serves slabs is also called a slab node. A
slab node can hold multiple slabs, and the memory resources of
each instance are distributed over one or more slab nodes. When
each instance is created, the DBaaS will reserve all the slabs that the
instance required according to its predefined buffer pool capacity.
The slab node where the first slab is located is assigned as the home
node. Compared with ordinary slab nodes, the home node contains
some additional instance-wise metadata:

Page Address Table (PAT) PAT is a hash table that records the
location (slab node id and physical memory address) and reference
count of each page. In page_register, the home node determines
whether a page already exists by looking up the PAT table. If it does
not exist, an entry will be added to the PAT table after the page is
allocated in the remote memory pool. In page_unregister, when a
page’s reference count drops to 0 and is evicted from the remote
memory pool, the corresponding entry in the PAT will be deleted.



Page Invalidation Bitmap (PIB) PIB is a bitmap. For each
entry in the PAT table, there is an invalidation bit in PIB. Value 0
indicates that the copy of the page in thememory pool is of the latest
version, while value 1means that the RWnode has updated the page
in its local cache and haven’t written it back to the remote memory
pool yet. There is also a local PIB on each RO node, indicating
whether each page in the RO node’s local cache is outdated.

Page Reference Directory (PRD) PRD is another mapping
table. For each entry in the PAT table, there is a list of database
nodes tracked in the PRD, which means that these nodes have
obtained a reference of this page through calling page_register. PIB
and PRD are used together to achieve cache coherency, see Section
3.1.4.

Page Latch Table (PLT) PLT manages a page latch (PL) for
each entry in the PAT table. PL is a global physical lock protect-
ing and synchronizing read and write on pages between different
database nodes. Especially it is used to protect the B+ Tree’s struc-
tural integrity when multiple database nodes access the same index
concurrently, see Section 3.2.

Here is the process of how an instance allocates a page from
the remote memory: The database process sends a page_register
request to the home node. If the page doesn’t exist, the home node
scans all existing slabs to find the one which has the most free
memory available. If there is no free memory in any slab, it looks
for pages with a reference count of 0, which can be evicted by the
LRU algorithm. Because the storage supports page materialization
offloading, even dirty pages can also be evicted instantaneously
without flushing back. The home node then writes page location
into the PAT and returns the remote addresses of the page and
corresponding PL to the caller. During the process of page allocation,
there is no interaction between the home node and slab nodes for
efficiency. As traditional databases, there is a background thread
that periodically evicts pages and keeps slab nodes having free
pages to avoid evicting pages in the foreground.

When the user expands the buffer pool size elastically, the home
node will request the DBaaS to allocate new slabs, and expand the
buffer pool size of the instance and the metadata like PAT, PIB and
PD accordingly. On the contrary, if the buffer pool size is shrunk on-
demand, the extra memory can be released through the LRU page
eviction algorithm. Then pages are migrated in the background to
defragment, and unused slabs are released finally.

3.1.3 Local Cache. Due to the expensive delay brought by net-
work communication, the database process can’t directly read or
in-place modify the page data in remote memory like accessing
local memory, otherwise the CPU will spend a lot of cycles stalling
and waiting for the data to be read from the network to fill in
the CPU cache line. It’s necessary to read data from the remote
memory to the local cache in units of pages, and then directly ma-
nipulate the pages in the local cache like traditional monolithic
database. The size of local cache is tunable and empirically set to
min{ 18 ∗ Sizer emote_memory , 128GB}, because this ratio provides
a balance between performance and cost (e.g., less than 30% perfor-
mance drop in benchmarks like sysbench, TPC-C, TPC-H). In the
future, we plan to dynamically adjust local cache size according to
custom workloads and hit ratio [41].
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If an accessed page does not reside in the remote memory, the
database process reads the page from PolarFS to the local cache
through libpfs, and then writes it to the remote memory using
librmem. There is no direct communication between memory nodes
and storage nodes. Not all pages read from PolarFS need to be
written into the remote memory, for example, when the database
process is performing a full table scan. Because the page load by
the full table scan is unlikely to be read again in the near future, it
would squeeze out other pages cached in the remote memory and
pollute the cache.

When a local cache miss occurs, the database process needs to
wait for pages to be fetched from remote memory or remote stor-
age, which is much slower than local memory/storage. Therefore,
enhancing the hit ratio of local cache through prefetching is the
key to improve performance. Detailed description is in Section 4.2.

When the local cache is full, pages need to be evicted. Page
eviction uses the LRU algorithm. Clean pages can be freed directly,
and modified pages need to be written back to remote memory
before they can be released. Besides, the database process should
call page_unregister to decrease the reference count of the page.

3.1.4 Cache Coherency. In PolarDB, the buffer pool of database
processes are private to themselves. A RO node cannot directly
access pages with the latest version in RW’s buffer pool. Therefore,
the RO node captures updated versions of pages by replaying redo
logs to its buffer pool continuously, see Section 2.1. In PolarDB
Serverless, RW canwrite backmodified pages to the remote memory,
which can be seen instantaneously by other RO nodes. Thus RO
nodes no longer need to replay redo logs. However, in order to
reduce the overhead of network communication on modifying a
page, RW’s changes to a page will be buffered in the local cache
and will not be synchronized to the remote memory immediately.
What’s more, RO nodes may also have copies of pages held in
the local cache. This requires a synchronization mechanism. After
RW modifies a page in its local cache, the remote memory and
other RO nodes that cache this page should know that their copies
are outdated. This mechanism is called cache invalidation, which
ensures cache coherency.

Figure 6 illustrates how cache invalidation works, which is im-
plemented based on the PIB and PRD data structures described in
Section 3.1.2. After RW updates a page in its local cache, it calls



page_invalidate 1○. This function will set the corresponding bit in
PIB on the home node 3○, look up PRD to get a list of RO nodes (RO
node 1 and 2 in this example) which hold copies in their local cache
4○, and then set the corresponding bit in PIB on those RO nodes 6○.
page_invalidate is a synchronous blocking operation. Only when
PIBs on all participants are set, can it return successfully 7○ 8○. If
there is an abnormal RO node which doesn’t respond after timeout,
DBaaS will be involved to kick off the node out of the cluster to
ensure page_invalidate succeed.

A transaction is divided into multiple mini-transactions (MTR),
which is a group of continuous redo log records. Before redo logs in
a MTR are flushed to PolarFS, all modified pages in the MTR must
be invalidated using the page_invalidate interface. This can ensure
that there is no such page in the remote memory, and its state is
valid, but the version is older than the state of data on the PolarFS
(pages plus redo logs). Crash recovery of the database node relies
on this property, which is described in Section 5.1.

3.2 B+Tree’s Structural Consistency
Concurrency control of B+Trees on a multi-processor system is
widely studied, which includes two aspects of work: The first prob-
lem is how to guarantee the physical consistency when multiple
threads work on the same index simultaneously [10, 15, 25, 30]. If
not properly protected, some threads could access a page while
another thread is modifying it, resulting in them following stale
or dangling links. The second problem is how to maintain the
logical consistency and satisfy various snapshot isolation levels
when there are concurrent transactions working on the same set of
data [29, 32–34].

This section mainly discusses how to solve the first problem in
PolarDB Serverless, particularly how to update B+tree in RW, while
allowing other RO nodes to maintain a consistent view of physical
B+tree structure to traverse simultaneously. The second topic will
be discussed in the next section.

In PolarDB Serverless, only RW can modify pages, so there is
no need to protect write conflicts caused by modifications from
multiple nodes at the same time. However, Structure Modification
Operations (SMO) will modify multiple pages at a time, which may
cause RO nodes to see an inconsistent physical B+tree structure
when traversing the tree. For example, RW splits a leaf node A
into two nodes, A′ (previously A) and A′′ (new allocated), and then
insert it into the parent node, changing B to B′. But when a RO
node traverses root-to-leaf concurrently, it may see the parent node
B (before the split) and the node A′ (after the split), therefore the
node A′′ and data inside it will be missed.

We solved this problem using PL. PL is the global physical latch
with two locking modes: S and X. It does not replace the local page
latch which is used to synchronize modification on a single node,
instead it is an add on to make sure the integrity of index structure
in a multi-node environment, and it works with algorithms like
crabbing/lock coupling. All pages involved in SMOswill be X-locked
with PL until the SMO is completed. Conversely, all reads on RO
need to check with PLT if the page being read is X-locked, and place
an S-lock on the page being read. For the example in the previous
paragraph, during a root-to-leaf traversal, RO will first add a S-lock
to the parent node B, then add a S-lock to the leaf node A, at last

release the S-lock of the B node. For RW insert/delete operations,
PolarDB Serverless always adopt two step approaches. First it will
do an optimistic tree traversal for insert/delete, assuming no SMO
required. In such case, only local latches are required. And if indeed
no SMO is required, the data will be directly inserted or deleted
on the leaf page. If the optimistic traversal finds the leaf page is
relatively full or empty and a SMO is possible, then it will restart
a "pessimistic" traversal from the root again, now it starts placing
X latches as well as X-PL locks on all nodes that could be possibly
involved in the SMO. In above example, RW needs to add a X-lock
to B first, then add a X-lock toA, these locks won’t be released until
the split is complete. The lock ordering can ensure that RO either
see the B+tree structure before SMO (A and B) or the structure after
SMO (B′, A′, A′′), because the X-locks on A and B can be regarded
as a barrier.

To reduce the PL lock cost, PL has a “stickness” property, which
means that it does not require to be released right after SMO as
long as there is no request from other RO nodes. The benefit of this
property is that the node does not need to request the lock again
from the central PLT lock manager for next request if it still holds
this lock.

To speed up the PL-acquisition operation, we first try to use
RDMA CAS [42] operation to acquire the lock (the address of a
page’s PL is returned together in page_register). If the fast path
fails, for example, trying X-lock a PL that has been S-locked, which
may occur when splitting the root node, then get the lock through
negotiation among the home node and database nodes. The caller
requesting the lock needs to wait for the negotiation to complete.

3.3 Snapshot Isolation
PolarDB Serverless provides SI (snapshot isolation) [14] based on
MVCC. Same as InnoDB’s Implementation of MVCC, previous
versions of a record are constructed with undo logs. In PolarDB
Serverless, a transaction relies on a snapshot timestamp to control
what version of records the transaction is allowed to see. It main-
tains a centralized timestamp (sequence) named CTS in RW, to
allocate a monotonic increasing timestamp for all database nodes.
A read-write transaction needs to acquire the timestamp from
CTS twice, once at the beginning of the transaction (cts_read),
and the other time at the commit time (cts_commit ). When the
transaction commits, it writes down cts_commit together with the
records it modified. All records and undo records reserve a column
to store cts_commit of the transaction which modified it. Reads
within a transaction always return the value of the most recent ver-
sion of records whose cts_commit is smaller than the transaction’s
cts_read . Each version of record has a field to store the trx_id of
the transaction that modifies it, with which each transaction could
recognize its own writes. A read-only transaction only needs to get
a cts_read timestamp once at the beginning of the transaction.

However, for large transactions, cts commit cannot be updated
immediately for all modified rows, which incurs a large number of
random writes when the transaction commits. Thus, cts_commit
columns need to be filled asynchronously in the background. This
approach leads to the problem that concurrent transactions can-
not determine the version of rows that are not yet filled with
cts_commit . This problem is solved by looking up the CTS Log data
structure on RW. The CTS Log is a circular array, which records



the cts_commit timestamp of the most recent read-write transac-
tions (for example, the last 1,000,000). If the transaction has not
yet been committed, the value of its commit timestamp is null.
When any database node reads a record or undo record with miss-
ing cts_commit, it can look up the CTS Log to determine whether
the transaction has been committed, or whether the committed
transaction is visible to current transaction.

Obtaining the timestamp and determining whether the record is
visible are high frequency operations in transaction processing. We
use one-sided RDMA verbs extensively to optimize the timestamp
acquisition and the CTS array access. The CTS timestamp counter
is fetched and incremented atomically using RDMA CAS [42]. In
addition, the CTS Log is placed in a contiguous memory region
registered to RDMA NIC, so that RO nodes can efficiently lookup
it through one-sided RDMA read. Compared with using RPC, it
achieves superior performance without taking up RW’s CPU re-
sources, which prevents the RW node from becoming a bottleneck.

3.4 Page Materialization Offloading
Traditional monolithic databases periodically flush dirty pages to
durable storage. However, it introduces a large amount of net-
work communications between RW, memory nodes and PolarFS
in PolarDB Serverless, and affects the performance of high-priority
operations in the critical path, such as log writes and page reads.
In order to mitigate network bottleneck, Aurora [43] proposed the
concept of “log is database”. It treats redo log records as a series
of incremental page modifications, generates the latest version of
pages by applying redo logs continuously to the pages on the stor-
age nodes. Socrates [2] further evolved on this basis, separating log
from storage. Logs are first persisted to the XLOG service, and then
asynchronously sent to a group of page servers. Each page server
is responsible for a database partition, independently replays the
logs, generates pages and serves GetPage@LSN requests.

PolarDB adopts a similar approach, which is closer to Socrates.
We extend PolarFS such that logs and pages are separately stored
in two types of chunks (i.e., log chunk and page chunk). Redo logs
are first persisted to log chunks and then asynchronously sent to
page chunks, where logs are applied to update pages. The difference
against Socrates is that, in order to reuse PolarFS components and
minimize changes, logs are sent only to the leader node of the page
chunk, who will materialize pages and propagate updates to other
replicas through ParallelRaft. This method adds additional latency
to the ApplyLog operation due to the replication cost. However, it is
not a critical issue because ApplyLog is an asynchronous operation
not in the critical path. Moreover, since the replicated state machine
guarantees data consistency between page chunks, there is no need
for an extra gossip protocol among storage nodes like in Aurora.

As illustrated in Figure 7, a storage node in PolarFS can host
multiple log chunks and page chunks at the same time. Before a
transaction commits, RW flushes changes of redo log files into log
chunks. After data written is replicated to three replicas, the trans-
action can be committed 1○. After that, RW decomposes changes
of redo logs into log records. According to the pages involved in
each log record, a log record is only sent to the corresponding page
chunks, whose partition will be affected by the log record 2○. Each
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Figure 7: Page Materialization Offloading

page chunk maintains a partition (about 10 GB) of the database,
and only receives relevant log records.

After the page chunk’s leader node receives log records from
RW 3○, it immediately persists these records to replicas to ensure
durability 4○, and inserts them to a in-memory hash which uses
the page id as the key 5○, and then acknowledges RW 6○. At this
point, dirty pages in RW can be evicted. Unless step 6○ completes,
RW always holds references of the dirty pages in its local cache, so
that the dirty pages won’t be evicted on the remote memory either.

In the background, the old versions of pages are read from the
cache or the disk, which are merged with the log records inside
the memory hash 7○. After that, the new version of the pages are
written to a new location to replicas 8○. The underlying storage will
hold multiple versions of the page for a period of time, and support
fast point-in-time recovery. GC is performed to collect redo logs
and old versions in the background 9○. When serving a GetPage
request, the leader node merges the version in the cache/disk, and
log records on the page in the memory hash, generates the latest
page and returns it to the database node.

3.5 Auto-Scaling
The capability of transparent and seamless scaling without in-

terrupting customer workloads is essential for serverless databases.
Ideally, even when the database reboots or migrates across compute
nodes, applications should not be aware of any exceptions, such
as database disconnections, aborted transactions and unacceptably
long response time. In PolarDB Serverless, when a switching event
occurs (e.g., version upgrade or cross-node migration), the proxy
node is responsible for keeping client connections alive. It pauses
active transactions and stops forwarding subsequent statements
to the old RW node. It then waits for a short period (e.g. 100 ms),
which is long enough for the old RW node to complete most of
in-progress statements. After that, the old node flushes all dirty
pages to the shared memory and shuts down itself. Meanwhile,
the new RW node will attach to the shared memory and initialize
its local memory state (e.g., scanning the undo header to rebuild
the active transaction list). At last, the proxy connects to the new
RW node, restores its session states, and then forwards pending
statements for execution. Note that long-running statements that
have not been completed by the old RW node will be reissued after
the new RW node rolls them back.

For long-running multi-statement transactions, such as bulk
insertions, the proxy also tracks a savepoint for each statement.



The savepoint indicates the execution progress of the transaction,
i.e., the i-th statement since the beginning of the transaction. As a
result, when the switching event happens, the proxy can inform
the new RW node to resume execution from the latest savepoint,
which avoids rolling back the entire transaction and significantly
improves migration transparency.

Recall that during the switching process, active transactions
need to be paused until the new RW node takes over the service. It
is hence critical to shorten the pause. In PolarDB Serverless, trans-
ferring transaction states (e.g. dirty pages and rollback segments)
through shared memory is faster than the traditional way that re-
lies on remote storage. Other optimizations such as statement-level
rollback are also helpful. Overall, we can reduce the pause time to
2-3 seconds (as shown in Section 6.3). We plan to investigate more
optimizations as future work, such as putting transaction locks
in shared memory to support multiple RW nodes, and caching in-
termediate results in shared memory to speedup analytical query
resumption.
4 PERFORMANCE OPTIMIZATIONS
The evolution of the disaggregated architecture could have a nega-
tive impact on the database performance, since data is likely to be
accessed from the remote-memory nodes and storage nodes, involv-
ing notable network latency. To address this problem, we employ a
suite of optimizations to minimize the chances of compromise.

4.1 Optimistic Locking
In Section 3.2, we describe that the RO node uses the lock coupling
protocol to acquire PL locks on the pages during the traversal from
root to leaf. Even if RW performs SMO at the same time, RO can still
see a consistent B+ tree physical structure. Although in most cases,
the acquisition of PL can be successfully completed through the
fast path of RDMA CAS [42], it may still degenerate into multiple
rounds of negotiations. In this section, we propose an Optimistic
Locking mechanism. It is optimistic to assume that the RO node
will not encounter SMO during a root-to-leaf traversal, so there is
no need to obtain any PL. When SMO is detected, try again or fall
back to the pessimistic strategy. SMO can be detected like this. A
SMO counter is maintained on RW, namely SMORW . Whenever
SMO occurs in the B-tree, the counter is incremented by one. When
SMO occurs, the snapshot of SMORW (SMOpaдe ) is recorded on
all pages modified by SMO. At the beginning of each query, the
snapshot of the SMO counter is obtained as SMOquery . When the
RO node executes this query and traverses from root to leaf, it stops
if it finds that SMOpaдe of any page on the path is greater than
SMOquery . It means that SMO occurs during the query, so that it
may read an inconsistent B+tree.

4.2 Index-Awared Prefetching
Some systems implement data prefetching strategies [31, 44] at
the operating system and storage levels, which are agnostic to the
database workloads. However by checking the SQL plan generated
in the database kernel, we can use such information to accurately
predict which blocks will be accessed next and prefetch them in
advance. In PolarDB Serverless, we propose Batched Key PrePare
(BKP). BKP prefetches pages containing interesting tuples from
disaggregated memory and storage to hide remote I/O latency.

Similar prefetching methods has also been used in hash join to
avoid CPU cache misses [11].

There are a large number of daily database operations that access
secondary indexes. For example:

select name, address, mail
from employee where age > 17

In this example, the field age has a secondary index, but the other
fields name, address, and mail must be read from the primary index.
When MySQL executes this statement, The typical process is to first
scan a batch of qualified record primary keys from the secondary
index and then read other fields from the base table. The first step is
a sequential traversal that can be sped up by pre-reading continuous
B+ tree leaf nodes. And the second step is likely to be a series of
random accesses, and can be optmized by BKP.

We implement BKP in our storage engine, the interface of BKP
accepts a group of keys to be prefetched. When the interface is
called, the engine will start a background prefetching task, retrieves
required keys from the target index and fetches corresponding data
pages from the remote memory/storage when necessary.

BKP can also optimize analytical workloads. For TPC-H queries,
for example, many of the joins are equal joinwith indexes, especially
for very large tables. When dealing with these huge tables or the
table data is cold, a large number of pages may need to be fetched
from the remote. BKP can be used to speed up equal joins that
access the inner table with index. In MySQL, there is a join buffer
which accumulates the interesting columns of rows produced by
the left join operand. Tables from earlier joins are read in portions
into the join buffer, when the number of rows in the join buffer
reaches a threshold, BKP will build and send a batch of keys to the
storage engine to prefetch pages of the inner table. Concurrently,
the storage engine prefetches the pages containing these keys in
the background. When the join buffer is full, the rows in the buffer
will be joined with the inner table, at this point, we expect that
most pages needed should have already be loaded into the cache.

5 RELIABILITY AND FAILURE RECOVERY
In PolarDB Serverless, the disaggregated architecture allows nodes
of each type to failover independently. Therefore, we tailor the
failure recovery method for each node type. Most recovery methods
follow approaches in existing PolarDB design. All proxy nodes in
PolarDB Serverless are stateless. When a proxy node fails, it can be
easily replaced. User connections can reconnect to other alive nodes.
PolarDB Serverlessmaintains at least 2 replicas for each storage node
(i.e., 3 replica in total). Each group of replicas is managed by the
distributed consensus protocol, Parallel Raft. Overall, our design
guarantees that there is no single-point failure in the system.

In the rest of this section, we focus onmore complex mechanisms
that deal with database node recovery, memory node recovery and
cluster recovery, respectively.

5.1 Database Node Recovery
PolarDB Serverless adopts an ARIES-style recovery algorithm [33].
RW and RO nodes have different recovery procedures. A failed
RO node can be easily replaced with a new one using pages in the
shared memory. Based on whether the node failure is planned or
not, the recovery process is different.



Unplanned Node FailureWhen the RW node fails, the Cluster
Manager (CM) detects this event via heartbeat signals (usually
working at 1Hz) and initiates a RO node promotion process. The
steps are as follows:

(1) CM notifies all memory and storage nodes to refuse subse-
quent write requests from the original RW node.

(2) CM selects a RO node (RW ′) and informs it to make the
promotion.

(3) RW ′ collects the latest version (LSNchunk ) from each Po-
larFS page chunk, and gets min{LSNchunk }, which is the
checkpoint version LSNcp .

(4) RW ′ then reads the redo log records persisted on PolarFS log
chunks, starting from LSNcp to the end of redo log LSNtail ,
and distributes them to page chunks, waiting for page chunks
to consume these redo records and complete the recovery.

(5) RW ′ scans the remote memory pool, evicts pages whose
invalidation bit is 1, and pages whose version (LSNpaдe ) is
newer than the version of redo (LSNtail ).

(6) RW ′ releases all PL locks obtained by the original RW node.
(7) RW ′ scans undo headers to construct the state of all active

transactions at the moment the original RW node fails.
(8) RW ′ is ready to receive write requests, after it notifies CM

the promotion completes RW ′ becomes the new RW node.
(9) RW ′ plays undo logs to rollback uncommitted transactions

in the background.

Step (3) and (4) are performing the REDO phase in the ARIES-
style recovery procedure [33]. The difference is that REDO is no
longer executed on a single machine, but concurrently executed on
many page chunk nodes, which speeds up the REDO phase. Step
(5) evicts the pages from the remote memory, whose version is
inconsistent with the stored versions in the remote storage, which
relies on the property described in Section 3.1.4: the version of a
page with the invalidation bit of 0 in the remote memory cannot
be lower than that in the storage. On the other hand, because RW
may already write back dirty pages to the remote memory before
the redo logs are flushed to PolarFS, some pages in the remote
memory may be more advanced than the persisted state in PolarFS.
Therefore, these pages also need to be cleared. After step (3) (4)
(5), redo logs in PolarFS, pages in PolarFS, and pages in the remote
memory are completely consistent. In step (6), because RW uses PL
locks to protect the SMO and all page modifications of a SMO are
packed into one MTR, all modifications of a SMO are written as an
atomic operation. After step (3) (4) (5), the state of the database is
restored to a consistent status, so there is no SMO in progress at this
time, thus all PL locks can be released safely. Since most active data
pages still reside in the remote memory pool, the cold cache issue in
traditional master-slave replication architecture is prevented. Note
that parallel redo recovery is a well known technique [8, 22, 43].
However, integrating it with disaggregated memory and storage
requires nontrivial engineering effort.

Planned Node Down When the RW node is planned to be
down, it will perform a series of cleanup work to reduce the work-
load of the new RW node to take over. For example, synchronize
redo logs to the page chunk, actively release all PL locks, and write
dirty pages back to remote memory, finally flush redo logs to Po-
larFS. In this way, the new RW node can save step (4) (5) (6) when

recovering. In addition, the new node can choose to delay its pro-
motion until the moment when the number of active transactions
is low, which will further reduce the cost of step (7) and (9). To-
gether with techniques discussed in Section 3.5, operations such as
upgrades and migrations will have less impact on the application.

5.2 Memory Node Recovery
Memory nodes caches buffered pages used by databases. Logs are
always flushed to the storage before dirty pages are written to mem-
ory nodes. Therefore when a memory node is down, the buffered
pages can always be recovered from the storage.

Recall that the memory node containing the first slab is called
home node (Section 3.1). This node contains the critical control
metadata such as PAT, PIB, PRD and PLT. The control metadata is
essential to the database normal activities, since it contains critical
information to ensure cross-node consistency. Under this consid-
eration, home node’s metadata is also backed up in another “slave
replica” in a synchronized manner. The home node is responsible
for detecting slab node failures. In the case of slab node failures,
the home node will go over the PAT and process all buffered pages
originally registered under those slab nodes. These buffer pages
will be re-registered by fetching them from RW’s local cache or just
calling page_unregister to remove them.

5.3 Cluster Recovery
In rare cases, when all replicas of the home node are unavailable, the
service needs to be recovered through cluster recovery. All database
nodes and memory nodes will be restarted from the cleared state,
and all memory states are rebuilt from storage. After initialization
(attach to remote memory and storage, etc.), the RW node performs
the parallel REDO recovery as described in Section 5.1, and then
scans the undo header to find all uncompleted transactions. Af-
ter that, the RW node starts services and rollbacks uncommitted
transactions in the background. In the cluster recovery, the pages
cached in the remote memory is cleared, so it will endure the cold
cache problem.

6 EVALUATION
6.1 Experiment Setup
In this section, we evaluate the elasticity, availability, and perfor-
mance of PolarDB Serverless. For performance evaluation, we use
standard benchmarks including sysbench [23], TPC-C [12] and
TPC-H [37] for both transactional and analytical workloads. We
deploy database instances in dockers of version 17.06.2 and use
cgroup to vary the configuration from 8 CPUs to 32 CPUs, and 8
GB to 500 GB memories. These dockers are deployed in a cluster
containing 32 machines, connected by a high-speed RDMA network
using Mellanox ConnectX-4 network adaptor. The OS we use is
Linux 3.10.

6.2 Elasticity of the Disaggregated Memory
Elasticity is one of key advantages of PolarDB Serverless. In Fig-
ure 8, we report the overall throughput (sysbench oltp_read_only
with range select) of a PolarDB Serverless instance. In 200, 350, 500
seconds, the remote memory size of the instance increased from
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Figure 8: Throughput ofPolarDB Serverlesswhile scaling out-
/in the remote memory (i.e., 8GB, 80GB, 48GB, 128GB) while
processing range queries.
8GB to 80GB, 48GB and 128GB respectively. This test simulates
the scenario where customers use PolarDB Serverless on a pay-as-
you-go basis. It can be seen from the measured throughput that
after each memory expansion operation, the performance gradu-
ally improves, because the newly added slabs take some time to
be warmed. After each memory shrink operation, the performance
will drop immediately, as slabs and pages are removed from the
remote buffer pool at once. With such elasticity, customers can
expand remote memory to almost unlimited capacity, and only pay
for the necessary resources for achieving performance targets.

6.3 Fast Failover
Figure 9 shows the trend of throughput during a RW node is re-
covering from either a planned switch (switching RW during auto-
scaling) or an unplanned failure. It takes only 6 seconds (pause for
2s and another 4s to resume throughput) for the RW in PolarDB
Serverless to fully recover from a planned switch. For unplanned
failures, we compare the recovery of PolarDB Serverless in different
cases: (1) with the remote memory and all optimizations (blue line),
(2) without the remote memory but with page materialization (yel-
low line), and (3) without page materialization (orange line). The
remote memory is able to keep hot pages despite the switch/crash,
which avoids costly page reloading during recovery. Therefore, it
only takes 16 seconds for the blue line to resume the service and
another 7 seconds to reach its previous performance (i.e. 90% of the
peak performance before the crash). Without the remote memory,
although the RW can read materialized pages from the storage, it
takes extra time (12 seconds longer) to warm up the buffer pool.
When materialized pages are not available, the RW has to apply
the redo log and reconstruct pages, taking 5.3 times longer time (or
85 seconds) to resume the service. Finally, it spends a total of 105
seconds to reach its previous performance.
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6.4 Performance Evaluation
Performance comparisonwithPolarDB. In Figure 10(a) and 10(b),
we compare the performance of PolarDB Serverless and PolarDB us-
ing TPC-C and TPC-H, respectively. In these figures, M represents
thememory size for PolarDB, LM and RM are local and remotemem-
ory size for PolarDB Serverless, DS is the data size of TPC-C/TPC-H
workloads. The unit of memory size is GB.

We first compare the performance of TPC-C under three differ-
ent pairs of configurations. (1) When PolarDB’s memory size and
PolarDB Serverless’s remote memory size are configured with the
same size (4GB), which are smaller than the entire working set size
(20GB). In this case, we observe that the performance of PolarDB is
better because accessing local memory is faster than remote mem-
ory. (2) When we increase PolarDB Serverless’s local memory size
to 4GB, and PolarDB’s memory size and PolarDB Serverless’s local
memory size are equal, the performance of PolarDB Serverless is
superior to PolarDB since accessing data from shared memory is
faster than from shared storage. (3) Finally, when both PolarDB’s
buffer pool and PolarDB Serverless’s local memory are large enough
(24GB) to hold the entire dataset, their performance is close. Next,
we test the performance of TPC-H under two similar scenarios
where PolarDB’s memory is configured as same as PolarDB Server-
less’s local or remote memory size. We collect similar observations
as above test. In summary, PolarDB Serverless offers cloud customers
a more elastic (scalable and tunable) way of using databases at a
reasonable performance loss, compared with the conventional Po-
larDB. In the following, we show that the performance of PolarDB
Serverless scales well when more resources are provisioned.

Effect of local memory size. We evaluate the performance
effect of the database node’s local memory capacity using sysbench,
TPC-C and TPC-H respectively. These results demonstrate that the
performance penalty of memory disaggregation is acceptable and
tunable.
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Figure 11: Performance of mixed reads and writes with varying local memory sizes.
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Figure 12: Latency of TPC-H queries (SF = 100) with varying
capacities of the local cache (16 GB to 256 GB)

Figure 11(a), 11(b) and 11(c) show the throughput of mixed reads
and writes in addition to the number of swapped pages. We test on
sysbench oltp_read_write benchmark using uniform and skewed2
distributions, as well as TPC-C queries. In all cases, we vary the
local memory size from 0.5GB to 24GB. From Figure 11, we make
three observations: (1) The performance losses caused by page
swapping between local and remote memory are at most 18.5%,
10.7% and 13.4% in three cases when the local memory is as small
as 0.5GB. (2) Since hot data pages are cached on the database node
as the local memory capacity increases, the total amount of data
transferred from memory nodes to database nodes decreases signif-
icantly, and meanwhile the system performance greatly increases.
The throughput increases gradually until the local memory is large
enough to hold the entire working set, in which case there is no
page swapping between local memory and remote memory. (3) As
the local memory size increases, the performance curves of skewed
distribution and TPC-C workload are more smooth than that of
uniform distribution due to higher hit ratio of local memory for hot
pages.

Figure 12 shows the measured latency of TPC-H queries with
different local cache size varied from 16 GB to 256 GB. The data size
of TPC-H workloads is configured to SF=100 (200GB in storage).
We observe that the performance curve with the increase of local
memory size is steeper than that of sysbench. The reason is that the
data size of TPC-H is larger than that of sysbench, which introduces
more remote memory accesses with the same local memory size.
Compared to 10 GB local memory, the latency could be reduced by
40.9% when using 256 GB local memory to hold the entire working
set.

Effect of remote memory size. Next, we analyze the effects of
shared memory size on the overall system performance. Figure 13
evaluates the latency of TPC-H queries with different capacities
2The skewed distribution is generated by the sysbench oltp_read_write benchmark
with setting “rand-type=default”, which uses about 5% of all key IDs as hot data in
generated queries.

of the shared remote memory varied from 32 GB to 256 GB. The
local cache size is fixed to 8 GB. We observe that the capacity of
shared memory can have a significant effect on performance. As the
memory size grows from 32 GB to 128 GB, about two-thirds of TPC-
H queries achieve speedup by 3.06x on average. This indicates that
PolarDB Serverless can provide higher performance by expanding
shared memory capacity. Note that the rest (Q2, Q11, Q16, Q17,
Q19) are not sensitive to the memory capacity, since their execution
time is relatively short (all less than 100 seconds) and 32GB memory
seems large enough for them.

Effect of optimistic locking. In Figure 14, we run sysbench-
read-write (both uniform and skew distributions) on a PolarDB
Serverless instance with one RW node and another RO node. Proxy
will redirect all writes to the RW node and balance the read requests
between RW and RO. We compare the total read throughput using
either the optimisitic lock (Olock) or not (Plock) when increasing
the number of client threads. When the number of concurrent
threads increases from 32 to 128, Plock loses almost 50% of its
total QPS, while Olock only loses up to 10%. It shows that under
high concurrency, optimistic locking significantly improves read
performance by reducing the cost of acquiring PL locks on RO
nodes.

Effect of prefetching. Figure 15(a) and 15(b) evaluate the ef-
fects of prefetching on the measured response times of TPC-H
queries, when initially placing all the data in the remote memory
or the storage, respectively. In Figure 15(b), we turn off the remote
memory to force cache-missed pages to be loaded from the storage,
so that we can evaluate the effect of prefetching for remote storage.
We choose these queries because joins in them involve retrieving a
lot of records from large tables (i.e., lineitem and orders) after the
corresponding equi-join conditions are evaluated, where BKP is
supposed to be effective. We make two observations: (1) The latency
gradually decreases at 25.4% and 52.3% on average in two cases,
because remote access overhead can be reduced by data prefetching.
(2) The benefit from prefetching on remote storage is higher than
that on remote memory, because the I/O latency of remote storage
is higher than remote memory.

7 RELATEDWORK
Databases with decoupled compute and storage. Cloud-native
databases like Aurora [43], Socrates [2] and PolarDB build multi-
tenant database services on top of a shared storage pool. Aurora
offloads page materialization downwards to the shared storage.
Socrates transforms the on-premise SQL Server into a DBaaS and
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further separates logging and storage from database kernel to ded-
icated services. However, tightly coupled CPU and memory re-
sources still suffer from low resource utilization, limited elasticity
and fate sharing.

Databaseswith remotememory. Substantial advances in high-
speed network push forward the development of shared-memory
(or shared-cache) database cluster. Oracle RAC proposes the Cache
Fusion technique [24] that allows nodes to share the local cachewith
data coherence through high-speed inter-node messaging. How-
ever, since RAC is built on distributed cache and lock management,
the complexity of inter-node coordination grows exponentially as
the number of nodes increases. IBM’s DB2 pureScale [6, 21] utilizes
centralized lock management to directly access global cache using
RDMA, which effectively simplifies read-sharing and write-sharing
policy. It further adopts MVCC [29, 34] to permit that queries can
read a slightly old but still consistent version of a record to avoid
locking. However, the maximum global cache capacity of pureScale
is limited by the total memory of dedicated cluster caching facil-
ity, lacking of elasticity for on-demand cloud applications. NAM-
DB [46] redesigns distribuetd database based on the separated archi-
tecture of compute and memory via RDMA. It adopts a optimistic
native SI-Protocol, which may results in high abort rates especially
when there are hot spots or slow workers.

Databases in disaggregated data centers. Cloud infrastruc-
ture providers now offer multi-socket servers with hundreds of
cores and tens of TBmemory. Prior work [1] focuses on fine-grained
elasticity for shared-everything, scale-up OLTP systems deployed
in such a multi-core server. [5] analyses in-memory DBMSs on

latest multi-socket hardware and further optimizes concurrency
control schemes. However, the maximum global memory capacity
and CPUs are still limited by a single standalone machine.

LegoOS [38] proposes an intriguing idea of replacing all hard-
ware components in a server with network-linked counterparts
in a data center. Prior work [47] evaluates popular databases on
LegoOS and concludes that simply placing databases on disaggre-
gated OS suffers significant performance degradation from massive
remote memory accesses. To eliminate the limited memory size in a
single machine, FaRM [13] and INFINISWAP [16] propose memory
disaggregation schemes to provision a global memory pool to all ma-
chines. They exploit the modern RDMA network to reduce remote
memory access latency by an order of magnitude, compared to that
of those systems using TCP/IP. Prior work [27] leverages remote
memory via RDMA to accelerate memory-intensive workloads for
existing RDBMSs when local memory is insufficient. However, all
schemes do not address the inter-node data consistency problem,
disallowing memory write-sharing among multiple machines.

GAM [7] is a distributed in-memory computing platform to
expose a unified global memory interface. RAMCloud [36] is a
log-structured DRAM-based key-value store that keeps all data
in DRAM at all times. It is nontrivial to build high-performance
databases using GAM or RAMCloud directly. Tailored database
designs and optimizations are still open to explore.

Computation pushdown. Numerous studies have proposed
methods for near-data processing [19, 20, 40, 45]. The key idea
is that data should be processed at the place close to where it is
stored to eliminate unnecessary data access and movement. Our
past work [8] pushes table scan down from LSM-tree to disaggre-
gated storage, which significantly reduces latency and storage-to-
memory data movement volume for TPC-H. This inspires us to
integrate similar techniques to the disaggregated memory, which
is close to the area of Near-Memory Computing [28, 39].

8 CONCLUSION
This paper presents PolarDB Serverless, the first cloud-native data-
base implementation of the disaggregation architecture. It is a fork
of the PolarDB MySQL/InnoDB codebase. The buffer pool man-
agement has been completely rewritten to take advantage of the
scalable remote memory pool with a local caching tier. We have in-
troduced the detailed design and optimizations adopted in PolarDB
Serverless. For future work, we plan to explore offloading more
tasks from compute nodes to remote memory to reduce cross-node
communication cost, and store transactions state (such as logical
locks and intermediate query results) in disaggregated memory to
improve auto-scaling transparency.
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