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Due to the overwhelming flow of information in many data stream applications, data outsourcing is

a natural and effective paradigm for individual businesses to address the issue of scale. In the stan-

dard data outsourcing model, the data owner outsources streaming data to one or more third-party

servers, which answer queries posed by a potentially large number of clients on the data owner’s

behalf. Data outsourcing intrinsically raises issues of trust, making outsourced query assurance

on data streams a problem with important practical implications. Existing solutions proposed in

this model all build upon cryptographic primitives such as signatures and collision-resistant hash

functions, which only work for certain types of queries, for example, simple selection/aggregation

queries.
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In this article, we consider another common type of queries, namely, “GROUP BY, SUM” queries,

which previous techniques fail to support. Our new solutions are not based on cryptographic prim-

itives, but instead use algebraic and probabilistic techniques to compute a small synopsis on the

true query result, which is then communicated to the client so as to verify the correctness of the

query result returned by the server. The synopsis uses a constant amount of space irrespective

of the result size, has an extremely small probability of failure, and can be maintained using no

extra space when the query result changes as elements stream by. We then generalize our synop-

sis to allow some tolerance on the number of erroneous groups, in order to support semantic load

shedding on the server. When the number of erroneous groups is indeed tolerable, the synopsis can

be strengthened so that we can locate and even correct these errors. Finally, we implement our

techniques and perform an empirical evaluation using live network traffic.

Categories and Subject Descriptors: F.2 [Analysis of Algorithms and Problem Complexity]:

Nonnumerical Algorithms and Problems; H.2.0 [Database Management]: General—Security and
integrity
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1. INTRODUCTION

A large number of industrial and academic Data Stream Management Systems
(DSMSs) have been developed recently [Chandrasekaran et al. 2003; Hammad
et al. 2004; Arasu et al. 2003; Cranor et al. 2003; Carney et al. 2003; Abadi et al.
2005]. The need for such DSMSs is mainly driven by the continuous nature of
the data being generated by a variety of real-world applications, like telephony
and networking. Providing fast and reliable querying services on the streaming
data to clients is central to many businesses. However, due to the overwhelming
data flow observed in most data streams, many companies do not possess the
necessary resources for deploying a DSMS, and are not willing to acquire them.
Hence, in these cases outsourcing the data stream and the desired computations
to a third-party server is the only alternative. Outsourcing also solves the issue
of scale: As there are more clients, the data owner can simply employ more
mirroring servers. In addition, this can often lead to faster query responses,
since these servers can be closer to the clients than a single centralized server.
However, data outsourcing and remote computations intrinsically raise issues
of trust. As a consequence, outsourced query verification on data streams is a
problem with important practical implications.

Consider a setting where the data owner (e.g., a stock broker) with limited
resources, such as memory and bandwidth, outsources its data stream to one or
more remote, untrusted servers (that can be compromised, malicious, running
faulty software, etc.). Clients register continuous queries on one of the servers
and receive results upon request (Figure 1). Note that very often, the data is not
private information. Rather, the data owner chooses to outsource mainly due to
the high resource consumption associated with maintaining these continuous
queries. Assuming that the server charges the data owner according to the
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Fig. 1. System architecture.

computation resources consumed and the volume of traffic processed for an-
swering the queries, the server then has an incentive to deceive the owner and
the client for increased profit. Furthermore, the server might have a competing
interest to provide fraudulent answers to a particular client. Hence, a passive
malicious server could drop query results or provide random answers in order
to reduce the computation resources required for answering queries, while a
compromised or active malicious server might be willing to spend additional
computational resources to provide fraudulent results (by altering, dropping,
or introducing spurious answers). In other cases, incorrect answers might sim-
ply be a result of faulty software, or due to load shedding strategies, which are
essential tools for dealing with bursty streaming data [Tatbul and Zdonik 2006;
Arasu and Manku 2004; Babcock et al. 2004; Tatbul et al. 2003].

Ideally, the data owner and the client should be able to verify the integrity
of the computation performed by the server using significantly fewer resources
than having the query answered directly, that is, the data owner evaluates the
query locally and then transmits the entire query result to the client. We aim
at designing a synopsis or certificate which can verify correctness: the output of
a simple function which can easily be computed on both the input and output
of the computation in order to verify that the result is correct. Further, the
client should have the capability to tolerate errors caused by load shedding
algorithms or other nonmalicious operations, while at the same time being
able to identify mal-intended attacks which have a significant impact on the
result.

The present work concentrates on “GROUP BY, COUNT” and “GROUP BY, SUM”
queries. Such queries are especially common on data streams. For example,
in network monitoring applications, often one would like to compute the to-
tal number of packets originated and destined to certain IP addresses. This
problem has been studied extensively in the networking domain, and a va-
riety of solutions, based on designing custom hardware or fast approximate
counters, have been proposed; see for instance, Zhao et al. [2006]. Also notice
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that the “GROUP BY, COUNT” query is equivalent to computing the frequencies
of the tuples in a stream, and this problem has received a lot of attention in the
data streaming literature. Indeed, most streaming algorithms deal with either
the frequencies directly [Cormode and Muthukrishnan 2005] or their relatives,
such as frequency moments [Alon et al. 1996; Indyk and Woodruff 2005], heavy
hitters [Cormode and Muthukrishnan 2003; Karp et al. 2003; Metwally et al.
2006], quantiles [Gilbert et al. 2002; Greenwald and Khanna 2001], inverse
frequencies [Cormode et al. 2005], etc. All theses works focus on computing the
answers to these queries but not their verification.

In this article, we develop solutions for verifying “GROUP BY, COUNT” and
“GROUP BY, SUM” queries on any type of grouping imposed on the input data.
First, we provide a solution for verifying the absolute correctness of queries
in the presence of any error, and second, an algorithm for supporting seman-
tic load shedding, which allows the server to drop tuples in a selected small
number of groups. In the latter case we design techniques that can tolerate
a small number of inconsistent answers while guaranteeing that the rest are
correct. Furthermore, we strengthen the scheme so that we can determine not
only whether there are some errors but also where they are, and correct them if
necessary, which is important in many critical applications. We also discuss the
hardness of supporting random load shedding, where small errors are allowed
for a wide range of answers.

There is considerable work on query authentication in an outsourced
database [Hacigumus et al. 2002; Devanbu et al. 2003; Martel et al. 2004;
Bertino et al. 2004; Pang and Tan 2004; Pang et al. 2005; Li et al. 2006b] or an
outsourced data stream [Li et al. 2007; Papadopoulos et al. 2007]. However, most
of these works consider simple selection/aggregation queries, and to the best of
our knowledge, none of the existing techniques can support “GROUP BY, COUNT”
and “GROUP BY, SUM” queries, in spite of their importance. Interestingly, unlike
all the prior works that are based on cryptographic primitives such as digital
signatures and collision-resistant hash functions, our solutions use algebraic
and probabilistic techniques to compute a small synopsis on the true query re-
sult, which is then communicated to the client so as to verify the correctness of
the query result returned by the server. Therefore we use the word “verification”
as opposed to “authentication” to differentiate our techniques from the existing
ones. In addition to the differences with respect to the techniques, there are
also some subtle yet interesting differences between the security guarantees
provided by “verification” and “authentication.” We will defer the discussion on
these issues to Section 8.

If a client wants to verify the query results with absolute confidence, the
only solution is for the data owner to evaluate the query exactly and transmit
the entire result to the client, which obviates the need of outsourcing. Hence,
we provide high-confidence probabilistic solutions with arbitrarily minuscule
probability of error, and develop verification algorithms that incur minimal
resources, in terms of both the memory consumption of the data owner and the
data owner-client network bandwidth.

Towards this goal the contributions of this work are as follows.
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(1) A randomized synopsis (Section 4.1), which we call PIRS, that raises an
alarm with very high confidence if there exists at least one error in the
query results. Specifically, the data owner maintains a constant-sized syn-
opsis (three machine words) of the current query result, and transmits the
synopsis to the client (via a secure channel) upon a verification request. The
client then can verify the query result returned by the server using only this
small synopsis (see Figure 1). The data owner can maintain the synopsis
using constant space and low processing cost per tuple in the stream (O(1)
for count queries and O(log n) or O(log μ) for sum queries, where n is the
number of possible groups and μ is the update amount per tuple). We also
give a theoretical analysis of the algorithm that proves its space optimality
on the bits level. In addition, we show the following.
—A strong result stating that the same synopsis can be used for verifying

multiple simultaneous queries with the same aggregate attribute but
different group-by partitionings (Section 4.2). The size of the synopsis is
the same as that for verifying a single query.

—A rigorous analysis on the security guarantee of the proposed scheme
under multiple attacks of the server with unlimited computing power
(Section 4.3).

—An adaption of the basic scheme to support queries on sliding windows
(Section 4.4).

(2) A variety of generalizations of the PIRS synopsis, which use the basic syn-
opsis as a building block to create new schemes, including:
—PIRSγ (Section 5.1), a generalization of PIRS for raising alarms when

the number of errors exceeds a predefined threshold. This synopsis thus
allows some room of error for the server (e.g., using semantic load shed-
ding): As long as there are not too many errors (less than γ ), the server
is still considered trustworthy.

—PIRSγ ∗ (Section 5.2), a strengthened version of PIRSγ so that when the
number of errors is tolerable, we can also locate and even correct these
errors. Therefore, PIRSγ ∗ also acts as an error-correcting code, which
guarantees that the complete and correct query results can be delivered
to the client (provided the number of errors is less than γ ).

—PIRS±γ (Section 5.3), an approximate version of PIRSγ that has a much
reduced size.

—FM-PIRS (Section 5.4), a synopsis that can be used to estimate the ac-
tual number of errors accurately. FM-PIRS is a parameter-free version of
PIRS±γ in the sense that it does not depend on γ . In particular, when the
number of errors exceeds γ , PIRS±γ simply raises an alarm, while FM-
PIRS also reports an estimate of the actual number of errors. FM-PIRS
has a smaller size than PIRS±γ for large enough γ .

(3) Hardness results, including:
—a discussion of the difficulty behind supporting random load shedding

and some simple heuristics (Section 6.1).
—some lower bound results on the hardness of verifying some other related

queries, such as joins (Section 6.2).
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(4) Finally, an extensive empirical evaluation (Section 7) of the techniques de-
signed in this article using live network traffic, showing that our algorithms
not only provide strong theoretical guarantees, but also work extremely well
in practice and are very simple to implement.

2. PROBLEM FORMULATION

The queries examined in this work have the following structure.

SELECT G_1,..., G_M, AGG(A_1),..., AGG(A_N) FROM T
WHERE ... GROUP BY G_1,..., G_M

Note also that GROUP BY aggregate queries have wide applications in monitor-
ing and statistical analysis of data streams (e.g., in networking and telephony
applications). Previous work has addressed exactly these types of queries from
various aspects (see Zhang et al. [2005] and related work therein) other than
outsourcing. For example, a query that appears frequently in network monitor-
ing applications is the following.

SELECT source_ip, destination_ip, SUM(packet_size) FROM IP_Trace
GROUP BY source_ip, destination_ip (*)

In the rest of the article we will use this query as our main motivating example
and concentrate on sum and count. Other aggregates that can be converted to
these two (e.g., average, standard deviation, etc.) can be easily supported, by
verifying each component separately (i.e., verifying both the sum and the count
in the case of average). We will focus on verifying this query as a continuous
query; adaptations to sliding windows are discussed in Section 4.4.

Data stream model. Following the example query (*), the “GROUP BY” predi-
cate partitions the streaming tuples into a set of n groups, computing one sum
per group. The data stream can be viewed as a sequence of additions (or subtrac-
tions) over a set of items in [n] = {1, . . . , n}. Denote this data stream as S and
its τ -th tuple as sτ = (i, uτ ), an update of amount uτ to the ith group. Formally,
the query answer can be expressed as a dynamic vector of nonnegative integers
vτ = [vτ

1, . . . , vτ
n] ∈ N

n, containing one component per group aggregate. Initially,

v0 is the zero vector. A new tuple sτ = (i, uτ ) updates the corresponding group i
in vτ as vτ

i = vτ−1
i +uτ . We allow uτ to be either positive or negative. When count

queries are concerned, we have uτ = 1 for all τ . We assume that the L1 norm of
vτ is always bounded by some large m, that is, at any τ , ‖vτ‖1 = ∑n

i=1 |vτ
i | ≤ m.

Our streaming model is the same as the general Turnstile model of Muthukr-
ishnan [2003], and our algorithms are designed to work under this model. The
readers are referred to two excellent papers [Muthukrishnan 2003; Babcock
et al. 2002] for detailed discussions of data stream models.

Problem definition. The problem of Continuous Query Verification on data
streams (CQV) is defined as follows.

Definition 2.1. Given a data stream S, a continuous query Q, and a user-
defined parameter δ ∈ (0, 1

2
), design a synopsis X of v such that for any τ , given
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any wτ and using X (vτ ), we: (1) raise an alarm with probability at least 1 − δ

if wτ �= vτ ; (2) shall not raise an alarm if wτ = vτ .

Here wτ , for example, could be the answer provided by the server, whileX (vτ )
is the synopsis communicated to the client from the data owner for verifying
vector vτ .

With this definition we raise an alarm with high probability if any component
(or group answer) vτ

i is inconsistent. Consider a server that is using semantic
load shedding, that is, dropping tuples from certain groups, on bursty stream
updates. In this scenario the aggregate of a certain, small number of compo-
nents will be inconsistent without malicious intent. We would like to design a
technique that allows a certain degree of tolerance in the number of erroneous
answers contained in the query results, rather than raising alarms indistinctly.
The following definition captures the semantics of Continuous Query Verifica-
tion with Tolerance for a Limited Number of Errors (CQVγ ):

Definition 2.2. For any w, v ∈ N
n, let E(w, v) = {i | wi �= vi}. Then define

w �=γ v iff |E(w, v)| ≥ γ and w =γ v iff |E(w, v)| < γ . Given a data stream S, a

continuous query Q, and user-defined parameters γ ∈ {1, . . . , n} and δ ∈ (0, 1
2
),

design a synopsis X of v such that, for any τ , given any wτ and using X (vτ ),
we: (1) raise an alarm with probability at least 1 − δ, if wτ �=γ vτ ; (2) shall not
raise an alarm if wτ =γ vτ .

Note that CQV is the special case of CQVγ with γ = 1. Similarly, we would
like to design techniques that can support random load shedding, that is, which
can tolerate small absolute or relative errors on any component irrespective of
the total number of inconsistent components. The following definition captures
the semantics of Continuous Query Verification with Tolerance for Small Errors
(CQVη).

Definition 2.3. For any w, v ∈ N
n, let w �≈η v iff there is some i such that

|wi − vi| > η, and w ≈η v iff |wi − vi| ≤ η for all i ∈ [n]. Given a data stream

S, a continuous query Q, and user-defined parameters η and δ ∈ (0, 1
2
), design

a synopsis X of v such that, for any τ , given any wτ and using X (vτ ), we: (1)
raise an alarm with probability at least 1 − δ, if wτ �≈η vτ ; (2) shall not raise an
alarm if wτ ≈η vτ .

Note that the previous definition requires the absolute errors for each vτ
i to

be no larger than η. It is also possible to use relative errors, that is, raise an
alarm iff there is some i such that |wτ

i −vτ
i |/|vτ

i | > η. Thus CQV is also a special
case of CQVη with η = 0.

Related definitions are also possible. For example, one may wish to bound
the sum of the absolute errors, or bound both the number and the size of the
errors. We do not discuss these variations in detail, since they are for the most
part similar to the ideas we outline subsequently.

We will work under the standard RAM model. Under this model, it is assumed
that addition, subtraction, multiplication, division, or modular arithmetic op-
erations involving two words take one unit of time. We also assume that n/δ

and m/δ fit in a word (or constant number of words).
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Synchronization. A major practical issue with the preceding problem def-
initions is that, in order to apply the synopsis X (vτ ) thus designed for query
verification on an outsourced data stream, the data owner and the servers need
to have a synchronized view of the stream. Such a synchronization is hard to
maintain without substantial overhead. However, there is a simple “virtual
synchronization” technique that we can use to get around this issue. The obser-
vation is that the client does not need to, and in fact is unable to, ask for and
verify the query results at every time instance. Typically one would just verify
the results every now and then. We can use the following scheme to do so with
a synopsis X (vτ ) that satisfies the problem definitions given earlier.

When the data owner outsources the data stream, it attaches a timestamp to
each tuple according to its own clock. When the client wants to verify the query
results at a certain time τ , it will send such a request to the owner shortly
before time τ . Meanwhile it also asks the server to provide the query results at
time τ . When the server has finished receiving all tuples with timestamps of
τ or earlier, it will then return to the client the up-to-date query results. Note
that the server never uses its own clock. The data owner, on the other hand,
returns X (vτ ) to the client when its clock reaches τ . Now the query results and
the synopsis are synchronized, and the client can perform the verification when
both arrive. By the problem definitions, unless the server returns vτ exactly (or
approximately), the synopsis will raise an alarm. Therefore, in the rest of the
article we will assume that all parties are synchronized, and we will drop the
superscript τ when there is no confusion.

3. POSSIBLE SOLUTIONS

This section presents some intuitive solutions and discusses why they are not
sufficient for solving the CQV problem. We focus on count queries only; the
discussion extends to sum queries since count is a special case of sum. Abusing
notations, we use |v| to denote the number of nonzero entries of v.

A naı̈ve solution. A naı̈ve solution to our problem is for the data owner to
always maintain v exactly, using �(|v| log m) bits of space. When it receives a
verification request from a client, it computes a collision-resistant hash func-
tion (e.g., SHA0 or SHA1) of v and transmits the hash to the client. Although
this simple solution incurs a small network overhead, it has two major draw-
backs. First, the owner’s memory consumption is linear in |v|, which is too large
when there are a large number of groups or when there are multiple queries
that need to be supported. In fact, all streaming algorithms strive to use space
substantially smaller than linear. Second, whenever the data owner receives a
verification request from some client, unless v has not changed since the last
request, the hash of v needs to be recomputed, taking O(|v|) time. For many
queries like the example query (*), |v| could easily go up to the order of millions.

Since space complexity is the most important measure for all streaming
algorithms, in the rest of the article we only consider algorithms that require
sublinear space. One might think of the following two simple solutions to reduce
the high space requirement of this naı̈ve algorithm.
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Random sampling. A first attempt is random sampling. Assuming a sam-
pling rate r, the client randomly chooses rn groups. If w �= v, this method will
raise an alarm if the error in w is one of the sampled groups, which happens
with probability r. In order to satisfy the problem statement requirements we
need to set r = 1 − δ. For CQVγ , if the server modifies exactly γ answers, then
the probability of raising an alarm is only roughly rγ , which is obviously too
small for practical r ’s and γ ’s. Thus, random sampling that guarantees δ failure
probability can at most reduce the space cost by a small fraction.

Sketches. Recent years have witnessed a large number of sketching tech-
niques (e.g., Alon et al. [1996], Cormode and Muthukrishnan [2005], Bar-Yossef
et al. [2002], Flajolet and Martin [1985]) that are designed to summarize high-
volume streaming data with small space. It is tempting to maintain such a
sketch K(v) for the purpose of verification. When the server returns some w,
we compute K(w), which is possible since w exactly tells us what the elements
have appeared in the stream and what their frequencies are. Then we check if
K(v) = K(w). In what follows, let us consider the two well-known AMS sketches
from the work of Alon et al. [1996] to see whether they work, and if so, how large
they are.

The F0 sketch uses a pairwise independent random hash function r and
computes the maximum number of trailing zeros in the binary form of r(i) for
all tuples in the stream. This sketch is oblivious to the number of times a tuple
appears, so will not detect any errors as long as w and v have the same set
of locations on the groups with nonzero entries. Simple extensions, such as
counting the number of occurrences of each value of r(i), blow up the space
used by a logarithmic factor but give no useful guarantee.

The F2 sketch does look like a promising approach. It computes the sum
Y (v) = ∑n

i=1 h(i)vi, where h : {1, . . . , n} → {−1, 1} is chosen randomly from a
family of 4-wise independent hash functions. This process is repeated over in-
dependent choices of the hash functions to improve the accuracy. If v = w, we
obviously have Y (v) = Y (w), so the sketch does not have any false positives. If
v �= w, then the L2 norm ‖v − w‖2

2 is nonzero. From Alon et al. [1996] we know

that (Y (v−w))2 = (Y (v)−Y (w))2 is an unbiased estimator of ‖v−w‖2
2. If w �= v,

‖v−w‖2
2 > 0, and the sketch will raise an alarm unless Y (v) = Y (w), or this es-

timator is 0. This means that we will miss the alarm only if this estimator is off
by ‖v−w‖2

2. By using 4 independent estimators and taking the average, we can
bound this probability from above by 1/2. Therefore, in order to guarantee a 1−δ

overall success probability, the data owner needs to maintain 4 · log 1
δ

indepen-
dent copies. Since each copy requires three words (one for Y (v) and two for the
4-wise independent hash function h), the total size of the synopsis will be 384
words for δ = 2−32. Later we will see that our solution achieves the same security
guarantee using merely three words, which can also be maintained in O(1) time.

The preceding analysis shows that 4 · log 1
δ

copies of the sketch are guar-
anteed to work, but one may ask if they are really necessary. Shortly we will
present a concrete adversarial construction showing that the previous analy-
sis is almost tight and using fewer copies will indeed compromise the security
guarantee.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 15, Publication date: August 2009.



15:10 • K. Yi et al.

For concreteness, suppose we adopt the BCH4 scheme (refer to Rusu and
Dobra [2007]) to construct a 4-wise independent random hash function f :
[n] → {0, 1}, and then set h(i) = 2 f (i) − 1. Note that

∑n
i=1 h(i)(vi − wi) =

2
∑n

i=1 f (i)(vi − wi) − ∑n
i=1(vi − wi). Next we will construct a w �= v such that∑n

i=1(vi − wi) = 0, but
∑n

i=1 f (i)(vi − wi) = 0 is likely to happen.
Without loss of generality we assume n = 2r −1. Let S0 and S1 be two random

r-bit integers. The BCH4 scheme computes f (i) as f (i) = (S0 � i) ⊕ (S1 � i3),
where ⊕ is the vector dot product over the last r bits evaluated on Z2, that
is, assuming the last r bits of x (respectively, y) is x1, . . . , xr (respectively,
y1, . . . , yr ), then x ⊕ y = (

∑r
i=1 xi yi) mod 2. We construct w as follows. For

all odd i and for i = 2r−1, we set wi = vi; for even i �= 2r−1, we set vi − wi = −1
if i < 2r−1, and vi − wi = 1 if i > 2r−1. It is clear that

∑n
i=1(vi − wi) = 0. We will

show that if S0 < 2r−1, then
∑n

i=1 f (i)(vi − wi) = 0. Consider any odd i < 2r−1,
and j = i + 2r−1. We have

f ( j ) = (S0 � j ) ⊕ (S1 � j 3)

= (S0 � (i + 2r−1)) ⊕ (S1 � (i + 2r−1)3)

= (S0 � i) ⊕ (S1 � (i + 2r−1)3),

where the last equality is due to the fact that the first bit of S0 is zero. On the
other hand, for even i, since

(i + 2r−1)3 = i3 + 3 · i2 · 2r−1 + 3 · i · 22r−2 + 23r−3

≡ i3 (mod 2r ),

we have f (i) = f ( j ). Thus, the pair f (i)(vi − wi) and f ( j )(vj − wj ) cancel
out, and we have

∑n
i=1 f (i)(vi − wi) = 0. So when S0 < 2r−1, which happens

with probability 1/2, the sketch will miss this erroneous w. This means that
in order to guarantee a 1 − δ overall success probability, indeed �(log 1

δ
) copies

are necessary.
One can evaluate other possible sketching techniques. In general, they have

the common feature that in order to give a suitably small probability of failure,
a significant amount of space is required, asymptotically worse than the O(1)
words of space our solution uses.

4. PIRS: POLYNOMIAL IDENTITY RANDOM SYNOPSIS

4.1 The Basic Synopses

This section presents our basic synopsis, called Polynomial Identity Ran-
dom Synopses (PIRS) and denoted by X (v), for solving the CQV problem
(Definition 2.1). The synopsis, as the name suggests, is based on testing the
identity of polynomials by evaluating them at a randomly chosen point. The
technique of verifying polynomial identities can be traced back to the seventies
[Freivalds 1979]. It has found applications in, for example, verifying matrix
multiplications and pattern matching [Motwani and Raghavan 1995]. PIRS
has two variants, named PIRS-1 and PIRS-2, respectively.
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PIRS-1. Let p be some prime such that max{m/δ, n} < p. For the space
analysis, let p ≤ 2 max{m/δ, n}; according to Bertrand’s postulate [Nagell 1981]
such a p always exists. We will work in the field Zp, that is, all additions, sub-
tractions, and multiplications are done modulo p. For the first PIRS, denoted
PIRS-1, we choose α from Zp uniformly at random and compute X (v) incremen-
tally from X (vτ−1) and sτ = (i, uτ ) as

X (vτ ) = X (vτ−1)(α − i)uτ

,

where we define X (0) = X (v0) = 1. Consequently, we have

X (v) = (α − 1)v1 · (α − 2)v2 · · · · · (α − n)vn .

We assume that n, m, δ, p are publicly known to the data owner and all the
clients. Then the data owner picks α secretly and maintains X (v). Upon a ver-
ification request, the data owner returns PIRS to the client, which consists of
only two words: α and X (v). Given any w returned by the server, the client can
use PIRS to check if w = v with high probability, by computing

X (w) = (α − 1)w1 · (α − 2)w2 · · · · · (α − n)wn .

We first check if
∑n

i=1 wi > m, if so we reject w immediately. Otherwise, if
X (w) = X (v), then we declare that w = v; else we raise an alarm. It is easy to
see that we never raise a false alarm. Therefore we only need to show that we
miss a true alarm with probability at most δ.

THEOREM 4.1. Given any w �= v, PIRS raises an alarm with probability at
least 1 − δ.

PROOF. Initially, assume that each vi ≥ 0, and consider the polynomials
fv(x) = (x − 1)v1 (x − 2)v2 · · · (x − n)vn and fw(x) = (x − 1)w1 (x − 2)w2 · · · (x − n)wn .
Since a polynomial with 1 as its leading coefficient, that is, the coefficient of
the term with the largest degree, is completely determined by its zeroes (with
multiplicities), we have fv(x) ≡ fw(x) iff v = w. If v �= w, since both fv(x) and
fw(x) have degree at most m, fv(x) = fw(x) happens at no more than m values
of x, due to the fundamental theorem of algebra. Since we have p ≥ m/δ choices
for α, the probability that X (v) = X (w) happens is at most δ over the random
choice of α.

In the general case, when vi ’s are allowed to be negative, this argument does
not immediately work. However, by choosing p to be at least 2m/δ, we can
address this issue. Conceptually, we can add m to each vi, and by our bounds
on m, this will ensure that all vi ’s are nonnegative, and the summary will give
the required guarantees. This has the effect of multiplying the summary by im

for each i; however, this step does not affect the equality of two summaries, and
so can be omitted. Therefore, the summary can also be directly applied in the
case when some vi ’s are negative.

We now analyze the update time to maintain X (v) as new updates are ob-
served. For count queries, each tuple increments one of the vi ’s by one, so the up-
date cost is constant (one subtraction and one multiplication). For sum queries,
a tuple s = (i, u) increases vi by u, so we need to compute (α − i)u, which can
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be done in O(log u) (exponentiation by repeated squaring) time. To perform
a verification with w, we need to compute (x − i)wi for each nonzero entry
wi of w, which takes O(log wi) time, so the time needed for a verification is
O(

∑
log wi) = O(|w| log m

|w| ). Since both X (v) and α are smaller than p, the

space complexity of the synopsis is O(log m
δ

+ log n) bits, or O(1) words.

THEOREM 4.2. PIRS-1 occupies O(log m
δ

+ log n) bits of space, spends O(1)
(respectively, O(log u)) time to process a tuple for count (respectively, sum)
queries, and O(|w| log m

|w| ) time to perform a verification.

Some special care is needed when u is negative (or when handling dele-
tions for count queries), as the field Zp is not equipped with division. We
need first to compute (α − i)−1, the multiplicative inverse of (α − i) in Zp, in
O(log p) time (using Euclid’s gcd algorithm [Knuth 1997]), and then compute
(α − i)−1·|u|.

PIRS-2. When n � m we can actually do slightly better in terms of the
space usage, in a scheme we refer to as PIRS-2. Now we choose the prime p
between max{m, n/δ} and 2 max{m, n/δ}. For α chosen uniformly at random
from Zp, we compute

X (v) = v1α + v2α
2 + · · · + vnαn.

Note that this is also straightforward to maintain over a stream of updates, by
adding on uαi in response to update s = (i, u). By considering the polynomial
fv(x) = v1x + v2x2 + · · · + vnxn, the proof outline of Theorem 4.1 holds in this
case, and the preceding choice of p ensures that the desired δ guarantee is
maintained. But now PIRS-2 has an O(log n) update cost for both count and
sum queries, since we need to compute uαi for a tuple (i, u) in the stream.
Without repeating the details, we conclude with the following.

THEOREM 4.3. PIRS-2 occupies O(log m + log n
δ
) bits of space, spends

O(log n) time to process a tuple, and O(|w| log n) time to perform a verification.

Since the space complexities of PIRS-1 and PIRS-2 are comparable and PIRS-
1 has a better update time for count queries, we recommend using PIRS-1 unless
n is small compared to m and typical u.

An important property of (either variant of) PIRS is that the verification can
also be performed in one pass of w using a constant number of words of memory.
This is especially useful when |w| is large. The client will be able to receive w
in a streaming fashion, verifies it online, and forward it either to a dedicated
server for further processing, or a network storage device for offline use.

Space optimality. Next we give a lower bound showing that PIRS is space-
optimal on the bits level for almost all values of m and n.

THEOREM 4.4. Any synopsis solving the CQV problem with error probability
at most δ has to keep �(log min{m,n}

δ
) bits.

PROOF. We will take an information-theoretic approach. Assume that v and
w are both taken from a universe U , and let M be the set of all possible memory
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states the synopsis might keep. Any synopsis X can be seen as a function
f : U → M; and ifX is randomized, it can be seen as a function randomly chosen
from a family of such functions F = { f1, f2, . . . }, where fi is chosen with prob-
ability p( fi). Without loss of generality, we assume that p( f1) ≥ p( f2) ≥ · · · .
Note that X needs at least log |M| bits to record the output of the function and
log |F | bits to describe the function chosen randomly from F .

For any w �= v ∈ U , let Fw,v = { f ∈ F | f (w) = f (v)}. For a randomized
synopsis X to solve CQV with error probability at most δ, the following must
hold for all w �= v ∈ U . ∑

f ∈Fw,v

p( f ) ≤ δ (1)

Let us focus on the first k = �δ · |F |� + 1 functions f1, . . . , fk . It is easy to see
that

∑k
i=1 p( fi) > δ. Since there are a total of |M|k possible combinations for

the outputs of these k functions, by the pigeon-hole principle, we must have

|U | ≤ |M|k (2)

so that no two w �= v ∈ U have fi(w) = fi(v) for all i = 1, . . . , k; otherwise we
would find w, v that violate (1).

Taking log on both sides of (2), we have

log |U | ≤ (�δ · |F |� + 1) log |M|.
Since v has n entries whose sum is at most m, by simple combinatorics, we have
|U | ≥ (m+n

n

)
, or log |U | ≥ min{m, n}. We thus obtain the following trade-off.

|F | · log |M| = �(min{m, n}/δ)

If log |F | ≤ (1 − ε) log(min{m, n}/δ) (i.e., |F | ≤ (min{m, n}/δ)1−ε) for any con-
stant ε ∈ (0, 1), then X has to use superpolylogarithmic space log |M| =
�((min{m, n}/δ)ε); elseX has to keep log |F | ≥ log (min{m, n}/δ) random bits.

Therefore, when m ≤ n, PIRS-1 is optimal as long as log n = O(log m
δ

); when
m > n, PIRS-2 is optimal as long as log m = O(log n

δ
). Our bounds are not tight

when log m
δ

= o(log n) or log n
δ

= o(log m).

Practical issues. The preceding theoretical analysis focuses on the bit-level
space complexity. When implemented, however, both PIRS-1 and PIRS-2 use
three words (p, α, and χ (v)), and thus do not seem to have any difference.
Nevertheless, there are some technical issues to be considered in practice.

First, we shall choose p to be the maximum prime that fits in a word, so
as to minimize δ. Note that δ = m/p for PIRS-1 and δ = n/p for PIRS-2. For
instance if we use 64-bit words and m < 232, then δ is at most 2−32 for PIRS-1,
which makes any error highly unlikely (1 in four billion). If speed is a key
consideration, careful choice of p can allow faster implementation: For example,
choosing p to be a Mersenne prime (p is of the form p = 2� −1 for some �) allows
the modulo arithmetic to be performed using simple addition and subtraction
operations. Such tricks are well known in the literature (see Thorup [2000]), so
we do not discuss them further.
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Second, since we need to extract the group id i from each incoming tuple
directly, without the use of a dictionary (which would blow up the memory
cost), the size of the group space, n, needs to be large for certain queries. For
example, the query (*) of Section 2 has a group space of n = 264 (the combination
of two IP addresses), although the actual number of nonzero entries |v| may be
much less than n. In this case, since m is typically much smaller, PIRS-1 would
be the better choice.

4.2 Handling Multiple Queries

The discussion so far has focused on handling a single query per PIRS synopsis.
Our techniques, though, can be used for handling multiple queries simultane-
ously. Consider a client who registers at the data owner a number of aggregate
queries on a single attribute (e.g., packet size) but with different partitioning
on the input tuples (e.g., source/destination IP and source/destination port),
and wishes to verify all of them. Let Q1, . . . , Qk be k such queries, and let the
ith query partition the incoming tuples into ni groups for a total of n = ∑k

i=1 ni

groups. A simple solution for this problem would be to apply the PIRS algorithm
once per query, using space linear in k. But by treating all the queries as one
unified query of n groups we can use one PIRS synopsis to verify the combined
vector v. The time cost for processing one update increases linearly in k, since
each incoming tuple is updating k components of v at once (one group for every
query in the worst case).

COROLLARY 4.5. PIRS-1 for k queries occupies O(log m
δ

+ log n) bits of space,
spends O(k) (respectively, O(k log u)) time to process a tuple for count (respec-
tively, sum) queries, and O(|w| log m

|w| ) time to perform a verification.

Clearly, this is a strong result, since we can effectively verify multiple queries
with a few words of memory and communication.

4.3 Information Disclosure on Multiple Attacks

Theorem 4.1 bounds the success rate for detecting a single attack attempted by
the server. After an error has been detected, the client can choose to disclose
this information to the server. If the error is not reported, then Theorem 4.1
will continue to hold. However, errors can occur due to faulty software or bad
communication links, and may not be intentional. In this case we would like to
give a warning to the server. Since an adversary can extract knowledge from
this warning (e.g., it knows at least that the same response on the same data
will always fail), the guarantee of Theorem 4.1 does not strictly hold. In order
to restore the 1 − δ success rate after a reported attack, the synopsis has to be
recomputed from scratch, which is impossible in a streaming setting. Hence,
it is important to rigorously quantify the loss of guarantee after a series of
warnings have been sent out without resetting the synopsis.

Let ek = 1 if the kth attack goes undetected and ek = 0 otherwise. Let pk

be the probability that the server succeeds in its kth attack after k−1 failed
attempts, that is, pk = Pr[ek = 1 | e1 = 0, . . . , ek−1 = 0]. From Theorem 4.1 we
know that p1 ≤ δ. In what follows we upper bound pk with respect to the most
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powerful server, denoted as Alice, to demonstrate the strength of PIRS. We
pessimistically assume that Alice: (1) knows everything about how PIRS works
except its random seed, α; (2) maximally explores the knowledge that could
be gained from one failed attack; and (3) possesses unbounded computational
power.

Next, we precisely quantify the best Alice could do to improve pk over multi-
ple attacks. Denote by R the space of seeds used by PIRS. For any w, v denote
the set of witnesses W(w, v) = {r ∈ R | PIRS raises an alarm on r} and the set
of nonwitnesses W(w, v) = R − W(w, v). Note that |W(w, v)| ≤ δ|R| if w �= v,
and W(w, v) = R if w = v. Suppose the seed PIRS uses is r. If Alice returns a
correct answer w = v, she cannot infer anything about r. If she returns some
w �= v and gets a warning, it is possible that Alice can determine r /∈ W(w, v).
However, even if we assume that Alice has enough computational power to com-
pute both the sets of witnesses and nonwitnesses, it is impossible for her to infer
which witness PIRS is using as r. After k −1 failed attacks using w1, . . . , wk−1,

the set of seeds that Alice has ruled out is
⋃k−1

i=1 W(wi, vi), whose cardinality is
at most (k − 1)δ|R|. Thus, we have the next lemma.

LEMMA 4.6. pk ≤ δ
1−(k−1)δ

.

PROOF.

pk = |set of nonwitnesses|
|set of remaining seeds| = |W(wk , vk)|

|R − ⋃k−1
i=1 W(wi, vi)|

≤ δ

1 − (k − 1)δ
.

THEOREM 4.7. Assuming that Alice has made a total of k attacks to PIRS for
any k, the probability that none of them succeeds is at least 1 − kδ.

PROOF. This probability is

Pr[e1 = 0 ∧ · · · ∧ ek = 0]

=
k∏

i=1

(
1 − Pr[ei = 1 | e1 = 0, . . . , ei−1 = 0]

)

≥
k∏

i=1

(
1 − δ

1 − (i − 1)δ

)
=

k∏
i=1

1 − iδ
1 − (i − 1)δ

= 1 − δ

1
· 1 − 2δ

1 − δ
· · · · · 1 − kδ

1 − (k − 1)δ
= 1 − kδ.

Theorem 4.7 shows that PIRS is very resistant towards coordinated mul-
tiple attacks even against an adversary with unlimited computational power.
For a typical value of δ = 2−32, PIRS could tolerate millions of attacks be-
fore the probability of success becomes noticeably less than 1. Most impor-
tantly, the drop in the detection rate to 1 − kδ occurs only if the client chooses
to disclose the attacks to the server. Such disclosure is not required in many
applications.

ACM Transactions on Database Systems, Vol. 34, No. 3, Article 15, Publication date: August 2009.



15:16 • K. Yi et al.

4.4 Handling Sliding Windows

In this section we discuss how to extend PIRS to support sliding windows. We
will focus on PIRS-1 for count queries only; the same arguments apply to sum
queries, as well as to PIRS-2, PIRSγ , and PIRS±γ .

An important property of PIRS-1 is that it is decomposable, that is, for any
v1, v2, X (v1 + v2) = X (v1) · X (v2). (For PIRS-2, we have X (v1 + v2) = X (v1) +
X (v2).) This property allows us to extend PIRS for periodically sliding windows
using standard techniques [Datar et al. 2002]. Using our earlier example, one
such sliding window query might be the following.

SELECT SUM(packet_size) FROM IP_Trace
GROUP BY source_ip, destination_ip
WITHIN LAST 1 hour SLIDE EVERY 5 minutes

In this case, we can build a PIRS-1 for every 5-minute period, and keep it in
memory until it expires from the sliding window. Assume that there are k such
periods in the window, and let X (v1), . . . , X (vk) be the PIRS for these periods. In
addition, the data owner maintains the overall PIRS X (v) = ∏k

i=1 X (vi). When
a new PIRS X (vk+1) completes, we update X (v) as X (v) := X (v) · X (vk+1) ·
(X (v1))−1. The following result is immediate.

COROLLARY 4.8. For a periodically sliding window query with k periods, our
synopsis uses O(k(log m

δ
+ log n)) bits of space, spends O(1) time to process an

update, and O(|w| log m
|w| ) time to perform a verification.

If various window sizes consisting of between 1 to k periods are to be sup-
ported, we decompose the k periods into a number of dyadic intervals. For sim-
plicity assume that k is a power of 2. We organize these intervals into � = log k
levels. On level 0, there are k intervals each consisting of one period; on level
i, 1 ≤ i ≤ � − 1, there are k/2i intervals, each spanning 2i periods. Note that
there are a total of 2k − 1 such dyadic intervals. We build one PIRS for each
interval, so the total size of the entire synopsis is still O(k(log m

δ
+ log n)). Since

a PIRS at level i + 1 can be computed in constant time from two PIRS’s at level
i, the amortized update cost remains O(1). Upon a verification request with a
window size of q periods, we can decompose the window into at most O(log k)
dyadic intervals, and combine those corresponding PIRS’s together to form the
correct synopsis for the query window.

COROLLARY 4.9. To support sliding window queries with various window
sizes of up to k periods, our synopsis uses O(k(log m

δ
+ log n)) bits of space, spends

O(1) time to process an update, and O(log k) time to assemble the required
synopsis upon a verification request. The client spends O(|w| log m

|w| ) time to
perform a verification.

5. TOLERANCE FOR FEW ERRORS

This section presents a synopsis for solving the CQVγ problem (Definition 2.2).
Let γ be the number of components in v that are allowed to be inconsistent.
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Fig. 2. The PIRSγ synopsis.

First, we present a construction that gives an exact solution that satisfies the
requirements of CQVγ , and requires O(γ 2 log 1

δ
log n) bits of space. This synop-

sis can be strengthened so that we can also locate and even correct these errors.
But this exact solution uses space quadratic in γ , so we next provide an approx-
imate solution which uses only O(γ log 1

δ
(log m+ log n)) bits. Finally, we present

another synopsis that can estimate the number of errors. This estimator uses
polylogarithmic space and does not depend on γ . All the solutions use PIRS
as a black box, and therefore can choose either PIRS-1 or PIRS-2. We state all
the results using PIRS-1 for count queries. The corresponding results for sum
queries and PIRS-2 can be obtained similarly.

5.1 PIRSγ : An Exact Solution

By using PIRS as a building block we can construct a synopsis that satisfies the
requirements of CQVγ . This synopsis, referred to as PIRSγ , consists of multiple
layers, where each layer contains k = c1γ

2 buckets (c1 ≥ 1 is a constant to be de-
termined shortly). Each component of v is assigned to one bucket per layer, and
each bucket is represented using only its PIRS synopsis (see Figure 2). PIRSγ

raises an alarm if at least γ buckets in any layer raise an alarm. The intuition
is that if there are fewer than γ errors, no layer will raise an alarm, and if there
are more than γ errors, at least one of the layers will raise an alarm with high
probability (when the γ inconsistent components do not collide on any bucket
for this layer). By choosing the probability of failure of the individual PIRS
synopsis carefully, we can guarantee that PIRSγ achieves the requirements of
Definition 2.2.

Algorithm 1. PIRSγ -INITIALIZE(Prime p, Threshold γ )

1 c = 4.819, k = �cγ 2�
2 Generate x and y uniformly at random from Zp

3 for � = 1, . . . , �log 1/δ� do
4 Layer L� = [X1(v) := 0, · · · , Xk(v) := 0]

//X j (v) is a PIRS synopsis with δ′ = 1/cγ

Algorithm 2. PIRSγ -UPDATE(Tuple s = (i, u))

1 for � = 1, . . . , �log 1/δ� do
2 b�(i) = xi + y mod k + 1

3 Update L�.Xb�(i)(v) using s
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Algorithm 3. PIRSγ -VERIFY(Vector w)

1 for � = 1, . . . , �log 1/δ�do
2 Layer M� = [X1(w) := 0, · · · , Xk(w) := 0]

//X j (w) is a PIRS synopsis with δ′ = 1/cγ
3 for i = 1, . . . , n do
4 b�(i) = xi + y mod k + 1

5 Update M�.Xb�(i)(w) by s = (i, wi)

6 if |{ j | Li .X j (v) �= Mi .X j (w), 1 ≤ j ≤ k}| ≥ γ then Raise an alarm

Concentrating on one layer only, let b be a pairwise independent hash func-
tion which maps the range {1, . . . , n} uniformly onto {1, . . . , k}. PIRSγ assigns
vi to the b(i)-th bucket, and for each bucket computes the PIRS synopsis of
the assigned subset of vi ’s with probability of failure δ′ = 1/(c2γ ) (c2 ≥ 1 is a
constant to be determined shortly). According to Theorem 4.2 each of these k
synopses occupies O(log m

δ′ + log n) = O(log m + log n) bits. Given some w =γ v,
since there are fewer than γ errors, the algorithm will not raise an alarm. We
can choose constants c1 and c2 such that if w �=γ v, then the algorithm will
raise an alarm with probability at least 1/2 for this layer. In this case there are
two cases when the algorithm will fail to raise an alarm: (1) There are fewer
than γ buckets that contain erroneous components of w; (2) There are at least
γ buckets containing erroneous components but at least one of them fails due to
the failure probability of PIRS. We show that by setting constants c1, c2 = 4.819
either case occurs with probability at most 1/4. Consider the first case. Since
the vi ’s are assigned to the buckets in a pairwise independent fashion, we can
guarantee that the mapping of the γ erroneous components onto the k buckets
is injective with probability

1 −
(

1 − 1

k

) γ (γ−1)
2

(3)

≤ 1 −
(

1 − 1

c1γ 2

)γ 2/2

≤ 1 − 2−1/c1 ≤ 1

4
,

where the last inequality holds by our choice of c1. Next, consider the second
case. The probability that some of the γ buckets that are supposed to raise an
alarm fail is

1 − (1 − δ′)γ = 1 −
(

1 − 1

c2γ

)c2γ /c2

≤ 1 − 2
− 2

c2 <
1

4
, (4)

which holds as long as c2 ≥ 4.819.
Therefore, using one layer PIRSγ will raise an alarm with probability at

least 1/2 on some w �=γ v, and will not raise an alarm if w =γ v. By using log 1
δ

layers and reporting an alarm if at least one of these layers raises an alarm,
the probability is boosted to 1 − δ.

THEOREM 5.1. For any w �=γ v, PIRSγ raises an alarm with probability at
least 1 − δ. For any w =γ v, PIRSγ will not raise an alarm.
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In addition to the k log 1
δ

PIRS synopses, we also need to generate the hash
function b mapping updates to buckets. This can be done by picking x and y
uniformly at random from Zp, and computing b(i) = xi+ y mod p mod k. This
generates a function that is pairwise independent over the random choices of x
and y [Motwani and Raghavan 1995]. To perform a verification, we can compute
for all the layers in parallel while making one pass over w. The detailed ini-
tialization, update, and verification algorithms for PIRSγ appear in Algorithms
1, 2, and 3. The next theorem bounds both the space and time complexity of
PIRSγ .

THEOREM 5.2. PIRSγ requires O(γ 2 log 1
δ
(log m+log n)) bits, spends O(log 1

δ
)

time to process a tuple in the stream, and O(|w|(γ +log m
|w| ) log 1

δ
) time to perform

a verification.

With careful analysis a smaller constant in the previous big-O can be
achieved in practice. For a given γ , we choose the minimum k such that Eq. (3)
is at most 1/2, and choose 1/δ′ very large (close to the maximum allowed in-
teger) so that (4) is almost zero. For instance if γ = 2 and 3, then 2 log 1

δ
and

6 log 1
δ

words suffice, respectively. For arbitrary γ , the storage requirement is

2γ 2 log 1
δ

words in the worst case.

5.2 PIRSγ ∗: Locating and Correcting Errors

When there are a small number of errors (at most γ ), PIRSγ will not raise an
alarm, which gives some leeway to the server. This is often necessary so that
the server can cope with large volumes of incoming data using some semantic
load shedding strategies. However, in some critical applications, if the client
demands complete correctness, PIRSγ is not sufficient, since it only tells the
client if there are < γ errors but not where they are. In this subsection, we
present PIRSγ ∗, a strengthened version of PIRSγ that is able to identify which
groups are affected by errors, and even compute the correct sums for the affected
groups. The idea is to take advantage of a technique based on the binary decom-
position of the group identifier: This idea has been used in different contexts,
such as finding frequent items in data streams [Cormode and Muthukrishnan
2003; Cormode et al. 2005]. Here, we need to embed the PIRS summary into
this decomposition.

Applying the binary decomposition to PIRSγ , we increase the amount of
information kept about each bucket. In addition to keeping a PIRS synopsis
of all items which fall into a given bucket, we additionally keep 2�log n� PIRS
synopses, arranged as a two-dimensional array A of size �log n� × 2. When
an update to group i is placed into bucket b(i), we also update the PIRS in
A[ j , bit(i, j )], for all 1 ≤ j ≤ �log n�, where bit(i, j ) denotes the j th bit in the
binary representation of i.

To perform a query verification, we compare the array A of PIRS synopses
computed for both v and w for each bucket. If all corresponding entries match,
then (with high probability) there is no erroneous components in the bucket. If,
for any j , the PIRS in both A[ j , 0] and A[ j , 1] do not match, then this indicates
that there is more than one erroneous component in this bucket, because a
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single erroneous i cannot contaminate both A[ j , 0] and A[ j , 1]. Otherwise, there
must be exactly one erroneous component falling in this bucket. Our previous
analysis indicates that this will indeed be the case for all erroneous components
with high probability, providing that there are at most γ such components. In
this case, for each j , exactly one of A[ j , 0] and A[ j , 1] will not match. If it is
A[ j , 1], this indicates that the j th bit of the identifier i of the erroneous group
is 1; else it is 0. Using all �log n� pairs of PIRS, the identifier can therefore be
recovered exactly.

Now the client can locate all the erroneous components wi in the result w
returned by the server. Moreover, we have enough information to recover each
true vi for each wrong result. Consider each bucket at a certain layer � that con-
tains exactly one error. Suppose the error is vi. From the preceding process we
can identify each such bucket and also the index i. Note that the data owner will
return Xb�(i)(v) = ∏

j (α − j )vj . Since only vi is unknown in this equation, we can
in principle find vi by solving the equation, although this requires computing
the discrete logarithm, for which efficient algorithms are not known. Neverthe-
less, if we plug in PIRS-2, the equation becomes as Xb�(i)(v) = ∑

j v j α
j . Thus,

vi can be found efficiently using field subtractions and divisions.
In PIRSγ ∗, we replace each PIRS in PIRSγ with an array of O(log n) PIRS,

so the space and time increases by an O(log n) factor.

THEOREM 5.3. PIRSγ ∗ requires O(γ 2 log 1
δ

log n(log m+log n)) number of bits,
spends O(log 1

δ
log n) time to process a tuple, and O(|w|(γ + log m

|w| ) log 1
δ

log n)

time to perform a verification. For any w �=γ v, PIRSγ ∗ raises an alarm with
probability 1 − δ; for any w =γ v, PIRSγ ∗ will not raise an alarm but correctly
identify and recover all the errors in w with probability 1 − δ.

Note that when the number of errors, say λ, is no more than γ , PIRSγ ∗

can recover all the errors with high probability, which is a very strong guar-
antee. When λ > γ , there are too many errors to expect a complete recov-
ery of all the query results (like any error-correcting code cannot recover the
data when there are too many errors). Nevertheless, we show that PIRSγ ∗ can
still recover a good proportion of the results. For this analysis, we use preci-
sion and recall to measure the performance of the synopsis. Precision refers
to the probability that an identified error is truly an actual error. Since PIRS
does not have false positives, precision is always 1. Recall, on the other hand,
is the percentage of the actual errors that have been recovered, or equiva-
lently, the probability that any one error has been captured by the synopsis.
From the previous discussions, we know that for any given error E , if it falls
into a bucket by itself in any of the layers, then PIRSγ ∗ can correctly recover
it. For a particular layer, because the errors are distributed into the buckets
pairwise independently and there are c1γ

2 buckets, the probability that the
bucket containing E is the same as the bucket for any of the other λ − 1 errors
is at most λ/(c1γ

2) following the union bound. Since the log 1
δ

layers are mu-
tually independent, the probability that this collision happens in all layers is

( λ

c1γ 2 )log 1
δ = δ�(log(γ 2/λ)).
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THEOREM 5.4. When there are λ > γ errors, PIRSγ ∗ raises an alarm with
probability 1 − δ and recovers the errors with a recall of 1 − δ�(log(γ 2/λ)).

5.3 PIRS±γ : An Approximate Solution

The exact solution works well when only a small number of errors can be tol-
erated. In applications where γ is large, the quadratic space requirement is
prohibitive. If we relax the definition of CQVγ to allow raising alarms when
approximately γ errors have been observed, we can design more space-efficient
algorithms. This approximation is often acceptable since when γ is large, users
probably will not concern themselves too much if the number of errors detected
deviates from γ by a small amount. This section presents such an approximate
solution, denoted with PIRS±γ , that guarantees the following.

THEOREM 5.5. PIRS±γ : (1) raises no alarm with probability at least 1 − δ on
any w =γ − v where γ − = (1 − c

ln γ
)γ ; and (2) raises an alarm with probability at

least 1−δ on any w �=γ + v where γ + = (1+ c
ln γ

)γ , for any constant c > − ln ln 2 ≈
0.367.

Note that this is a very sharp approximation; the multiplicative approxima-
tion ratio 1 ± c

ln γ
is close to 1 for large γ .

PIRS±γ also contains multiple layers of buckets, where each bucket is as-
signed a subset of the components of v and summarized using PIRS (Figure 2).
Focusing on one layer only, our goal is, for any w =γ − v, to not to raise an alarm
with probability at least 1/2 + ε for some constant ε ∈ (0, 1/2), and on any
w �=γ + v to raise an alarm with probability at least 1/2 + ε. By using O(log 1

δ
)

independent layers and reporting the majority of the results, the probabilis-
tic guarantee will be boosted to 1 − δ using Chernoff bounds [Motwani and
Raghavan 1995].

Let k be the number of buckets per layer. The components of v are distributed
into the k buckets in a γ +-wise independent fashion, and for each bucket the
PIRS summary of those components is computed using δ′ = 1/γ 2. Given some w,
let this layer raise an alarm only if all the k buckets report alarms. The intuition
is that if w contains more than γ + erroneous members, then the probability that
every bucket gets at least one such component is high; and if w contains fewer
than γ − erroneous members, then the probability that there exists some bucket
that is not assigned any erroneous members is also high.

The crucial factor that determines whether a layer could possibly raise an
alarm is the distribution of erroneous components into buckets. The event that
all buckets raise alarms is only possible if each bucket contains at least one
inconsistent component. Let us consider all the inconsistent components in w
in some order, say w1, w2, . . . , and think of each of them as a collector that
randomly picks a bucket to “collect”. Assume for now that we have enough
inconsistent elements, and let the random variable Y denote the number of
inconsistent components required to collect all the buckets, that is, Y is the
smallest i such that w1, . . . , wi have collected all the buckets. Then the prob-
lem becomes an instantiation of the coupon collector’s problem [Motwani and
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Raghavan 1995] (viewing buckets as coupons and erroneous components as tri-
als). With k buckets, it is known that E(Y ) = k ln k + O(k), therefore we set k
such that γ = �k ln k�. It is easy to see that k = O(γ / ln γ ), hence the desired
storage requirement.

We need the following sharp bounds showing that Y cannot deviate too much
from its mean.

LEMMA 5.6 ([MOTWANI AND RAGHAVAN 1995]). For any constant c′,

Pr[Y ≤ k(ln k − c′)] ≤ e−ec′ + o(1),

Pr[Y ≥ k(ln k + c′)] ≤ 1 − e−e−c′ + o(1),

where o(1) depends on k.

Notice that ln γ ≤ 2 ln k for any k ≥ 2, so Lemma 5.6 also implies that for
any real constant c

Pr

[
Y ≤ γ − c

γ

ln γ
= γ −

]
≤ e−ec + o(1), (5)

Pr

[
Y ≥ γ + c

γ

ln γ
= γ +

]
≤ 1 − e−e−c + o(1). (6)

Now, consider the following two cases. If w =γ − v, then the probability that
these fewer than γ − independent erroneous components cover all buckets is
bounded by Eq. (5), which is also the upper bound for the probability that the
layer raises an alarm. Thus, for any c ≥ 0, the probability of raising a false
alarm is (for large enough γ ) at most

e−ec ≤ 1/e.

If w �=γ + v, then considering only γ + of the inconsistent components which are
independently distributed to the buckets, there are two cases in which a true
alarm is not raised: (1) These γ + components do not cover all buckets; and (2)
All the buckets are covered but at least one of them fails to report an alarm.
The probability that the first case occurs is bounded by (6); while the probability
that the second case happens is at most 1 − (1 − δ′)k . By the union bound, the
total probability that we produce a false negative is at most

1 − e−e−c + o(1) + 1 − (1 − δ′)k ≤ 2 − ee−c − 2− 2
γ + o(1).

For γ large enough, there exists a constant ε > 0 such that this probability is
at most 1/2 − ε for any c > − ln ln 2.

To summarize, if c > − ln ln 2 ≈ 0.367, then both the false positive and false
negative probabilities are at most 1/2 − ε for some constant ε at one layer
with k = O(γ / log γ ) buckets. Next we analyze the error probabilities of using
� = O(log 1

δ
) independent layers.

To drive down the error probabilities for both false positives and false
negatives to δ, we use � = O(log 1

δ
) layers and report the simple majority of

their “votes.” We quantify this probability for false negatives; the other case is
symmetric.
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Each layer can be viewed as a coin flip that raises a true alarm with probabil-
ity at least 1/2+ε. Let the random variable Z denote the number of layers that
raise alarms. This process is a sequence of independent Bernoulli trials, hence
Z follows the binomial distribution. For � independent layers, the expectation
of Z is at least μ = (1/2 + ε)�. By the Chernoff bound, the probability that a
majority of layers raise alarms is

Pr

[
Z <

1

2
�

]
= Pr

[
Z <

(
1 − 2ε

1 + 2ε

)
μ

]
< e− μ

2
( 2ε

1+2ε
)2

. (7)

Therefore, we need to ensure that e− μ

2
( 2ε

1+2ε
)2 ≤ δ, which can be satisfied by taking

� = � 1+2ε

ε2 ln 1
δ
�.

Finally, we need to generate a γ +-wise independent random hash function
to map groups to buckets. Using standard techniques we can generate such
a function using O(γ log n) truly random bits. Specifically, the technique of
Wegman and Carter [1981] for constructing t-universal hash families can be
used. Let p be some prime between n and 2n, and α0, . . . , αγ−1 be γ random
numbers chosen uniformly and independently from Zp. Then we set

b(i) =
t−1∑
j=0

α j i j mod k + 1.

This function is guaranteed to be drawn from a t-wise independent family of
functions (so that, over the random choice of the function, the probability of
t items colliding under the hash function is 1/kt−1). For an incoming tuple
s = (i, u), we compute b(i) using the α j ’s in O(γ ) time (using Horner’s rule), and
then perform the update to the corresponding PIRS. This requires the storage
of O(γ +) = O(γ ) truly random numbers per layer. We have thus obtained the
desired results.

THEOREM 5.7. PIRS±γ uses O(γ log 1
δ
(log m + log n)) bits, spends O(γ log 1

δ
)

time to process an update, and O(|w|(γ + log m
|w| ) log 1

δ
) time to perform a verifi-

cation.

5.4 FM-PIRS: Estimating the Number of Errors

From the previous section we see that by allowing two-sided errors, we can re-
duce the size of the synopsis from quadratic in γ to linear. However, for large γ ,
even a linear size is too large. Further, the update cost of PIRS±γ is also linear
in γ , making these synopses very expensive to maintain when γ is large. In this
section, we present an improved solution for the CQVγ problem, whose size and
update costs only depend on the degree of approximation, but not γ , thus allow-
ing it to scale well with γ . Unlike PIRSγ and PIRS±γ , FM-PIRS tries to directly
estimate the number of errors in the result provided by the server, and then com-
pare with γ , so it is a stronger version in some sense. As a result, FM-PIRS can
also support a wider range of values of γ , which can be given only at verification
time. For small values of γ , the bounds and guarantees of PIRSγ and PIRS±γ

are preferred, but for larger values of γ , the cost of FM-PIRS is preferable.
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As the name suggests, FM-PIRS is a combination of PIRS and the FM sketch
[Flajolet and Martin 1985], which is used to estimate the number of distinct
elements in a stream.

The FM sketch. We first briefly describe the FM sketch. Suppose that the
universe is [n] = {1, . . . , n}. We pick a random hash function h : [n] → [2L − 1]
such that any h(i) is uniformly distributed over [2L − 1], where L = O(log n).
For each element i in the stream, we compute h(i) and denote by r(i) the num-
ber of trailing zeros in the binary representation of h(i). The FM sketch simply
computes R = max{r(i), for all i in the stream} and then outputs 1/ϕ · 2R ,
where ϕ ≈ 0.7735. This simple estimate has a large variance. To improve ac-
curacy, the universe is divided into k partitions using another random uniform
hash function, and an R j is computed for each partition. Finally the output is
k/ϕ ·2(R1+···+Rk )/k . It was shown in Flajolet and Martin [1985] that this estimator
has a bias bounded by 1 + 0.31/k and a standard error of 0.78/

√
k.

The FM-PIRS synopsis. We will focus on the basic FM sketch with k = 1;
generalization to larger k will be straightforward. Our idea is to treat each
“wrong” group i such that vi �= wi as a distinct element in the universe [n], and
then compute R = max{r(i), for all wrong groups i}. However, the data owner
has no idea whether i is a wrong group, so we cannot compute r(i) directly.
Instead, we create L PIRS’s X1, . . . , XL with δ′ = δ/L. For any i, group i is put
into X j if j ≤ r(i). Thus X1 gets half of the groups, X2 gets a quarter of the
groups, etc. We can thus compute R as follows.

LEMMA 5.8. When all of X1, . . . , XL correctly capture the errors in them,
which happens with probability at least 1 − δ′ · L = 1 − δ, R =
arg max j {X j raises an alarm}.

PROOF. First, for any j , if X j raises an alarm, there must be a wrong
group i that is distributed into X j , that is, such that r(i) ≥ j . So we have
R ≥ r(i) ≥ arg max j {X j raises an alarm}. On the other hand, consider the
group i with the maximum r(i). Xr(i) must raise an alarm, so R = r(i) ≤
arg max j {X j raises an alarm}. This completes the proof.

Example. Consider the following example with n = 8, and we use L = 3
PIRS’s X1, X2, X3. Suppose the random hash function h maps each index in
[n] as follows (in binary): h(1) = 10, h(2) = 10, h(3) = 1, h(4) = 111, h(5) =
101, h(6) = 0, h(7) = 100. Then we will allocate v1, v2, v6, v7 to X1, v6, v7 to X2,
and v6 to X3. If v2, v3, v5, and v7 later become erroneous, they will cause X1

and X2 to raise alarms (with high probability). Now we have R = 2 and the
estimated number of errors is 1/ϕ · 2R = 5.17.

It is straightforward to generalize the basic scheme to k partitions. Thus we
have the following.

THEOREM 5.9. Fix any k, FM-PIRS has a size of O(k log n(log m+log n)) bits,
processes a tuple in expected time O(1), and computes an estimate of the number
of errors in the result in expected time O(|w| log m

|w| ). With probability at least 1−
δ, the estimate has a bias bounded by 1+0.31/k and a standard error of 0.78/

√
k.
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PROOF. Since each partition keeps L = O(log n) PIRS’s, the overall size
of FM-PIRS is O(k log n(log m + log n)) bits. For an incoming tuple, only one
partition gets affected, but 0 to L PIRS’s in this partition might get updated.
Since the hash function h is uniform, the expected number of PIRS’s updated is
O(1). Upon receiving the FM-PIRS synopses of v and a result w from the server,
we need to spend O(log wi) expected time per nonzero entry of w to compute
the FM-PIRS synopses of w. So the expected time needed for an estimation is
O(

∑
i log wi) = O(|w| log m

|w| ). Finally, the bias and standard error of the estimate

follow from Flajolet and Martin [1985].

An analytical comparison of PIRS±γ and FM-PIRS. Since FM-PIRS com-
putes an estimate of the number of errors in w, we can use FM-PIRS to do
the same task PIRS±γ is designed for. For a fair comparison, we need to set
k such that FM-PIRS provides the same probabilistic guarantee that PIRS±γ

does. Since the standard error of FM-PIRS is O(1/
√

k) and PIRS±γ allows a de-
viation of O(1/ ln γ ). By setting k = O(log2

γ ), we can guarantee that FM-PIRS
captures both false positives and false negatives with good probabilities (e.g.,
greater than 3/4). Finally, by using O(log 1

δ
) independent copies of FM-PIRS and

taking the median, the success probability can be boosted to 1 − δ, the same as
what PIRS±γ guarantees. Finally, we only need L = O(log γ ) since we are not
interested in estimating the number of errors when there are over, say 2γ of
them.

Under this configuration, FM-PIRS uses O(log3
γ (log m + log n) log 1

δ
) bits

of space. Thus asymptotically (as γ grows) FM-PIRS is better than PIRS±γ .
However, for small γ PIRS±γ should be better in terms of size, while FM-PIRS
becomes better when γ exceeds some large threshold. Nevertheless, FM-PIRS
should always be much better in terms of update time. We further compare
these two synopses empirically in Section 7.

6. HARDNESS RESULTS

6.1 Tolerance for Small Errors

In this subsection we prove the hardness of solving CQVη (Definition 2.3) us-
ing sublinear space, even if approximations are allowed. This problem can be
interpreted as detecting if there is any component of w that has an absolute
error exceeding a specified threshold η. We show that this problem requires at
least �(n) bits of space.

THEOREM 6.1. Let η and δ ∈ (0, 1/2) be user-specified parameters. Given a
data stream S, let X be any synopsis built on v that given only w: (1) raises
an alarm with probability at most δ if w ≈η v; and (2) raises an alarm with
probability at least 1 − δ if w �≈(2−ε)η v for any ε > 0. Then X has to use �(n)
bits.

PROOF. We will reduce from the problem of approximating the infinite fre-
quency moment, defined as follows. Let A = (a1, a2, . . . ) be a sequence of el-
ements from the set {1, . . . n}. The infinite frequency moment, denoted by F∞,
is the number of occurrences of the most frequent element. Alon et al. [1996]
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viη

false negatives

η

vi

Fig. 3. False negatives for the CM sketch approach.

showed that any randomized algorithm that makes one pass over A and com-
putes F∞ with a relative error of at most 1/3 and a success probability greater
than 1 − δ for any δ < 1/2, has to use �(n) memory bits. In particular, they
proved that even if each element appears at most twice, it requires �(n) bits in
order to decide if F∞ is 1 or 2 with probability at least 1 − δ.

Let X by a synopsis solving the problem stated in Theorem 6.1. We will show
how to use X to compute the infinite frequency moment for any A in which each
element appears at most twice. We will make one pass over A. For any element
i that we encounter, we update X with the tuple s = (i, η). In the end, we verify
w = 0 using X (v). If X asserts that w ≈η v, we return F∞ = 1; if X asserts
that w �≈(2−ε)η v, we return F∞ = 2. It is not difficult to see that we have thus
computed the correct F∞ with probability at least 1 − δ.

If we allow relative errors instead of absolute errors, the problem is still
difficult, as can be shown by setting s = (i, n) for element i, and doing the
verification with w = (n/(1 + η), · · · , n/(1 + η)) in the previous proof.

Given the hardness of solving CQVη, we are interested in seeking alterna-
tive methods that might be able to give guarantees under different notions of
approximation using less space than the exact solution. Here we briefly discuss
one such method.

The CM sketch. The CM sketch [Cormode and Muthukrishnan 2005] uses
O( 1

ε
log 1

δ′ ) words of space and provides an approximate answer ṽi for any i ∈ [n],
that satisfies vi − 3ε||v||1 ≤ ṽi ≤ vi + 3ε||v||1 with probability 1 − δ′, for any
ε ∈ (0, 1). However, this does not make it applicable for solving CQVη as:
(1) The estimation depends on ||v||1 and it only works well for skewed dis-
tributions. Even in that case, in practice the estimation works well only for the
large vi ’s; and (2) ||v||1 is not known in advance. However, if we can estimate an
upper bound on ||v||1, say ||v||1 ≤ �, then by setting ε = 1

3
η

�
and δ′ = δ/n, we can

use the CM sketch to get approximate answers ṽi such that |ṽi − vi| ≤ η holds
for all i simultaneously with probability at least 1 − δ. Now, given some w, we
generate an alarm iff there exists some i such that |wi − ṽi| ≥ 2η. This way,
we give out a false alarm with probability at most δ if w ≈η v, and generate
an alarm with probability 1 − δ if w �≈3η v. For other w’s, no guarantee can be
made. In particular, some false negatives may be observed for some range of
w (see Figure 3). This solution uses O( 1

ε
log n

δ
log W ) bits of space and O(log n

δ
)

time per update (where W is the largest expressible integer in one word of the
RAM model). The space dependence on 1

ε
is expensive, as 1

ε
= �

η
in this case

and the upper bound on ||v||1 in practice might be large.
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6.2 Lower Bounds for Other Queries

Our discussion of methods to verify queries has focused so far on GROUP BY, SUM
and GROUP BY, COUNT queries. In this subsection, we study other natural query
forms, and show that, in contrast to the results so far, giving strong guarantees
on answering these queries either exactly or approximately is not possible with
a small synopsis. Our approach is to encode problems from communication
complexity, which require a large amount of communication to solve, and argue
that this entails a large synopsis in our setting.

GROUP BY, MIN and GROUP BY, MAX. Consider a query of the same form as
that described in Section 2, except that the SQL aggregate over the n groups
is MIN. Now the semantics in the streaming setting are that vmin

i should be
minτ {uτ |sτ = (i, uτ )} and vmax

i should be maxτ {uτ |sτ = (i, uτ )}.
LEMMA 6.2. Any synopsis that guarantees with probability at least 1 − δ

whether ∀i.vmin
i ≤ (1 + ε)wmin

i requires space at least n.

PROOF. We show a reduction to the communication complexity problem of
INDEX. In this problem there are two players: Alice, who holds a bit string x of n
bits in length, and Bob, who holds an index 1 ≤ y ≤ n. Alice must send a single
message to Bob, who must then compute the yth bit of string x. It has been
shown that to solve this problem, even allowing a small probability δ of failure
requires Alice’s message to be �(n) bits in size [Kushilevitz and Nisan 1997].

We now show that if a summary with the desired properties did exist, then
it could be used to solve the INDEX problem. Alice creates a summary for her
bit string x, by setting the value of group i to 0 if the ith bit of x is zero, and
1 otherwise. She then sends the summary X (x) to Bob. Bob then records X (x),
and updates the summary with an item in group y with weight 0. He then uses
the original summary and the updated summary to test whether the required
guarantee holds. If there is, then he concludes that bit y of x is a 1; else, it is a 0.
Therefore, if the summary succeeds with constant probability (say, at least 2/3),
then it allows the INDEX problem to be solved, and so must require �(n) bits.

LEMMA 6.3. Any synopsis which guarantees with probability at least 1 − δ

whether ∀i.vmax
i ≥ (1 − ε)wmax

i requires space at least n.

PROOF. The same approach works as in the previous lemma. The only dif-
ference is that Bob inserts an item in group y with weight 1, and tests whether
there has been any change in the summarized data. Again, this argument al-
lows the INDEX problem to be solved, implying the lower bound on the size of
the summary.

We comment that the same approach can show the hardness of the AVERAGE
aggregate. But, as remarked in Section 2, we can compute AVERAGE indirectly, by
verifying the SUM and COUNT separately. Only if we ask the third party to directly
compute AVERAGEwithout returning the SUM and COUNT does this hardness result
hold. This suggests that there may be some prospect for positive results in
this area if we relax the requirements and allow the third party to output not
only the requested results of the processing, but also some additional derived
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computations which can be checked along with the original input to provide a
“witness” to the correctness of the answers.

Join queries. We now consider a join query, and show that this too is hard.
In particular, consider a query of the following form.

SELECT L.a, SUM(L.c) FROM L, R
WHERE L.a = R.b
GROUP BY L.a

This can be represented as a product of two vectors, say x and y , and the
desired output is vi = x[i] · y[i]. However, again by communication complexity
arguments, we can show that such a query requires a summary whose size
is linear in the number of groups. In this case, we analyze the effect of the
“communication” happening midway through processing the input data stream.

LEMMA 6.4. Any synopsis which allows the query verification of the previous
query with probability at least 1 − δ requires space �(n).

PROOF. The DISJOINTNESS problem in communication complexity is when Al-
ice holds a binary vector x of length n, Bob holds a vector string y of length n,
and their goal is to determine whether x · y > 0. It is known that any commu-
nication protocol to solve this problem must exchange �(n) bits between Alice
and Bob, even allowing a small constant probability of failure.

To show the hardness of verifying the join query, we show that Alice and Bob
could use a summary to solve DISJOINTNESS. Alice takes her string x, and builds a
summaryX (x) by inserting every 1 bit as an item from L into the summary with
weight 1. She then sends the summary to Bob, who follows the same procedure,
inserting every 1 bit from y as an item from R into the summary with weight
1. Bob then builds a new summary of a join between two empty relations, and
compares the two summaries. If the join of L and R is empty, then the two
summaries should report that the results are identical; however, if there is
anything in the join of L and R, then it should report that they are different.
But this corresponds exactly to the cases x · y = 0 and x · y > 0. Therefore, any
summary to solve this problem must have size �(n).

This shows that even if we wish to verify a simplified version of the query, to
determine whether the join is empty or not, it still requires a summary whose
size is linear in the number of groups. Hence, no multiplicative approximation of
the size of the join is possible, since such an approximation must still distinguish
whether the join is empty or not.

7. EMPIRICAL EVALUATION

In this section we evaluate the performance of the proposed synopses over two
real data streams. The experimental study demonstrates that our synopses: (1)
use very small space; (2) support fast updates; (3) have very high accuracy; (4)
support multiple queries; and (5) are easy to implement.
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7.1 Experimental Setup

Our synopses are implemented using GNU C++ and the GNU GMP extension
which provides arbitrary precision arithmetic, useful for operating on numbers
with an arbitrary number of bits. This allows us to support long group id’s. For
instance, the example query (*) has group id’s with 64 bits, and the prime p
needs to be chosen such that we need integer arithmetic over a field with 65
bits. For queries involving shorter id’s, one can alternatively use native 32-bit
or 64-bit integers, which will make the implementation even simpler and more
efficient. The experiments were run on an Intel Pentium 2.8GHz CPU with
512KB L2 cache and 512MB of main memory.

We used two real datasets for our experiments. The IP traces (IPs) data
stream is collected over the AT&T backbone network; each tuple is a TCP/IP
packet header. Here, we are interested in analyzing the source IP, destination IP,
and packet size header fields. The dataset consists of a segment of one day traffic
and has 100 million packets. The World Cup (WC) data stream [Arlitt and Jin]
consists of Web server logs for the 1998 Soccer World Cup. Each record in the log
contains several attributes such as a timestamp, a client id, a requested object
id, a response size, etc. We used the request streams of days 46 and 47 that have
about 100 millions records. Without loss of generality, unless otherwise stated,
we perform the following default queries: For the IPs dataset, we perform the
example query (*) where the aggregate is either COUNT or SUM. For the WC
dataset, we perform COUNT or SUM queries on the packet size group-by client
id/object id. Each client id, object id, IP address, the response size, or the packet
size is a 32-bit integer. Thus, the group id is 64 bits long (by concatenating the
two grouping attributes), meaning a potential group space of n = 264. The
number of nonzero groups is of course far lower than n: WC has a total of 50
million nonzero groups and IPs has 7 million nonzero groups.

7.2 PIRS

We first present the experimental results on the basic PIRS synopsis. A very con-
servative upper bound for the total response size and packet size is m = 1010 �
n ≈ 2 × 1019 for all cases in our experiments. So from our analysis in Section 4,
PIRS-1 is the better choice, and is thus used in our experiments. We precom-
puted p as the smallest prime above 264 (which is 18446744073709551629) and
used the same p throughout this section. Thus, each word (storing p, α, or X (v))
occupies 9 bytes.

Synopsis size. As our analysis has pointed out, PIRS uses only 3 words, or
27 bytes for our queries. This is in contrast to the naı̈ve solution of keeping the
exact value for each nonzero group, which would require 600MB and 84MB for
the WC and IPs datasets, respectively. Also keep in mind that this is the space
usage for a single query; much more space will be needed if multiple queries
are to be supported. The small size of PIRS is particularly important because
it implies not only a small memory requirement of the data owner, but also a
much reduced network bandwidth consumption since the synopsis needs to be
sent from the data owner to the client upon each verification request. If the data
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Table I. Average Update Time per Tuple

WC IPs

Count 0.98 μs 0.98 μs

Sum 8.01 μs 6.69 μs

owner had a large enough memory to store the groups and sent a hash (e.g.,
SHA0 or SHA1), this would solve the bandwidth problem. But it would still face
a serious computation problem: Upon each request for verification from some
client, all the groups need to be scanned once to compute the hash.

A related question is: If the query result size is so large (600MB and 84MB
in our experiments), how does the server transmit the results to the client?
Here we would like to remind the reader that queries posed on a data stream
are mostly continuous, long-standing queries. Each client could register his/her
queries with a server with potentially different quality-of-service agreements,
requiring the server to send over the updated results, say, every 10 minutes
or every time the results have changed by a certain amount. This way, the
server only needs to send the deltas of the query results compared with the
last transmission, reducing the bandwidth consumption significantly. To do so,
however, the server needs to maintain a registration record on a per-client basis
remembering the client’s query specification, quality-of-service agreement, and
all the changes to the query results since the last transmission. But all these
components are necessary in any infrastructure that aims to provide continuous
query services on data streams. Our techniques enable the migration of all these
costly maintenance from the data owner to the server, which is exactly the goal
of data outsourcing.

Update cost. PIRS has a low update cost which is crucial to any streaming
application. The average per-tuple update cost is shown in Table I for count and
sum queries on both WC and IPs. The update time for the two count queries
stays the same regardless of the dataset, since an update always incurs one
addition, one multiplication, and one modulo. The update cost for sum queries
is higher, since we need O(log u) time for exponentiation. The cost on WC is
slightly larger as its average u is larger than that of IPs. Nevertheless, PIRS
is still extremely fast in all cases, and is able to process more than 105 tuples
(106 tuples for count queries) per second.

Detection accuracy. As guaranteed by the theoretical analysis, the proba-
bility of failure of PIRS-1 is δ ≤ m/p, which is at most 0.5 × 10−9. This is
practically zero. Note that our estimate of m is very conservative; the actual δ

is much smaller. We generated 100, 000 random attacks and, not surprisingly,
PIRS identified all of them.

7.3 PIRSγ , PIRSγ ∗, PIRS±γ , and FM-PIRS

Next, we present the experimental results on the four extended synopses:
PIRSγ , PIRS±γ , PIRSγ ∗, and FM-PIRS. These synopses are designed to check
if the query results contain less than a specified number of errors. Specifi-
cally, PIRSγ raises an alarm when there are γ or more errors; PIRSγ ∗ is a
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Fig. 4. PIRSγ , PIRS±γ , PIRSγ ∗, FM-PIRS: update cost.

strengthened version of PIRSγ that, in addition to the alarm, also identifies
and corrects the errors; PIRS±γ allows some approximation in terms of γ but
has a smaller size; and FM-PIRS can be used to estimate the number of errors
regardless of γ . Note that the naı̈ve solution of keeping the exact v and send-
ing its hash to the client does not even work for the problems that these PIRS
variants are designed to solve. To be able to do so, the naı̈ve algorithm has to
transmit the entire v to the client, which is certainly not a viable solution. In
the following we only present the experimental results on the IPs dataset with
the count query. Similar patterns have been observed on the WC dataset.

Recall that all these synopses exhibit a similar structure with multiple layers
and each layer consists of multiple buckets, but how the buckets are configured
is different for different synopses. In PIRSγ , each layer contains O(γ 2) buckets,
whereas PIRS±γ has only O(γ ) buckets. For PIRSγ ∗, the number of buckets in
each layer is the same as in PIRSγ , but each bucket in addition contains a two-
dimensional array of PIRS for identifying the id’s of the erroneous groups. For
FM-PIRS, the number of buckets (say b) is determined by the potential number
(|E(w, v)|) of erroneous groups, that is, we need to ensure that 2b > |E(w, v)|.
For our purpose, setting b = 16 could handle up to 216 faulty groups.

Update cost. In this set of experiments we study the update costs of PIRSγ ,
PIRS±γ , PIRSγ ∗, and FM-PIRS. Except PIRS±γ , all other synopses have an
update cost that is independent of γ , as illustrated in Figure 4(a). PIRSγ maps
an incoming tuple to a bucket in each layer based on its group id and updates
that bucket accordingly. The mapping is performed via a pairwise independent
hash function, hence the whole process does not depend on γ . PIRSγ ∗ follows
a similar step, with an additional overhead of updating the associated array of
PIRS for the selected bucket. FM-PIRS, as confirmed in the experiments, is very
inexpensive to maintain. Remember that it randomly selects a single layer and
then updates one bucket in this layer following a geometric distribution. Hence,
it is independent of both γ and �, the number of layers (see also Figure 4(b)).
Finally, PIRS±γ updates one bucket in each layer. However, the selection of the
bucket is achieved with the help of a γ -wise independent hash function, which
has an update cost linear in γ . All these trends have been demonstrated in
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Fig. 5. PIRSγ , PIRS±γ , PIRSγ ∗, FM-PIRS: memory usage.

Figure 4(a). As far as the number of layers � is concerned, all synopses except
the FM-PIRS have a linear update cost with respect to � as shown in Figure 4(b).
Nevertheless, all synopses are able to process each tuple in the order of ms.
FM-PIRS in fact only takes approximately 1 μs to finish an update. Therefore,
these synopses could process from thousands to hundreds of thousands tuples
per second.

Synopsis size. Figure 5 shows the space usage of these synopses. Not sur-
prisingly, PIRSγ ∗ is the largest one as it offers the most powerful functionality of
actually identifying and correcting the faulty groups. Following our discussion
on configuring various synopses, it is not hard to explain the trends exhibited
from Figure 5(a) and 5(b). Essentially, FM-PIRS is independent of γ . PIRSγ has
a quadratic space dependence on γ and PIRS±γ ’s space cost is linear to γ . As for
the number of layers, all synopses follow a linear relationship with �. Finally, it
is interesting to observe from Figure 5(a) that FM-PIRS has larger space usage
than PIRS±γ when γ is small, but is preferred for large γ ’s.

Space/time trade-offs: Exploiting locality. In many practical situations,
data streams tend to exhibit a large degree of locality [Li et al. 2006a]. Sim-
ply put, updates to v tend to cluster to the same components. In this case, it
is possible to exploit space/time trade-offs. We allocate a small buffer used for
storing exact aggregate results for a small number of groups. With data local-
ity, a large portion of updates will hit the buffer. Whenever the buffer is full
and a new group needs to be inserted, a victim is evicted from the buffer using
the simple Least Recently Used (LRU) policy. Only then does the evicted group
update PIRS, using the overall aggregate value computed within the buffer. We
flush the buffer to update PIRS whenever a verification is required. Since we
are aggregating the incoming updates in the buffer and updating the synopsis
in bulk, we incur a smaller amortized update processing cost per tuple. A simple
LRU buffer has been added to the system and its effect on the update costs for
the four synopses is reported in Figure 6 with � = 10 and γ = 10. All synopses
demonstrate very similar trends. As the figure indicates, a very small buffer
(roughly 500KB) that fits into the cache is able to reduce the update cost by an
order of magnitude.
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Fig. 6. Space-time trade-off.

Detection accuracy. We first concentrate on PIRSγ and PIRS±γ for the sim-
ple purpose of raising alarms when the number of faulty groups exceeds the
threshold γ . We observed that both synopses can achieve excellent detection
accuracy as the theoretical analysis suggests. All results reported here are the
average ratios obtained from 100, 000 rounds of attacks. Since the detection
mechanism of the synopses does not depend on the data characteristics, both
datasets give similar results, so again we show plots for the IPs data only.
Figure 7(a) shows the ratios of raising alarms versus the number of actual in-
consistent groups, with γ = 10 and 10 layers. As expected, PIRSγ has no false
positives and almost no false negatives; only very few false negatives are ob-
served with 10 and 11 actual inconsistent groups. On the other hand, PIRS±γ

has a transition region around γ and it does have false positives. Nevertheless,
the transition region is sharp and once the actual number of inconsistent groups
is slightly away from γ , both false positives and negatives reduce to zero. We
have also studied the impact of the number of layers on the detection accuracy.
Our theoretical analysis gives provable bounds. For example, with PIRSγ the
probability of missing an alarm is at most 1/2� (for � layers). In practice, the
probability is expected to be even smaller. We repeated the same experiments
using different layers, and Figure 7(b) reports the result for PIRSγ . With fewer
layers (4 to 6) it still achieves excellent detection accuracy. Only when the num-
ber of inconsistent groups is close to γ , a small drop in the detection ratio is
observed. Figure 7(c) reports the same experiment for PIRS±γ with layers from
10 to 20. Having a smaller number of layers enlarges the transition region and
a larger number of layers sharpens it. Outside this region, 100% detection ratio
is always guaranteed. Other experiments performed over different values of γ

led to similar behavior.
There are two limitations with the previous synopses. They could not identify

the exact set of erroneous groups in the presence of errors. Also, their update
cost and space usage both depend on (at least linear to) γ , which prevents the
application of them for large γ values. To that end, we have designed PIRSγ ∗ and
FM-PIRS respectively. To measure the effectiveness of identifying the faulty
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Fig. 7. Detection with tolerance for limited number of errors.

groups, we utilize two common metrics, namely, recall and precision. Recall
refers to the percentage of truly faulty groups being successfully retrieved.
Precision refers to the percentage of true faulty groups identified among the
reported ones. Following our analysis in Section 5.2, the precision of PIRSγ ∗ is
always 1. The recall of PIRSγ ∗ depends on the probability that the same faulty
group has a collision with at least one other faulty group in every layer. Due to
the independence among layers, this event happens with really low chances in
practice. Hence, we expect a high recall rate as well. This has been confirmed
in Figure 8(a) where PIRSγ ∗ is configured to raise alarms when there are more
than 20 faulty groups. Even with such a small γ value, PIRSγ ∗ can perfectly
identify the id’s of faulty groups for up to 500. Only after then does the recall
start to drop. This generally agrees with our analysis in Theorem 5.4.

To alleviate the relatively high update cost of PIRSγ ∗, FM-PIRS could be
used to estimate the number of faulty groups from the server’s answer. Previous
experiments have already shown convincing evidence that this is an extremely
inexpensive structure to maintain and it is independent of γ . We tested it with
500 number of faulty groups and report the average result over 100 runs in
Figure 8(b). The error bars represent the standard deviation of these runs.
Clearly, increasing the number of layers improves the accuracy of the estimation
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Fig. 9. Verification time of PIRS.

(reducing the standard deviation and closing the gap between the average value
and the true value). With a small number of layers, say � = 20, FM-PIRS delivers
a satisfactory estimation of the number of faulty groups.

7.4 Verification Time

We also study the verification time of various synopses on the client side. Since
all of our synopses are based on the PIRS as the building block, we first con-
centrate on studying the verification time of the PIRS synopsis. An obvious
observation is that the verification step is simply the process of constructing
the synopsis based on a set of groups with their corresponding aggregate values.
For this purpose, we use synthetic datasets where we can control the number
of groups (n) in the stream as well as the maximum value of the aggregate from
each group (u), both affecting the verification time using PIRS (and other PIRS-
based synopses). We still use the smallest prime above 264, same as our studies
in Section 7.2, when constructing the PIRS. Figure 9 shows the results of these
experiments. Specifically, Figure 9(a) shows that when increasing the number
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of groups, the PIRS synopsis has a linearly increasing verification time. In this
experiment, we set the max aggregate in each group as 105 and a group’s ag-
gregate value is randomly selected from [0, 105]. For n= 106 and u = 105, that
is, a million groups, PIRS takes only about 11 seconds to complete the verifica-
tion. More importantly, with a linearly increasing cost, PIRS has an excellent
scalability with respect to the number of groups to verify.

Next, we study the effect of u, the max aggregate value a group may take.
For this experiment, we fix n= 105 and vary the max aggregate value u; and
similarly, ask each group to select a random aggregate value a from [0, u].
The results are shown in Figure 9(b). Recall that for an aggregate value a
from a group, we update the PIRS synopsis by leveraging the technique of
“exponentiation by repeated squaring.” Hence, we expect to see a logarithmic
relationship between the verification time (essentially the construction time of
the PIRS synopsis) versus u, the max aggregate value in a group. This indeed
is the case, as evidenced in Figure 9(b). For 105 number of groups, when the
maximum aggregate value from a group increases from 10, 000 to 1, 000, 000
(one million), the verification time only increases from roughly 0.87 seconds to
1.32 seconds.

The verification time of other synopses depends on more parameters (such as
the number of layers, the value of γ , or the configuration of the number of buck-
ets in FM-PIRS). However, their verification time is still simply the construction
time of these synopses given a set of groups with their final aggregate values.
That being said, it is very easy to see their verification time’s relationship with
the basic PIRS synopsis, by inspecting their constructions. We have run similar
experiments on these synopses with different configurations. Focusing on the
two most important factors for the verification purpose, namely, the number of
groups and the max aggregate value from a group, all these synopses exhibit
similar trends as those results in Figure 9. Hence, we conclude that they also
have excellent scalability in terms of the number of groups and the different
values of aggregates to verify. For brevity, these results are omitted from the
article.

7.5 Multiple Queries

Our final set of experiments investigates the effect of multiple, simultaneous
queries. Without loss of generality, we simply execute the same query a number
of times. The same grouping attributes with different query ids are considered
as different groups. We tested with 5, 10, 15, and 20 queries in the experiments.
Note that on the WC dataset, the exact solution would use 600MB for each
query, hence 12GB if there are 20 queries. Following the analysis in Section
4.4, our synopses naturally support multiple queries and still have the same
memory usage as if there were only one query. Nevertheless, the update costs of
all synopses increase linearly with the number of queries. In Table II we report
the update time and memory usage for PIRS; similar trends were observed for
PIRSγ , PIRS±γ , PIRSγ ∗ and FM-PIRS.

In terms of verification power, all of the synopses are exactly the same as
previously reported, by treating these multiple queries as one single combined
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Table II. Update Time and Memory Usage of

PIRS for Multiple Queries

# queries 5 10 15 20

update time (μs) 5.0 9.9 14.9 19.8

memory usage (bytes) 27 27 27 27

query. More precisely, PIRS will raise an alarm as long as one of the queries
contains an error, the γ in PIRSγ and PIRS±γ will become the threshold on the
total number of errors in all the queried combined, and FM-PIRS will estimate
the total number of errors. Note that such a combination does increase the
verification granularity, as we do not distinguish errors from different queries.
If a finer granularity is desired, a separate synopsis is still required for each
query. The only exception is PIRSγ ∗. Since it finds and corrects all the errors
(provided that there are no more than γ errors in total), we can of course also
identify the queries that are wrong, by using only one PIRSγ ∗ on the combined
query.

8. RELATED WORK

Authentication in outsourced data. There is considerable work on authen-
ticating query execution in an outsourced database setting [Hacigumus et al.
2002; Devanbu et al. 2003; Martel et al. 2004; Bertino et al. 2004; Pang and Tan
2004; Pang et al. 2005; Li et al. 2006b]. Here, the client queries the publisher’s
data through a third party, namely the server, and the goal is to design efficient
solutions to enable the client to authenticate the query results. Most of these
works rely on cryptographic primitives such as digital signatures and Merkle
hash trees to design efficient index structures built by the data publisher to en-
able authentication of query results. All these techniques apply only to offline
settings and do not scale to online, one-pass streaming scenarios. More recently,
there have been a few works dealing with query authentication on streaming
data [Li et al. 2007; Papadopoulos et al. 2007]. However, these papers only con-
sider selection and aggregation queries, and cannot support GROUP BY queries
that we study in this article. Moreover, all the techniques in these papers are
still basically variants and combinations of digital signatures and Merkle hash
trees, so technique-wise, they are quite similar to the previous works that deal
with nonstreaming settings.

Security guarantees. PIRS deploys completely different techniques than all
previous works on query authentication, and there are also some subtle yet
interesting differences in the security guarantees provided by PIRS and the
authentication techniques. Since all the authentication techniques rely on cryp-
tographic primitives, the security is thus built upon the computational infeasi-
bility for the attacker (the third-party server in our case) to break the system.
Theoretically speaking, if the server has infinite computing power, she/he can
always in principle successfully return some wrong query results to the client
without being detected. The security guarantee of PIRS, on the other hand,
is probabilistic impossibility. More precisely, if the server returns any wrong
query answer, the probability that the client catches the attack is almost 1, say
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1 − 10−9 in the setting of our experiments, that is, it is virtually impossible
for the server to attack successfully. Furthermore, the guarantee holds even
assuming that the server possesses infinite computing power. So theoretically
speaking, the security guarantee provided by PIRS is in this sense stronger than
that provided by the authentication techniques. This is also the reason why we
choose the term “verification” instead of “authentication,” so as to differentiate
PIRS from the authentication techniques.

Comparison with sketches. PIRS is a way of summarizing the underlying
data streams. In that respect our work is related to the line of work on sketch-
ing techniques [Alon et al. 1996; Manku and Motwani 2002; Babcock et al.
2003; Cormode and Muthukrishnan 2005; Flajolet and Martin 1985; Ganguly
et al. 2004]. Indeed, many of the verification problems we study have a similar
formulation to problems studied in the streaming world. However, the precise
specification is different, and so (as discussed in Section 3), applying sketching
techniques to our problems yields results which either do not give comparable
guarantees, or else require asymptotically and practically more space in order
to give similar guarantees for the verification problem.

Cryptographic approaches. Another possible way for solving the CQV prob-
lem is to use incremental cryptography [Bellare et al. 1994]. The idea is that by
viewing v as a message, the client could compute an authenticated signature
σ (v) and any alteration to v will be detected. Now the challenge is how to per-
form incremental updates using σ (v) alone, without storing v, that is, in the
present setting the message v is constantly updated. Cryptography researchers
have devoted considerable effort for this problem, resulting in techniques such
as incremental signature and incremental MAC [Bellare et al. 1995, 1994].
However, these techniques only support updates for block edit operations such
as insert and delete, that is, by viewing v as blocks of bits, they are able to
compute σ (v′) using σ (v) alone if v′ is obtained by inserting a new block (or
deleting an old block) into (from) v. However, in our setting the update opera-
tion is arithmetic: vτ

i = vτ−1
i + uτ , which cannot be handled by simply deleting

the old entry followed by inserting the new one, since we only have uτ as input,
and no access to either vτ−1

i or vτ
i . Hence, such cryptographic approaches are in-

applicable. Moreover, the techniques we propose are much more lightweight
and simple to implement than complex schemes based on cryptographic
primitives.

Fingerprinting techniques. Verifying the identity of polynomials is a finger-
printing technique [Motwani and Raghavan 1995]. Fingerprinting is a method
for efficient, probabilistic checking of equality between two elements x, y from
a large universe U . Instead of testing the equality using x, y deterministically
with complexity at least log |U |, a probabilistic approach is to pick a random
mapping from U to a significantly smaller universe V such that with high
probability x, y are identical if and only if their images in V are identical.
The images of x and y are their fingerprints and their equality can be verified
in log |V | time. Fingerprint techniques generally employ algebraic techniques
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combined with randomization. Classical examples include verifying univariate
polynomial multiplication [Freivalds 1979], multivariate polynomial identities
[Schwartz 1980], and verifying equality of strings [Motwani and Raghavan
1995]. We refer readers for an excellent discussion on these problems to
Motwani and Raghavan [1995]. Although the general technique of polynomial
identity verification is known, our use of it in the setting of query verification
on data streams appears to be new.

Other related works. Other security issues for secure computation/querying
over streaming and sensor data have also started to receive attention recently.
For example, orthogonal to our problem, Chan et al. [2006] and Garofalakis
et al. [2007] have studied the problem of secure in-network aggregation for ag-
gregation queries in sensor networks. Both works utilize cryptographic tools,
such as digital signatures, as building blocks for their algorithms and assume
the man-in-middle attack model. Hence, they are fundamentally different from
our work. Nevertheless, they attest to the fact that secure computation of ag-
gregation queries has a profound impact in many real applications.

Comparison with prior publication. This article is based on an earlier con-
ference paper [Yi et al. 2008]. In addition to providing the full analysis of the
techniques proposed, this article also makes several new nontrivial contribu-
tions extending both the scope and techniques of Yi et al. [2008]. (1) In Yi et al.
[2008] the model consists of only two parties: the server and the client. In this
article we extend all our techniques to the more popular three-party outsourc-
ing model that has been adopted by most existing works in this area. (2) We
provide a rigorous analysis on the worst-case compromise of the security guar-
antee when PIRS is under multiple attacks. (3) We strengthen PIRSγ to a new
synopsis, PIRSγ ∗, which not only tells the client whether the number of errors
is below some threshold, but also where they are and what their true values
should be. This is crucial in many critical applications, in which the clients de-
mand complete correctness of the query results. With PIRSγ ∗, we can identify
and correct these errors (provided that there are no more than γ errors), giving
the client a complete and untainted query result. At the same time, we also al-
low some slack for the server so that it can employ load shedding strategies to
cope with high load. (4) We design a new synopsis, PIRS-FM, that is able to esti-
mate the number of errors in the query result. The space and time complexities
of PIRS-FM are both much better than PIRSγ and PIRS±γ . Our experimental
results show that PIRS-FM significantly improves upon PIRSγ and PIRS±γ in
terms of space and time, while maintaining roughly the same security guaran-
tee. (5) We also have considered many related queries such as joins, and given
lower bounds showing that verifying their correctness with small synopses is
provably difficult.

9. CONCLUSION

The present work studies the problem of verifying “GROUP BY, COUNT” and
“GROUP BY, SUM” queries on outsourced data streams. All the existing works
on query authentication of outsourced databases are based on cryptographic
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primitives, and it seems inherently difficult to apply these techniques to such
group-by queries. Our solutions, on the other hand, are based on verifying the
identity of polynomials, hence are fundamentally different from the existing
query authentication framework. It is imaginable that our techniques can be
applied to other query verification problems on outsourced databases that can-
not be solved using existing techniques.
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