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ABSTRACT
Personalized Point of Interest (POI) recommendation that incorpo-
rates users’ personal preferences is an important subject of research.
However, challenges exist such as dealing with sparse rating data
and spatial location factors. As one of the biggest card payment
organizations in the United States, our company holds abundant
card payment transaction records with numerous features.

In this paper, using restaurant recommendation as a demon-
strating example, we present a personalized POI recommendation
system (Pcard) that learns user preferences based on user transac-
tion history and restaurants’ locations. With a novel embedding
approach that captures user embeddings and restaurant embed-
dings, we model pairwise restaurant preferences with respect to
each user based on their locations and dining histories. Finally, a
ranking list of restaurants within a spatial region is presented to the
user. The evaluation results show that the proposed approach is able
to achieve high accuracy and present effective recommendations.
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1 INTRODUCTION
Personalized recommendation has greatly facilitated our daily life.
For example, YouTube recommends a personalized video watch list
based on each user’s watching history as well as the reviews and
ratings from the crowd [4, 5]. It is appealing to have such a person-
alized recommendation system for restaurant recommendations.

To recommend users with items particularly interesting to them,
traditional personalized recommendation systems typically use
collaborative filtering [20]. To provide recommendations to a useru,
collaborative filtering first finds a group S of users that have similar
tastes withu (e.g., they have rated similar items with a similar score
for each), and then recommends user u with items that are liked by
S but haven’t been explored by u. An essential requirement of such
an approach is the availability of user rating scores, such as Yelp
ratings and reviews. However, such information is sparse and often
hard to obtain. Furthermore, if a user never gives a rating or review,
which is quite common, it is almost impossible to learn this user’s
preference to provide personalized recommendation. To make the
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matter worse, reviews and ratings are not always reliable as there
are increasingly more artificially generated fake reviews.

To tackle this problem, implicit ratings have been proposed to re-
place explicit scores. For example, the YouTube [4] recommendation
system considers a feedback as positive if a user watches a video
until the end rather than aborting early. Yet similar features are not
available for restaurant recommendations: knowing a person has
visited a restaurant is relatively easy, but it is hard if not impossible
to know whether this restaurant is being liked. Also, unexplored
restaurants may be due to omission rather than being disliked. As
such, simply assigning a visited restaurant with positive rating
while unvisited ones with negative as in [12, 28] could make the
results highly biased. A naïve idea to model user preferences is to
use transaction frequencies made for different merchants as implicit
ratings. However, for restaurant recommendation, this approach
may not be effective due to the challenge introduced by location
factor. User activities are greatly restricted by distance, especially
when it comes to where to dine.

Our contributions. Our company holds one of the world’s largest
payments processing networks and handles hundreds of millions
transactions every day. Most people in the US have transaction his-
tory in our network. Such scales of transaction data are invaluable
towards learning users’ purchasing behaviors for various recom-
mendation purposes. This work shares our experience in mining
the abundant payment card transaction history records to learn
user preferences, with the particular focus of personalized restau-
rant recommendations as an example. Note that all user identity
related attributes are processed as double hashing values, thus it
is not able to identify a user based on a single transaction record.
Further investigation on protecting user privacy while dealing with
transaction data with advanced privacy-preserving techniques are
also in place, which are not the focus of this work.

To the best of our knowledge, this is the first work that explic-
itly learns user preferences based only on card transaction records,
without any rating or review data nor detailed metadata about the
restaurants. Our contributions are summarized as follows.

(1) We adopt a novel embedding scheme to represent each user
and each restaurant, where similar users/restaurants are
represented by vector embeddings close in distance.

(2) We propose a novel approach to model user preferences over
restaurants, which considers location effect while generating
data samples to learn, but removes the influence of location
information while modeling, for better generalization.

(3) We utilize user preferences learned from historical payment
card transaction data to provide an effective ranked list of
restaurants given any region.

(4) We evaluate our method on large-scale real transaction data
to demonstrate its effectiveness, and a web demo was created
to showcase the proposed approach.
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2 PRELIMINARY
2.1 Dataset
For each card payment through our network, a transaction record
is logged which contains numerous features: user id, merchant id,
merchant location, transaction time, transaction amount, and etc..

2.2 Embeddings
To model the preference of any user to any restaurant, a major
challenge is to find a meaningful and effective representation of
each user and each restaurant. The number of users we have is
comparable to the population in the United States, which makes it
unrealistic to represent each user using a naïve method, say, one-
hot encoding. Dimension reduction is necessary, while a question
raised by which is how to find meaningful representations in low-
dimensional space for hundreds of millions of users.

Specifically, for the time window between January 2016 and
April 2016, we have around 30 billion transactions available in
our database, among which there are around 220 million active
cardholders (users) and 78 million active merchants (e.g., online
shopping websites, local supermarkets, and restaurants). For each
transaction, we extract a pair of user ids (i.e., cardholder account)
and merchant ids, denoted as (uidi ,midi ), which indicates that user
uidi has made a payment to merchantmidi .

User embeddings. All (uid , mid) pairs are grouped by distinct
merchants, i.e., by mids. Thus, each merchant group contains a
sequence of all users who have made payments to this merchant,
represented bymidi : [uidi,1, . . . ,uidi,n1 ]. Finally, each uid list is
treated as a sentence and “sentences” from all merchants are treated
as an article, and word2vec [16] is used to generate an embedding
for each user uid .

Merchant embeddings. All (uid ,mid) pairs are firstly grouped by
distinct uids. A list of all merchants that have been attended by a
user is treated as a sentence and all such “sentences” are treated as
an article. Word2vec is used again to generate an embedding for
each merchantmid .

Each user embedding is a 200 dimension float vector while each
merchant embedding has 400 dimensions. The number of dimen-
sions for each vector space are chosen to be both efficient and
effective for different tasks.

All user embeddings and merchant embeddings are stored in two
tables: global_user_embeddings and global_merchant_embeddings.
Standard similarity measures such as k-nearest neighbors with
euclidean distance or cosine similarity demonstrate that this em-
bedding approach, as a representation method, is able to model
intrinsic features of different entities. These embeddings have been
shown effective in our other applications, e.g. fraud detection.

The embeddings are created in a way such that similar users have
closer distance in the embedding space, e.g., if they live/work in the
same area, or have similar shopping behaviors. Likewise, similar
merchants also have closer distance in the embedding space if they
are in the same category, in the same area or they accommodate
similar users. Note that this property is essential towards building
effective recommendation systems. Recall that the core idea of
collaborative filtering is to provide a user with recommendations
that are liked by other users who share similar tastes. Using this
embedding approach, we are able to provide a user with effective

restaurant recommendations even if this user has never been to a
restaurant within our modeled time period. If this user has ever
made any card payment through our network, e.g., shopping at a
local grocery store, we could recommend to this user restaurants
that are liked by other users who have similar purchasing behaviors.

3 METHODOLOGY
3.1 Overview
In this section, we will describe how Pcard works using the embed-
dings generated for each user and each restaurant. The objective
is to provide a ranked list of restaurants for a given user u in a
selected geographical region RG.

Pcard proceeds in two stages: 1) in an offline learning stage, a ma-
chine learning model is trained to learn different users’ preferences
over different restaurants, which we refer to as a preference model;
2) in an online recommendation stage, given a user u and a region
RG , we rank all restaurants within RG based on u’s preference over
each restaurant in RG, provided by our preference model.

An intuition that we leverage is that a user’s preference over
a restaurant is typically a relative ranking compared to another
restaurant, instead of an absolute ranking. Based on this observation,
we learn user preferences by comparing pairs of restaurants for
each user. Specifically, we extract data samples of [u, r1, r2] from
all transaction records within our learning time period, where r1
and r2 stand for two restaurants u has attended. The embeddings
of u, r1, r2 are concatenated as the input vector for our machine
learning model, and a label of 1 or 0 is given to indicate whether
r1 or r2 is more preferred (by comparing the frequencies that u
visited r1 and r2 respectively). Finally, given a user u and a region
RG , we compare all pairs of restaurants within RG for u and output
a ranked list, similar to ranking in a chess tournament.

However, for preference model learning, challenges exist for
extracting data samples [u, ri , r j ] to learn. The major challenges are
brought by location factors. First of all, location could be the major
(or only) concern while considering where to dine, e.g., for work
lunch, but it is not fair to say a company cafeteria is preferred over
a fine restaurant that is far away. Thus, location information should
be considered when generating data samples to learn. Secondly, a
recommendation system that is built upon data from one location,
should be generalized to provide recommendations for other lo-
cations. Therefore, location information should be removed while
constructing the learning model. We address the two challenges at
once by comparing restaurants that are close, and use visit frequen-
cies as the preference measurements. For one, imagine if we are
surrounded by multiple restaurants which are similar in distance,
choosing which restaurant reveals our preference. For another, a
pair of restaurants that are close have similar “location informa-
tion” in their embedding space, which are automatically omitted in
preference modeling since they do not provide a difference.

Another challenge is for a pair of restaurants (ri , r j ) nearby, it is
not certain to claim that a user u prefers ri over r j if, say, ri was
visited for 5 times but r j for 4 times. As a result, we only assume
that a restaurant ri is preferred over r j if ri is visited many times
but r j few. We do not consider any restaurant that u has not visited
during the learning period, since that could be simply due to that
a user is unaware of this restaurant rather than he/she doesn’t
like the restaurant. Our embedding technique guarantees similar



users/restaurants would have similar embeddings, which enables
the effective learning of user preferences on a subset of data.

To summarize, in the offline learning stage, from all transaction
records within the learning period, we extract a data sample [u,ri ,r j ]
if: 1) ri and r j are within a distance threshold; 2)u attends ri greater
than or equal to fu times while r j less than or equal to fℓ times.

Finally, after the offline preference model is successfully trained,
we could serve this model in the online recommendation stage for
any user u and any region RG . The Pcard recommendation system,
as shown in Figure 1, works as follows: 1) find all restaurants within
region RG, denoted as restSet; 2) compare each pair of restaurants
in restSet for u using our preference model; 3) compute a ranked list
of all restaurants in RG based on the pairwise comparison results.

Next, we will explain each of the two stages in detail: 1) train a
model that learns any user’s preference on any pair of restaurants;
2) design a ranking method that is able to calculate an effective
ranked list based on the pairwise comparison results.

Any user U Any region 𝑅𝐺

Find all restaurants restSet within 𝑅𝐺

Pairwise 
comparison

Ranking

For user U, 
for each 
pair of 
restaurants 
in restSet:

A ranked list of restaurants 
in region 𝑅𝐺 for user 𝑢

Output:

Input:

Figure 1: Recommendation system architecture

3.2 Learning a preference model
In this section, we train a preference model where given any user
u and any pair of restaurants (ri , r j ), it could output how much u
prefers ri compared to r j . The resulting model serves as Preference
model component in Figure 1.

Recall that each user is represented with an embedding such that
users that are similar (e.g. have similar shopping preferences) have
a smaller distance than users who are dissimilar. Such embeddings
also exist for restaurants. Hence, although we’re not able to cover
all restaurants and all users for learning, the hope is if we have
learned enough data, we are able to output meaningful results for
similar users and restaurants that do not exist in training data.

To train a preference model, we take the following steps.
Step 1. Data extraction. In this step, we select all restaurant

transaction records within the learning time period, and then group
by user ids. For each user, we count the number of visits (i.e., visiting
frequency f ) to each distinct restaurant. The resulting data struc-
ture is: { u1 : { r1: f1, r2: f2, . . . }, u2 : {. . . }, . . . } , which represents the
frequency of visits to each restaurant by each user.

Step 2. Preference pair generation.With the data from step 1,
we generate user preference pairs as data samples. Specifically, for
all the restaurants a useru has visited, if restaurant ri and restaurant
r j are within distance threshold Dmax , and ri ’s visiting frequency
is higher than or equal to an upper threshold fu , while r j ’s visiting
frequency is less than or equal to a lower threshold fℓ , we say u
prefers ri over r j , and generate a preference sample [u,ri ,r j ].

Step 3. Preference model training. After step 2, we have gen-
erated many preference pairs [u,ri ,r j ] to learn. Since the goal is to
learn a model which could output a preference over two restaurants

for any user (i.e., whetheru prefers the first restaurant or the second
one), it is straightforward to use a binary classifier to learn this
property and output “u prefers ri ” (label 1) or “u prefers r j ” (label 0).
To generate training data for such model, for each preference pair
[u,ri ,r j ], we create two training samples: [u,ri ,r j ] with label 1 to say
u prefers the first restaurant, and [u,r j ,ri ] with label 0 to indicate u
prefers the second restaurant. For this task, we leverage a deep neu-
ral network (DNN) classifier provided by TensorFlow. As in Figure 2,
for each data sample [u,ri ,r j ], we first find embeddings for u, ri and
r j in the embedding datasets and concatenate them to construct
the input vector: [u embedding]+[ri embedding]+[r j embedding].
Optionally, we could also concatenate relevant statistics to the input
vector to learn together. The output is a probability distribution of
all possible classes, indicating which restaurant is more preferred.
For example, ground truth label “1” is denoted with probability dis-
tribution of [1,0], indicating the first restaurant is more preferred.
The process of training a DNN classifier is thus to adjust the pa-
rameters, in order to minimize the error between the actual output
and the ground truth output.

After training, the preference model could be served in online
recommendation stage to find a preference, for any given user
u and any two restaurants. To do that, a concatenation of their
embeddings is fed into the DNN classifier, the output of which is a
pair of preference probabilities [pj,i , pi, j ], indicating u prefers ri
by a probability of pj,i , and prefers r j by pi, j , where pj,i +pi, j = 1.

User U Restaurant R1 Restaurant R2

U embedding R1 embedding R2 embedding

DNN Classifier

1 (U prefers R1) 0 (U prefers R2)

Embeddings Other transaction statistics

Price, etc.…...

Figure 2: Preference model

3.3 Ranking from pairwise comparison
In online recommendation stage, for a given useru and a region RG ,
we find all pairs of restaurants within distance Dmax and calculate
their pairwise comparison results. With that, the next step is to
output ameaningful ranking list for all distinct restaurants inRG . As
discussed in Section 5, there are many previous works investigating
the problem of ranking from pairwise comparisons.
3.3.1 Our approach. Recall that in Section 3.2, for a user u and a
pair of restaurants (ri , r j ) to compare, our preference model outputs
a preference probability pair [pj,i , pi, j ]. For all restaurants within
region RG , i.e., {r1, r2, . . . , rn }, there are a total of

(n
2
)
=

n(n−1)
2 pairs

of restaurants. For now, suppose the diameter of region RG is less
than Dmax , i.e., all pairs are comparable. Next, we need to find a
meaningful way to rank all n restaurants from a total of

(n
2
)
pair-

wise comparison results. We use Π(j) to denote the final ranking
score for restaurant r j , i.e., ri ranks higher than r j if and only if
Π(i) > Π(j). Since all the probability pairs are normalized in pair-
wise comparison results, it is reasonable to sum up all probabilities
of each distinct restaurant, as the final ranking score Π for that
restaurant. For instance, if the pairwise comparison results for 3



restaurants {r1, r2, r3} are [p2,1, p1,2] (for (r1, r2)), [p3,2, p2,3] (for (r2,
r3)), [p3,1, p1,3] (for (r1, r3)) respectively, there are Π(1)=p2,1+p3,1,
Π(2)=p1,2+p3,2 and Π(3)=p2,3+p1,3. Finally, we could rank (r1, r2,
r3) by comparing Π(1), Π(2) and Π(3). The extension to a larger
region RG (i.e., not all pairs of restaurants within RG are compa-
rable) is discussed later in Section 3.3.3. In evaluation we’ll show
this seemingly naïve method performs very good in practice, e.g., it
is able to reduce the amount of noisy pairwise comparison results.
What’s more, it also has nice theoretical guarantees.
3.3.2 Theoretical property. Balanced Rank Estimation (BRE) is a
ranking method proposed byWauthier [24] to calculate the ranking
score of each item from pairwise comparison results. Specifically,
for the j-th item of a total of n items, its ranking score is:

Π(j) =

∑
i,j si, j (2c̄i, j − 1)

2m(n)
(1)

wherem(n)/n is the probability for each pairwise comparison being
measured, si, j = 1 if a pair (i, j) is measured, and c̄i, j is the (possibly
noisy) measurement that is made.

In our case, each pairwise comparison is measured with a prob-
ability of 1, which has: 1) m(n)/n = 1, and hence m(n) = n; 2)
si, j = 1; and 3) c̄i, j = pi, j . Therefore, equation 1 reduces to:

Π(j) =
∑
i,j (2pi, j−1)

2n ∝
∑
i,j pi, j . This means that BRE method

is proportional to our proposed approach to calculate ranking score,
which is, for each distinct restaurant, the sum of corresponding
probabilities in all pairwise comparison results. Therefore, the the-
oretical properties proved for BRE method all proportionally hold
for our approach. These include upper bound on number of inverts
(cases where pi, j > pj,i while Π(j) < Π(i)), and sample complexity
(number of pairwise results needed to compute the final ranking),
details of which could be found in [24].
3.3.3 Extension. The approach in Section 3.3.1 is based on pair-
wise comparison results for all pairs of restaurants in region RG.
However, our initial assumption is that, two restaurants are only
comparable if they are close (i.e., within a distance thresholdDmax ).
Therefore, if two restaurants in region RG are further than Dmax ,
it’s neither valid nor accurate to compare them using our preference
model, since there might be location information inscribed in their
embeddings that may obfuscate the results. Hence, if RG is too large,
we could only get incomplete pairwise comparison results, i.e., a set
of pairwise results for pairs of restaurants that are within distance
Dmax , among a total of

(n
2
)
possibilities. Ranking from incomplete

pairwise results is an important research topic in theory community
[24]. However, the equations are not ready to use because they as-
sume each pairwise comparison is independently measured with the
same probability, which is often not the case in reality. Combined
with the results from [24] (Equation 1), and our ranking approach
in 3.3.1, we adopt another simple yet meaningful approach for rank-
ing from incomplete pairwise results. In this approach, the ranking
score of a restaurant is the sum of corresponding probabilities in all
pairwise comparison results, normalized by the count of pairwise
comparisons being made on that restaurant. For example, For three
restaurants (r1, r2, r3), if pairs (r1, r2) and (r2, r3) are close while
r1 and r3 are far away, we have pairwise comparison results of
(p2,1,p1,2), (p3,2,p2,3), then the ranking score for each restaurant is:
Π(1) = p2,1, Π(2) =

p1,2+p3,2
2 , Π(3) = p2,3, based on which we could

rank all three restaurants. Note that, by normalization we make

sure each restaurant’s measurements have the same weights in final
ranking score (i.e., each restaurant is normalized to be measured
once). Suppose restaurant r j is measured by tj times, the probability
it is measured is tj/

(n
2
)
, i.e.,mj (n)/n = tj/

(n
2
)
in Equation 1, which

givesmj (n) = 2tj/(n − 1). Finally, Equation 1 becomes:

Π(j) =

∑
i,j si, j (2c̄i, j − 1)

4tj/(n − 1)
∝

∑
i,j pi, j

tj
(2)

which is exactly what we propose, to normalize the sum of corre-
sponding probabilities for each restaurant by the number of times
that restaurant is measured.

4 EVALUATION
This section evaluates the performance of Pcard. For all experiments
we use the time period of January to February 2016 for training and
validation, and March to April 2016 for testing. Note that none of
the previous work has explored personalized restaurant recommen-
dation in our setting, that is, without any explicit/implicit rating,
and for a humongous volume of data. As a result, for baseline com-
parison, we simply adopt crowdsourcing approaches which are the
only practical alternatives that could be evaluated on our data.

4.1 Pairwise comparison evaluation
4.1.1 Dataset. The evaluation dataset is extracted from transaction
records stored in our database. For pairwise comparison evaluation,
we first train a preference model on data samples generated from
transaction records of a selected spatial area (e.g., Bay Area). After
that, the accuracy of the preference model is tested not only on data
samples of the same spatial region, but also for a different region,
to test the influence of location factors.

Given an area, we first select all restaurant transaction records
within this area. The rest of dataset generation follows the proce-
dure described in Section 3.2. Recall that for each user u and each
pair of restaurants (ri , r j ), we generate a data sample [u,ri ,r j ] if ri ,
r j are within distance threshold Dmax and u has visited ri more
than or equal to fu times while r j fewer than or equal to fℓ times.
The parameters used for all experiments are shown in Table 1a.

To validate our approach, we extract transaction records from
areas ranging from smaller ones such as Bay Area, New York City,
to larger ones such as California (CA) and the contiguous United
States as our geographical regions to learn user preferences. Note
that, if a preference pair [u,ri ,r j ] appears in both training and testing
datasets, we would eliminate that from testing data, to make sure
that our model in fact learns preferences from embeddings instead
of just memorizing training results. The number of data samples
[u, ri , r j ] for each dataset is listed in Table 1b.

distance threshold Dmax 500 meters

visiting frequencies threshold fu 5
fℓ 1

(a) Parameters used for all experiments
(BA: Bay Area; NYC: New York City; CA: California)
region BA NYC BA & NYC CA US
#samples 1,951,413 2,720,745 4,679,721 24,955,210 211,519,990

(b) Number of preference pairs generated
Table 1: Datasets

4.1.2 Baseline. Our baseline mimics the default setting in current
recommendation services (e.g., Yelp), which simply recommends a
restaurant preferred bymost users. Specifically, for each data sample
[u, ri , r j ] in testing dataset, this baseline outputs a preference for ri



if ri has a higher visiting frequency by all card holders in training
period, otherwise r j .
4.1.3 Evaluation results. As discussed in Section 3.2 and Figure 2,
for each extracted data sample [u,ri ,r j ], we create a concatenation of
all their embeddings to train a DNN classifier using TensorFlow. The
DNN classifier learns to output a pair of probabilities showing the
preferences over two restaurants. For example, for an embedding
concatenation [u embedding]+[ri embedding]+[r j embedding], the
output of the classifier would be [pj,i ,pi, j ] where pj,i + pi, j = 1,
showing the probabilities of liking ri , r j respectively. Note that,
for a sample [u,ri ,r j ], there are two possible input embedding con-
catenations, one is [u embedding]+[ri embedding]+[r j embedding],
and the other is [u embedding]+[r j embedding]+[ri embedding],
which outputs [p′i, j , p

′
j,i ]. In an ideal case, pj,i = p′j,i and pi, j = p

′
i, j

should be true. However, due to the high dimension of input em-
beddings and the un-interpretable DNN classifier with millions of
weights, it is not even true that [pj,i , pi, j ] and [p′i, j , p

′
j,i ] always

have the same order (i.e., pj,i > pi, j and p′j,i > p′i, j or pi, j > pj,i
and p′i, j > p′j,i ). To correct this, we test a sample [u,ri ,r j ] with the
two different embedding concatenations as two separate inputs
to the DNN classifier. Then, we output whether ri or r j is more
preferred by comparing pj,i + p′j,i and pi, j + p

′
i, j . The idea is that,

although the order of [pj,i , pi, j ] and [p′j,i , p
′
i, j ] might not be the

same, the case where the probability difference is higher means that
the prediction label is more certain, where the other case might be
because some part of the weights are not sufficiently trained. In
our evaluation we found that this type of “two-way comparison” is
more accurate than just using one type of embedding.

The prediction accuracy for each spatial area is shown in Ta-
ble 2. Our method outperforms the baseline in all areas. We observe
test accuracy decreases slightly when selected region size becomes
larger, which could be caused by increased data varieties. Never-
theless, in the entire California state, the accuracy is still as high as
76.70%, and this accuracy does not drop further when the spatial
area extends to the whole US region. Furthermore, to evaluate the
influence of location information encoded in our embeddings, we
use a classifier trained on New York City dataset to test preference
accuracy in Bay Area, and the result is 80.77%, which is almost the
same with the accuracy (81.33%) of using a classifier trained on
Bay Area itself. It means that although restaurant embeddings may
contain location information, by learning the preferences over pairs
of restaurants within a region, DNN classifier is able to “ignore”
that information which is similar between each pair of restaurants,
and use other encoding information to learn a preference instead.

BA NYC BA & NYC CA US

Pcard 81.33% 83.65% 80.64% 76.70% 76.66%
Train on NYC and test on BA: 80.77%

Baseline 64.27% 64.78% 64.53% 66.49% 68.38%
Table 2: Pairwise comparison evaluation results

4.2 Ranking from pairwise comparison results
In this section, we evaluate our ranking algorithm, which outputs a
ranked list from pairwise preference probabilities provided by the
preference model (see Figure 1 for detail).

To evaluate the correctness of ranking algorithm, previous works
[19, 24] typically count the number of inverts. Given a set of n
objects and binary pairwise comparisons between pairs of objects

(e.g., object i > object j), an invert happens if the original pairwise
order of object (i , j) is not preserved in the final ranked order. In
previous work, the goal of ranking algorithm is to minimize the
number of inverts.

However, in our work, there are two major differences. First, our
pairwise comparison results are not the ground truth. To check
final accuracy of ranking algorithm, we need to check with ground
truth results from actual transaction history, instead of pairwise
comparison probabilities output by the preference model. Second,
it is very rare that a useru would have visited all restaurants within
a region RG, which means that for ground truth data, we do not
have all pairwise visiting frequency comparisons between any two
restaurants within a region RG for a particular user u. Thus, we
are not able to count the number of inverts in final ranking order
compared to ground truth pairwise comparisons.

Instead, based on the data we have, we design a meaningful eval-
uation approach that could reveal the performance of our ranking
algorithm. Specifically, in the testing dataset generated in Section
4.1, each sample [u,ri ,r j ] has a ground truth label of 1 or 0, meaning
which restaurant between ri and r j is preferred. Using this dataset,
the following procedures are applied to each data sample [u,ri ,r j ]:
1) find the smallest region RGi j that could enclose both restaurants;
2) find all restaurants within region RGi j ; 3) compute pairwise pref-
erence probabilities for each pair of restaurants in region RGi j ; 4)
rank all restaurants within region RGi j based on pairwise probabil-
ity results, through summing up all corresponding probabilities of
each restaurant as its score; 5) check the ranking order of restau-
rants ri and r j , and see if it’s the same with the ground truth label
of data sample [u,ri ,r j ], i.e., whether the summed score of ri in final
ranking results is higher or lower than r j , and whether the ground
truth label of [u,ri ,r j ] is 1 or 0.

After above procedures, for all data samples in testing dataset, we
get a ranking order accuracy, i.e., the percentage of the test samples
that are correctly ordered in the ranking results. Then we compare
this ranking order accuracy with the pairwise comparison accuracy
in Section 4.1. If the ranking order accuracy is higher, it means that
our ranking algorithm not only does not exacerbate previous step,
but is even able to reduce noise in the pairwise comparison results.

The evaluation results show that the ranking algorithm has
noticeably increased pairwise accuracy, from 79.95% (pairwise com-
parison accuracy) to 82.00% (ranking order accuracy) for Bay Area,
which expresses the effectiveness of our ranking algorithm.

4.3 Overall recommendation performance
To test if our recommended restaurants are actually meaningful, for
a given user, we use the whole end-to-end model shown in Figure
1 to output a ranked list of restaurants within a given region, and
validate our results, by checking if this user actually attended the
restaurants we recommended during the test period. We conducted
this experiment for all users in Palo Alto area, and found that for
over 80% of the cases, a restaurant the given user attended in test
dataset is within top 30% of our ranked list. This means that if we
recommend a list of 10 restaurants to a user, with large probability
this user will go to one of our top 3 recommendations.

Baseline. For baseline, we adopt the crowdsourcing setting used
by most services, where the recommendation list is sorted by vis-
iting frequencies of all card holders. We found that, for over 80%
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Figure 3: Screenshots of Pcard (left) and Yelp (right) showing
restaurant recommendations in downtown San Francisco

of the cases, an attended restaurant in test dataset is only at top
46.15% of the recommendation list; while by only 65.12% of the
cases could the attended restaurant appear within top 30% of the
list. Apparently, Pcard provides more effective recommendations.

4.4 Interactive Demo
An interactive Pcard demo has been deployed at our company front
desk to collect user feedbacks which continuously help to improve
the system. A user interacts with the demo by sliding a payment
card and selecting a location (range) for recommendations. The
front-end submits a request for the restaurants in the area to be
ranked by this user’s preference. On the back-end, the system will
look up all relevant embeddings, score all restaurants as described
in Section 3, and finally return top k (e.g., k=10) restaurants.

A screenshot of the demo is shown on Figure 3 left. All restau-
rants’ locations are shown with a link to each restaurant’s Yelp page
for more information. Compared with the Yelp recommendation
result shown in Figure 3 right, which lists an overwhelming number
of recommendations to be filtered further, Pcard saves user efforts
to input additional information such as cuisine preference, which
is already encoded in embeddings. Providing useful and interesting
recommendations without using manual data labels is an important
advantage of Pcard. The feedback from our demo is positive and is
used to continue to improve the performance of Pcard.

4.5 Remarks
Pcard in its current state has certain limitations. First, two restau-
rants must be sufficiently close in order to be compared. The dis-
tance threshold of 500 meters in Table 1a is selected to be conser-
vative. An alternative is to use restaurant density together with
distance, in order to decide whether two restaurants are comparable.
Second, Pcardmay emphasize less expensive restaurants because of
higher transaction frequency. To accommodate for this limitation,
we could leverage the price range of restaurants and aggregated
visiting frequencies to help with the preference model learning.

Despite the above limitations which we could address further,
Pcard outperforms current POI recommendation systems in many
aspects. First of all, with Pcard and our demo app as shown in Figure
3, users never have to explicitly label what they prefer or dislike in
order to get useful recommendations.What’s more, by only learning
information from transaction records, Pcard addresses the cold start
problem since we do not need any review or rating data to begin
with. Also, our deployed model only contains information about

double-hashed user ids and restaurant visiting frequencies, which
protects user privacy. Last but not the least, Pcard could be further
improved with user review data. A user could provide feedback
through our app, after he/she tries a recommended restaurant.

5 RELATEDWORK
Recommendation systems have been an important research topic
for decades. Collaborative filtering, used by most traditional rec-
ommender systems [5, 13], recommends a user u with unexplored
items that are liked by other users having similar tastes [6]. To
achieve this, it needs sufficient rating scores to find similar users,
e.g., Amazon rating scores [13], Yelp reviews [15], and Netflix’s
movie ratings [2]. However, explicit ratings or reviews are often
not available, and could be highly biased. Implicit ratings [18] are
proposed for the aforementioned problem. For instance, YouTube
recommendation system treats a video as being liked by a user if
the user finishes that video [4]. Similarly, if a webpage is being
scrolled to the end, then it is likely that webpage is being liked [11].

However, everything is more complicated when it comes to
point-of-interest (POI) recommendation [26, 27], especially restau-
rant recommendation, partly due to the complexity introduced by
geographical location factors [1, 9, 14, 21, 26]. For restaurant recom-
mendation, GeoMF [12] models geographical preferences of users
using check-in data on location-based social networks (LBSNs),
but they treat locations that users have been to as what users are
likely to prefer. Zhang etc. [28] integrate implicit check-in data and
explicit review data for more accurate recommendation, while ana-
lyzing user preferences based on their demographics information
and restaurants attributes. In contrast, we aim to remove the influ-
ence of location factor while modeling user preferences, without
any need of review data.

Deep learning has been gradually replacing many traditional
algorithms in various tasks including recommendation systems
[4, 8, 22, 23, 29]. Despite of the successful results, these methods
still need either explicit ratings or implicit ones to begin with.

In our approach, we propose a ranking method that is able to
output a ranking list of restaurants based on pairwise comparison
results. Ranking from pairwise comparison results is heavily used
in tournaments like chess player games, e.g., ELO rating system
[25]. Research efforts in this field include to rank more efficiently
[10, 17, 19], rank from incomplete pairwise results [24], and to only
select top-k candidates [3, 7, 19]. Our proposed method is easy to
implement, and has the same theoretical bounds with [24].

6 CONCLUSION
In this paper, we address the problem of restaurant recommendation
using payment card transaction records, without any review or
rating data. The experiences learnt shed light on addressing the
cold start problem in general recommendation systems, especially
for POI recommendations. For future work, we plan to utilize extra
information such as restaurant statistics mined from transaction
records and data from other websites to improve the accuracy,
and to learn time series visiting patterns of each user for better
recommendation performance.
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