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ABSTRACT
With the prevalence of cloud computing, more andmore enterprises
are migrating applications to cloud infrastructures. Logs are the key
to helping customers understand the status of their applications
running on the cloud. They are vital for various scenarios, such as
service stability assessment, root cause analysis and user activity
profiling. Therefore, it is essential to manage the massive amount
of logs collected on the cloud and tap their value. Although various
log storages have been widely used in the past few decades, it is
still a non-trivial problem to design a cost-effective log storage for
cloud applications. It faces challenges of heavy write throughput
of tens of millions of log records per second, retrieval on PB-level
logs and massive hundreds of thousands of tenants. Traditional log
processing systems cannot satisfy all these requirements.

To address these challenges, we propose the cloud-native log
database LogStore. It combines shared-nothing and shared-data ar-
chitecture, and utilizes highly scalable and low-cost cloud object
storage, while overcoming the bandwidth limitations and high la-
tency of using remote storage when writing a large number of logs.
We also propose a multi-tenant management method that physi-
cally isolates tenant data to ensure compliance and flexible data
expiration policies, and uses a novel traffic scheduling algorithm to
mitigate the impact of traffic skew and hotspots among tenants. In
addition, we design an efficient column index structure LogBlock to
support queries with full-text search, and combined several query
optimization techniques to reduce query latency on cloud object
storage. LogStore has been deployed in Alibaba Cloud on a large
scale (more than 500 machines), processing logs of more than 100
GB per second, and has been running stably for more than two
years.

CCS CONCEPTS
• Information systems→ Data management systems; • Net-
works→ Cloud computing.
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1 INTRODUCTION
When enterprises use cloud services to build applications, they
expect that their applications in the cloud can run stably, efficiently
and securely, and are eager to collect comprehensive logs from
various sources including cloud services, gateways, applications,
virtual machines or containers. Therefore, cloud vendors must pro-
vide products and utilities to store and analyze various kinds of logs
for scenarios, such as service metrics measurement, performance
tuning and security audit. On the other hand, obtaining operational
data (such as DAU/WAU/MAU) through application logs is also
very helpful for customers to make business decisions. Log storage
and analysis system are essential to support the above scenarios.

The applications deployed on the cloud come from customers
in various industries. And hundreds of thousands of tenants are
continuously generating logs. Compared with the on-premise en-
vironment, the demands to build log storage services in the cloud
environment are diverse, which has to overcome the following
challenges:

Extremely High Write Throughput and Storage Volume.
Cloud-wide applications, services and servers generate logs at a
tremendous rate. Take the audit log of Alibaba Cloud DBaaS (Data-
base as a Service) as an example, the overall traffic during working
hours is close to 50 million log entries (about 100 GB) per second,
as shown in Figure 1. Due to such high write throughput, storage
capacity and cost issues also arise when storing a large number of
historical logs, especially for some customers who want to archive
logs for several years due to compliance requirements (such as
finance and banking). In our production environment, the total
storage capacity is as high as 10 PB and continues to grow, and the
capacity of a single tenant can reach 100 TB.

Large Number of Tenants and Highly SkewWorkload. As
a cloud-scale log store and analysis service, it needs to serve more
than 100,000 tenants. The life cycle of tenant data is different. Some
require the latest logs for diagnosis, while others require long-term
logs for analysis or archiving. It is necessary to design a flexible
tenant management mechanism to achieve differentiated data re-
cycling and billing policies for different tenants. Furthermore, the
workloads of tenants are highly skewed. Some tenants contribute
most of the storage volume, as shown in Figure 2. Besides, the write
throughput of different tenants reaches its peaks at different time,
requiring dynamic traffic scheduling.
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Figure 1: The total write throughput ofAlibabaCloudDBaaS
audit logs in a day.
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Figure 2: A statistics of tenants’ daily data size in the LogStore
production environment, which is highly skewed and close
to the Zipfian Distribution.

Accurate and Interactive Log Retrieval on Massive Data.
With petabyte-sized historical logs and highly skewed data distri-
bution, it is non-trivial for large tenants to accurately retrieve the
corresponding logs with a tolerable delay, for example, hundreds of
milliseconds or seconds. This requires efficient indexing and tech-
niques such as data skipping, caching and prefetching. In addition
to the full-text retrieval feature, analytics and aggregations are also
needed to fulfill lightweight BI query requirements, such as "which
IP addresses frequently accessed this API in the past day?"

Although some of these challenges can be solved by existing
systems, no single system can solve all of these challenges. NoSQL
systems such as HBase[13] and Cassandra[11] support transactional
high-throughput writes, but this comes at the cost of eliminating
complex query support. ElasticSearch[12] is a system dedicated
to full-text search and has a comprehensive analysis function for
log data. But because it chooses to build inverted indexes in real
time while ingesting logs, the write throughput cannot meet our
requirements. Besides, all these systems adopt the shared-nothing
architecture. When the amount of data grows rapidly, the cost of
data migration caused by scaling up/down is inherently high, and
limits the elasticity.

In recent years, cloud data warehouse systems have emerged,
such as Snowflake[27] and Vertica Eon Mode[52]. They separate
computing and storage and store data in the cloud object storage
Amazon S3[9]. This architecture has excellent scalability and low
storage cost. However, these systems reserve separated computing
resources for different tenants which is not economical enough for

a multi-tenant log service and they also do not support efficient full-
text search. Real-time data warehouses like Druid[55] and Pinot[37]
have rich data analysis capabilities. They are asynchronous inges-
tion analytical storage and data is ingested asynchronously from
streaming sources like Kafka[18]. The data written to Kafka is not
immediately visible by the query before being indexed and con-
sumed. Cloud computing vendors provide real-time log collection
and analysis products such as CloudWatch Logs[8], Cloud Logging
[34] and Log Service [6], and users can access logs from the cloud
console or through specific Open APIs. LogStore can be used as
the underlying support for such products, providing low-cost stor-
age, tenant isolation experience, and efficient full-text retrieval and
analysis.

In this paper, we propose a cloud-native and multi-tenant log
database. First, after investigating various distributed databases,
we propose an architecture that combines the advantages of both
shared-nothing and shared-data designs to meet the requirements
for high write throughput and low response time. The data is first
written to a write-optimized data structure in the local storage, and
then later converted to a read-optimized column storage structure
and transferred to the object storage in the background. Meanwhile,
the introduction of cloud object storage solves the cost problem
but causes problems such as high latency, limited and fluctuating
bandwidth. We have summarized the problems encountered and
provided best practices. Secondly, due to hotspots or surges in traf-
fic, throughput can sometimes be severely affected. Therefore, we
have designed a global flow control algorithm that can effectively
balance tenant traffic between nodes to approximate the maximum
cluster-wide throughput, and prevent instability due to data skew
between tenants. The final challenge is to provide desirable query
performance on massive logs. Here we have designed a column-
oriented structure LogBlock, which supports full-text inverted index
as well. Moreover, we have implemented various auxiliary strate-
gies to achieve fast retrieval from massive logs, including the data
skipping strategy, multi-level data caches and parallel prefetch
method.

The remainder of the paper is organized as follows. Section 2
introduces the background and motivation, and Section 3 presents
the cloud-native architecture. Multi-tenant traffic flow control is
described in Section 4, and query optimization is discussed in Sec-
tion 5. Section 6 details the experiments and evaluation. Finally,
Section 7 provides a brief overview of related work, and Section 8
concludes the paper.

2 BACKGROUND AND MOTIVATION
As far as we know, there are currently three mainstream architec-
tures for cloud distributed databases.

Shared-Nothing is the most straightforward architecture for
the transition from a traditional single-node database to a dis-
tributed database. A large number of databases have adopted this
architecture, such as Spanner[25], DynamoDB[28] and Redshift
[35]. Tables are divided into multiple partitions or shards. Each
shard is assigned to a database node. Every node stores the allo-
cated shards on the local disk and is responsible for managing and
querying them independently. Therefore, it has good write scalabil-
ity. The drawbacks of shared-nothing architecture are also obvious.



It tightly couples computing resources and storage resources, re-
sulting in high costs for horizontal scaling and recovering replicas
during failover.

Shared-Storage architecture decouples computing and storage
resources and is adopted by AWSAurora[54], Azure HyperScale[19]
and Alibaba PolarDB[4, 22]. Several data-intensive tasks, such as
data replication, crash recovery, and data materialization could
be offloaded from the database kernel to the underlying storage
service, thereby making the database node more efficient and elas-
tic. However, there is a bottleneck in the write operation under
the shared-storage architecture, and there will be contentions for
updating shared resources when multiple nodes modify the same
table. Shared-storage is mainly used in OLTP scenarios, so a trend
is to use emerging hardware (such as RDMA network and NVM
storage) to alleviate the additional delay overhead caused by cross-
network I/O operations, but this is not suitable for low-cost storage
scenarios such as log archiving.

Shared-Data architecture also separates compute from storage,
but it relies on more cost-effective cloud object storage services
like Amazon S3 [9] instead of developing in-house storages. The
representative of this architecture is Snowflake[27]. In order to
comply with the characteristics of object storage, tables are orga-
nized as a set of immutable files. Each compute node first caches
some table data on the local disk and then converts the cached data
into immutable files. These files are eventually uploaded to S3 to
complete the writing process. The architecture is more suitable
for bulk inserting scenarios of data warehouses. The client cannot
receive responses in time until this data is flushed to S3, otherwise
there would be a risk of data loss. Therefore, due to batched writes
and cloud object storage characteristics, the client has to endure
high write latency, which is unacceptable in real-time situations.

We choose to use an architecture that combines the advantages
of both shared-data and shared-nothing. This architecture has good
write scalability and elasticity, as well as low write latency and
storage costs. Next, we list specific design choices.

Separation of Compute and Storage For the storage of mas-
sive data, it is very time-consuming to restore data from a replica
or scale the cluster through data migration. Therefore, we decouple
computing and storage. This also brings the benefit that compute
nodes and storage nodes can be scaled independently.

Scalable Reads andWrites In order to scale the write through-
put horizontally, input logs will be partitioned and dispersed to
different computation nodes according to tenants. And for large
tenants, log entries could be further partitioned according to the
hash value to balance the load.

Real-time and Low-latency Writes Unlike most data ware-
houses that use bulk loading, LogStore supports low-latency writes
and real-time data visibility. In order to achieve optimal latency and
stability, we choose to persist data to the local disk, keep multiple
copies of data and synchronize WAL (write-ahead logs) between
three replicas using Raft[46]. These are all commonly used tech-
nologies for shared-nothing architecture. Furthermore, we have
a write-optimized row-oriented storage format, avoiding the use
of CPU-intensive optimizations, such as building extra indexes or
data compression, to maximize the write throughput.

Low-cost and Read-optimized Storage Because local disks
cannot save the ever-increasing large amounts of data at an afford-
able cost, as shared-data architecture, we choose to put data on
the object storage. LogStore uploads the data on the local disk into
the object storage in the background, and we use a read-optimized
column-oriented indexed storage format LogBlock with a high com-
pression rate to store logs on object storage. LogBlock is organized
according to the tenant and timestamp dimensions to facilitate fast
seek and retrieval. We also learn experiences from other columnar
formats such as C-store[49] and DataBlock[41].

Dynamic Flow Scheduling on Heterogeneous Resources
Because the data volume and load distribution among tenants are
severely skewed, and each tenant has personalized behaviors, such
as different business peak time, and variable span of data that needs
to be loaded in queries. Therefore, to continuously keep the global
optimal strategy for completing writing and query tasks for all
tenants, it’s necessary to schedule dynamically computing and
I/O resource within the entire cluster. In addition, a continuously
running production cluster will inevitably have heterogeneous
hardware, such as virtual machines with different core numbers
and clock speeds. Balancing the load dynamically according to the
hardware configuration is also an issue in the production system.

3 CLOUD NATIVE ARCHITECTURE
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Figure 3: The LogStore Architecture.

Figure 3 shows the architecture of the LogStore. The entire system
is deployed on Alibaba Cloud, using cloud services such as Server
Load Balancer (SLB)[5], Elastic Compute Service (ECS)[2], Object
Storage Service (OSS) [3], etc. Here is a brief introduction to each
module.



Controller. The controller acts as the manager of the entire
system. A three-node ZooKeeper cluster is deployed to ensure high
availability of the controller service, and only one elected controller
node is active. In LogStore, the controller is in charge of cluster
monitoring, metadata management, and task scheduling. To moni-
tor the status of various modules (including brokers and workers),
it collects the runtime metrics from them. When an abnormal node
is detected, the controller removes it from the router table and
schedules tasks for node recovery. The controller also manages the
database schema and guarantees schema consistency. When per-
forming DDL operations, the controller will update the catalog and
synchronize the changes to each broker. In addition, the controller
is also responsible for scheduling background tasks periodically,
such as checkpointing and cleaning up expired data.

Query Layer. The distributed query layer has a set of brokers
to process requests. The SLB dispatches SQL requests from the
application to the corresponding brokers. Next, the broker parses
and optimizes the received request, and generates a query plan
expressed as a directed acyclic graph (DAG). The broker distributes
the sub-queries to the corresponding shards according to rules in
the routing table, which is maintained by the controller using global
traffic control algorithms, so that LogStore can eliminate the impact
of skewed workloads or hotspots. Finally, the broker merges the
responses from each shard and returns the final result to the client.

Execution Layer. The executive layer contains a group of work-
ers. The controller assigns a number of shards to each worker. And
workers are responsible for handling read and write operations of
the corresponding shards. We adopt a row-column hybrid storage
architecture and a two-phase writing process. The first phase is
local writing. It is responsible for generating the WAL, synchro-
nizing other replicas, and writing to local disks. In order to reduce
the storage overhead of replicas, it can store only WAL on other
replicas. This is a trade-off between storage cost and availability. In
the production environment, we use three replicas, of which two
replicas have a complete row-store, and the remaining one only
contains WAL.

The second phase is remote archiving. The data builder module
asynchronously converts the row-store into the column-oriented
LogBlocks and then uploads them to OSS. Moreover, each work has
a multi-layer cache to avoid frequent remote reads from OSS.

Cloud Storage Layer. OSS is a reliable and cost-effective object
storage product onAlibaba Cloud. It could guarantee 99.9999999999%
(12 9’s) durability and 99.995% availability. OSS allows users to ac-
cess objects (files) in buckets over the HTTP(s) RESTful APIs or
SDKs. It is well known that object storages face some challenges
in storing data, such as high latency due to additional network
overhead and the inability or inefficiency to append data to the end
of the file. We have solved the problems with the two-phase writing
process. Each LogBlock is an immutable file and will no longer be
modified after packing, and new LogBlocks will be generated for
the newly arrived logs. The LogBlocks are uploaded to OSS in the
background without affecting the write latency in the foreground.

When operating in production environments, we encountered
more subtle problems, which were not fully addressed in the past
works [27, 52]. For example, we found that traversing a large num-
ber of files is time-consuming when performing tasks like backup,
migration, and data expiration. A LogBlock of a tenant is composed

of a lot of small files, such as metadata, indexes, and data blocks,
and all these files are packaged into a large tar file instead of using
small files. The header of the tar file contains a manifest, allowing
subsequent read operations to seek and read any part of the tar
file. This avoids the performance penalty when dealing with many
small files.

3.1 Multi-Tenant Storage
There are multiple ways to manage the storage of multi-tenant data.
A trivial method is to set up a dedicated storage cluster for each
tenant, as most managed Hadoop services and data warehouses
are, such as Amazon EMR[7] and Redshift[35]. This method can
completely isolate tenant data, but it is not economical to serve
a large number of tiny tenants. The opposite direction is to store
all tenant data in a large table and all tenant data is mixed and
interleaved. This is inefficient for querying, managing and billing a
single tenant. In particular, retrieving the data of one tenant will
inevitably load the data of other tenants, resulting in additional
overhead, and the high latency of object storage exacerbates this
problem.

In LogStore, we choose a hybrid and compromise method be-
tween the two ends to manage tenant data, provide services to
more customers with limited budgets, while maintaining data iso-
lation. In the row-store, all log data is stored in a single huge table,
and organized only by the timestamp, rather than separated by
tenants, to improve space efficiency and reduce random I/O ac-
cesses, as shown in Figure 3. The data builder then converts data
in row-store into many LogBlocks in the remote archiving stage.
During this period, the row-store table will be divided into sepa-
rated columnar tables according to tenants. If a tenant is too large
due to data skew, it will be divided into multiple LogBlocks. Each
columnar table corresponds to an OSS directory, which belongs to
a tenant and contains a series of LogBlocks stored in chronological
order. At the same time, the metadata manager in the controller
will update the information of each tenant, including the path, size
and timestamp range of the new LogBlocks. After the data expires,
the task manager will issue a task to delete the expired LogBlocks.
In this way, tenant data is isolated and stored on OSS, and can be
retrieved and retired separately without affecting other data.

3.2 LogBlock
LogBlock is the basic and constituent unit of the log data stored
on OSS. We design the read-optimized LogBlock according to the
following design principles.

Self-contained. A LogBlock is a self-explanatory and location-
independent data package, which contains the complete table schema,
and detailed information of all columns. With this design, LogBlock
can still be resolved after being renamed or moved.

Compressed. LogStore supports a series of compression algo-
rithms, such as Snappy[33], LZ4[42], and ZSTD[30]. Because the
compression ratio is preferred in LogStore to reduce the amount
of data transmitted over the network, ZSTD is used as the default
compression algorithm, which consumes more CPU than other
algorithms.



Columnar-oriented. Most queries do not need to retrieve all
columns, so the column-oriented format can prevent reading irrele-
vant columns and improve query performance.

Full-column indexed and Skippable. We create indexes for
all columns, which is different from other columnar storages. This
is to reduce the scan operation, which is relatively expensive on
OSS. The extra space cost of the index is acceptable after using
OSS. We support two types of indexes: the inverted index and BKD
tree index[47], corresponding to string type and numerical type
respectively. We also generate a Small Materialized Aggregates
(SMA) [44] for each column, including maximum and minimum
values for skipping data blocks.
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Figure 4: Layout of a LogBlock for n attributes

Figure 4 shows the structure of LogBlock in detail. LogBlock
consists of five parts: header, column meta, index, column block
header and column block. These parts are numbered 1 to 5, and
marked in different colors. The header 1○ records table schema, the
number of records in the table, and the offset of metadata of each
column 2○, which describes the compress algorithm used, the SMA
and offset to indexes 3○ and column block headers 4○. 3○ consists
of index type (e.g. inverted index or BKD tree index) and index data.
4○ contains the number of rows, the SMA and offset of the data and
bitset, while the column block 5○ stores the bitset and compressed
data.

4 LOAD BALANCING
We discussed how to achieve high write throughput through the
cloud-native architecture. Ideally, the maximum write throughput
of LogStore can be estimated by summarizing the total processing
capacity of the ECS nodes. However, in actual systems, the system
could become unbalanced and under-loaded. Some ECS nodes be-
come overloaded, while others remain idle. It is difficult to achieve
the theoretical writing throughput in practice. Load imbalance
comes from three factors:

High Skewed Workload. After hash partitioning according to
tenants, the workload will be heavily biased towards "hot" shards,
that is, the partitions where large tenants are located. A few tenants
contribute most of the log volumes, andmost long-tail tenants are in
a state of low activity. For example, as shown in Figure 2, the work-
load of tenants in Alibaba Cloud DBaaS production environment is
close to Zipfian Distribution.

Variations of Traffic. The activities of tenants will fluctuate
with business. The surge in traffic, such as online promotions, will
generate new hotspots dynamically.

Heterogeneity of ECS nodes. For long-running systems, the
heterogeneity of computing nodes is inevitable, because the ECS

node configuration provisioned on the cloud continues to evolve.
The load that each ECS node can carry is different.

In the course of running LogStore for many years, we have real-
ized that in the face of the above challenges, a dynamic workload-
ware load balancing based on real-time feedback is the most impor-
tant thing for maintaining the stability of the service. Prior work
on distributed systems has considered this aspect. Some of them
target factors such as the balance of storage capacity and reducing
the overhead of distributed transactions. Databases that are range-
partitioned, such as HBase [13], can dynamically split a partition
into two when one partition becomes a hotspot. This can solve
the problem of skew in the size of a single partition, but it cannot
alleviate hot spots in all cases. For example, when the partition
key is an incremental value, say the timestamp. After the split, the
hotspot still falls on the last partition, which is still unbalanced.
Schism[26] abstracts each database node as a vertex on the graph,
minimizing the number of distributed transactions across shards by
cutting the graph into multiple balanced partitions, but it cannot
handle the hot spots of a single partition. Other shared-nothing
systems use rule-based/heuristic algorithms to schedule migrations
to eliminate hotspots. Yak[38] defines and monitors load metrics
to detect imbalance, and a set of rules (such as load split rule and
size split rule) to invoke balancing actions, namely split and move.
E-store[51] presents a two-tier partitioning framework that imple-
ments a greedy algorithm to dynamically assign hot partitions to
database nodes, so that the load is evenly distributed.

As a cloud-native log database, we expect a lightweight load
balancing framework without data migration. On the one hand,
tenant logs need to be distributed to enough shards that can handle
the workload. On the other hand, in order to prevent unavailable
machines from affecting the query and write latency of a large
number of tenants, each tenant’s workload should be assigned to
as few shards as possible. This requires a weight-based balancing
algorithm, which is studied in this section.

4.1 Global traffic control
In LogStore, if the load of a tenant is too high to be carried by
one node, the tenant’s load will be evenly (e.g. in a round-robin
manner) distributed to multiple nodes according to routing rules, as
described in Section 4.1.2. In practice, when we re-balance workload
between shards, in addition to quickly alleviating the load imbalance
caused by skew, it is also crucial to avoid the occurrence of new hot
spots. Otherwise, new shards will be overloaded and hot spots will
oscillate repeatedly. On the other hand, when the traffic of a certain
tenant increases rapidly, if the system cannot respond in a timely
manner, for example, balancing the tenant’s load to multiple nodes
will cause service degradation such as increased request delay.

In order to approach the theoretical maximum throughput, we
model the load balancing problem of multi-tenant logs as the flow
network[32]. The flow network is used in scenarios, such as re-
source allocation [36], QoS of routing protocols [20, 43, 50], but as
far as we know, there is no prior work using max-flow to solve the
load balancing problem in the distributed database.

The following chapters will explain the model, constraints and
optimization goals, and give detailed algorithms.



4.1.1 Modeling. To better define the problem, we abstract the
global traffic control into a flow network as shown in Figure 5.
It is a single source/single sink flow network G(V ,E), where ver-
tices represent multiple tenants, shards and worker nodes, the edge
between a tenant and a shard means the shard bears traffic from the
tenant, and the edge between a shard and a node means the shard
is located on the node. Besides, there is an virtual source point V
and sink point T . The balance problem of multi-tenant traffic is
transformed into a maximum binary matching problem.

Node

T

Node

Node

Node

Shard

Shard

Shard

Shard

Shard

Shard

Shard

Shard

Shard

Tenant

Tenant

Tenant

Tenant

Tenant

Tenant

…
…

S

f(Ki)/c(Ki)

f(Pj)/c(Pj)

f(Dk)/c(Dk)

f(Xij)/c(Xij)Ki

Pj

Dk

Figure 5: An example of the single source/single sink flow
network in LogStore.

The first layer of the network is the tenants K , {Ki : K0,K1,K2,
K3...Km } (m is the number of tenants). f (Ki ) is the real flow (traffic)
of tenant Ki proceeded in the database. Then the second layer is
a set of shards in the table P , {Pj : P0, P1, P2, P3...Pw } ( w is the
number of the shards). f (Pj ) is real flow handled by the shard Pj ,
c(Pj ) is the capacity (maximum processable flow) of the shard Pj .
Xi j is the proportion (weight) of the flow distributed to the shard
Pj by the tenant Ki . f (Xi j ) is the flow distributed to the shard Pj
by tenant Ki . Formally expressed as:

f (Xi j ) = Xi j · f (Ki )

j∑
τ (i)

Xi j = 1

f (Ki ) =
w∑
j=0

f (Xi j ) =
w∑
j=0

Xi j · f (Ki )

The last layer is all workers in the cluster D, {Dk : D0,D1,D2,
D3...Dn }( n is the number of the nodes). f (Dk ) is real flow handled
by the node Dk , c(Dk ) is the capacity of the node Dk . Our goal is to
adjust the edges and weights (routing rules) of the graph G, while
keeping the edges as few as possible, so that the maximum flow
(flow) of the graph meets the required flow (actual flow).

First some constraints must be satisfied:
The Capacity Constraints

∀Pj ∈ P , f (Pj ) ≤ c(Pj )

∀Dk ∈ D, f (Dk ) ≤ α · c(Dk )

α is the high watermark for each node (e.g. 85%).

Secondly, we strive to find the best balance plan to satisfy the
following conditions:

Minimize the size of routes

m∑
i=0

w∑
j=0
{1 : Xi j , 0}

Maximum the traffic from S to T

m∑
i=0

f (Ki )

4.1.2 Architecture. Figure 6 shows how the framework handles and
distributes traffic from multi-tenants. The SLB service distributes
the tenant’s traffic to the brokers. The controller will push a tenant
routing table to the brokers, which specifies the rules (including
destinations and weights) for forwarding requests from different
tenants in the following form:

Rules{T0 : {P0 : X00, P1 : X01, P3 : X03},T1 : {P3 : X13}...}

This table is updated in real-time by the controller’s hotspot
scheduler, which is a core component of LogStore and consists of
three modules: monitor, balancer and router. The monitor detects
hotspots by collecting runtime traffic or load metrics of tenants,
shards, and workers. Then, it calls the balancer to generate a new
routing plan through the flow control algorithm. The router then
executes the updated plan immediately. Next, we will describe each
module in more detail.
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Controller HotSpot Manager

Monitor Balancer

Router

Shard 0 Shard 1 Shard 2 Shard 3

Tenant0 Tenant1 Tenant2 Tenant3

Insert

HotSpot

R/W Router

Tenant0-> {Shard0:20%, Shard1:50%, Shard3:30%}

Tenant1-> {Shard3:100%}
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Tenant2->Shard0, 60%Shard Monitor Tenant Monitor

Shard0: D.
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Shard2: D.
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Data stream Control stream

Tenant3-> {Shard2:100%}

Figure 6: The framework of global traffic control in LogStore.

4.1.3 Monitor. Since traffic fluctuates dynamically, it is necessary
to detect hot spots in real-time. In order to effectively identify hot
spots, we need to find indicators to measure skewness. Therefore,
timeliness and effectiveness are the keys to the monitoring module.



CPU utilization is the most commonly used indicator to identify
hot spots. In our practice, skewed shards have higher CPU utiliza-
tion, but the reverse is not necessarily true. More indicators are
needed to improve accuracy, such as access frequency and blocked
requests in the buffer queue. These indicators can reflect that the
performance of the database decreases as the workload tilts.

The monitor also needs to fill in the input data (nodes and edges
in G(V ,E)) required to run the flow network algorithm. It collects
tenant traffic f (Ki ), shard load f (Pj ) and worker node load f (Dk ).
The capacity of shard c(Pj ) and worker c(Dk ) is inferred through
system limits and configurations. It will detect load imbalance every
300 seconds, which can be adjusted according to the sensitivity of
the business.

4.1.4 Balancer. The main function of the balancer module is to
generate a new scheduling plan to balance the load or scale the
cluster when hot spots are detected, and then send the updated
routing table to the workers.

The Framework (Algorithm 1) The outermost layer is a loop
that does not terminate until the service stops (line 8 to 30). For
every 300 seconds, the traffic control logic is executed to deter-
mine whether there are any shards that need to be offloaded under
heavy pressure. If

∑n
k=0 f (Dk ) ≤ α ·

∑n
k=0 c(Dk ), then execute

Traf f icSchedule() algorithms to adaptively rebalance the tenant
traffic among all workers (line 17 to 21). Other wise, it means that
the upper limit of the system has been reached, and only working
nodes can be added to meet the traffic demand (line 25).

Greedy Algorithm(Algorithm 2) This naive approach intu-
itively identifies the set of tenants with the largest traffic on the over-
loaded node, splits and distributes their traffic to the least loaded
shards in the cluster. ΓPj is a collection of tenants contributing traffic
on shard Pj , and the tenant with the largest traffic in ΓPj is cho-
sen and put into Khot (line 2 to 4). CalculateAddRoutesNum(Ki )
obtains the number of edges (tenants to shards) to be added by
dividing the total tenant traffic by the upper limit of processing
one tenant traffic on each shard (line 6). For example, a tenant has
total traffic of 500K log entries per second, and one shard is limited
to process up to 100K logs belonging to the same tenant. Thus at
least 5 shards are needed, and new shards are added correspond-
ingly.GreedyFindLeastLoad(P) finds the least loaded shards in the
cluster (line 10). After adding shards to a tenant, the tenant’s traffic
will be evenly distributed to all shards by averaging their weights
(line 16 to 19).

Max-Flow Algorithm(Algorithm 3) MaxFlowAlдorithm(G)
calculates the maximum flow of the deterministic graph G(V ,E)
using Dinic’s algorithm[29] (line 8). If

∑m
i=0 f (Ki ) > Fmax (line 9),

it means that under the current topology, there is no way to make
the maximum achievable flow of the graph meet the actual flow.
More edges should be added to G(V ,E) to enlarge Fmax (line 13 to
14). Otherwise, it just updates the weights Xi j from the maximum
flow algorithm without adding edges (line 22 to 25). When it needs
to change the topology, similar to the Greedy Algorithm, it selects
the shard that is least loaded in the cluster (line 13). It does not
terminate the iteration of edge addition until the condition is met
(line 9).

4.1.5 Router. The router module uses the new balance plan gen-
erated by the balancer module to update the routing table. Then,

Algorithm 1 Global Traffic Control Framework

1: c(P) ← the capacity of all shards
2: c(D) ← the capacity of all worker nodes
3: R ← � Route table, initially empty
4: for Ki ← K do
5: Pj ← ConsistentHash(Ki )
6: Xi j ← 100%
7: end for
8: while Service On do
9: f (K), f (P), f (D) ← collect the traffic metrics of the tenants,

shards, workers
10: Phot ← � the set of hot shards detected
11: for Pj ← P do
12: if CheckHotSpot(Pj ) then
13: Phot ← Phot ∪ Pj
14: end if
15: end for
16: if Phot , � then
17: if

∑n
k=0 f (Dk ) ≤ α ·

∑n
k=0 c(Dk ) then

18: ; rebalance traffic between workers
19: ; and update the route table R
20: TrafficSchedule()
21: NotifyWorkers(R)
22: Sleep(300)
23: else
24: ; add more worker nodes
25: ScaleCluster()
26: c(P) ← add new shards
27: c(D) ← add new workers
28: end if
29: end if
30: end while

the router will update the routing table on each broker in a trans-
action. After all brokers receive the new routing table, they will
switch to distribute tenant traffic according to the new policy. Af-
ter receiving the new routing plan, the router module will merge
the existing global routing table with the new plan, because the
tenant’s read request needs to be forwarded to the nodes in both
old and new plans within a period of time. If after rebalancing, a
node no longer carries the traffic of a certain tenant, it will not
migrate data between nodes like other shared-nothing database
systems (e.g. MongoDB[45], HBase[13]). Instead, the tenant data
will be packaged and flushed to OSS. This helps to reduce node load
in the case of system hotspots.

4.2 Backpressure
Rebalancing and scaling are proactive approaches to deal with
workload hotspots and surges. However, in some extreme cases,
the memory can run out quickly or the CPU will saturate. Before
these methods can take effect, the system will crash. Therefore, we
have implemented a backpressure flow control (BFC) mechanism
(Figure 7) to protect system availability under extreme load.

BFC was first proposed and applied in streaming computing
systems, such as Heron[39] and Flink[23]. When a sudden spike
occurs, it can effectively control the workload of the system by



Algorithm 2 Greedy Algorithm Version of TrafficSchedule()
1: Khot ← � the set of hot tenants found out
2: for Pj ← Phot do
3: Khot ← Khot ∪ PickHotSpotTenant(ΓPj )
4: end for
5: for Ki ← Khot do
6: (Nadd ,Ntotal ) = CalculateAddRoutesNum(Ki )
7:
8: ; first update edges
9: while Nadd > 0 do
10: Pl = GreedyFindLeastLoad(P)
11: R.put(Ki , {Pl , 0})
12: Nadd ← Nadd − 1
13: end while
14:
15: ; then update weights
16: weiдht = 1

Ntotal
17: for Pk ← R.дet(Ki ) do
18: R.put(Ki , {Pk ,weiдht})
19: end for
20: end for

Algorithm 3Max Flow Algorithm Version of TrafficSchedule()

1: Fmax is the max flow in the graph G(V ,E)
2: fmax is the edge max flow
3: Khot ← � the set of hot tenants found out
4: for Pj ← Phot do
5: Khot ← Khot ∪ PickHotSpotTenant(ΓPj )
6: end for
7:
8: Fmax = MaxFlowAlдorithm(G)
9: while

∑m
i=0 f (Ki ) > Fmax do

10: ; add a new edge for each unsatisfied hot tenant in G
11: for Ki ← Khot do
12: if f (Ki ) >

∑w
j=0 f (Xi j ) then

13: Pl = GreedyFindLeastLoad(P)
14: G .addEdдe(Ki , Pl )
15: end if
16: end for
17: ; recalculate the maximum flow and weights
18: Fmax = MaxFlowAlдorithm(G)
19: end while
20:
21: ; set up weight
22: for Ki , Pj in R do

23: Xi j =
fmax (Xi j )

fmax (Ki )
24: R.put(Ki , {Pj : Xi j })
25: end for

reducing the source’s consumption rate and the data transmission
speed. In LogStore, there are many buffer queues in the system to
receive and send messages asynchronously between components
and interact with the network, disks and external components
such as OSS. BFC works mainly based on monitoring these buffer
queues. For each queue, we monitor both the number and size of
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Figure 7: A demonstration of Backpressure Flow Con-
trol(BFC) mechanism.

pending requests, because for example, processing a small number
of massive inputs can also cause the system to overload. When
the monitoring metrics of a queue exceed the limit of the queue,
the BFC will be triggered to reject writings which are delivered to
the queue. BFC will gradually limit the productivity of upstream
messages, and eventually limit the write throughput of requests
issued by the client.

Furthermore, we integrate BFC into the Raft protocol [46] and
proposed a Raft implementation with BFC. The Raft protocol has
two blocking points to wait for I/O completion. One is the pro-
cess of synchronizing WAL. After the leader receives the client’s
request, the synchronization can only be completed after most of
the followers have persisted the WAL. The other is the process
of applying WAL, and then the worker actually writes the data
to local storage. So we added two buffer queues correspondingly,
namely sync_queue and apply_queue. In this way, when a tenant’s
write rate is too high, causing synchronization between multiple
nodes to be slowed down, the back pressure will take effect, reduc-
ing the tenant’s write rate, and avoiding the explosion of nodes’
internal queues, which will cause the nodes to gradually become
unresponsive.

5 QUERY OPTIMIZATION
In the cloud-native architecture used by LogStore, log data is mainly
stored on OSS. Compared with local disks, the query latency will
increase due to network overhead. This problem can be alleviated
from two aspects: accurate data retrieval to fetch as little unrelated
data as possible, and effective caching strategies to avoid repeated
loading of the same data block. We will discuss in detail two key
technologies:

• A data skipping strategy to filter irrelevant data blocks.
• A multi-level data cache mechanism to cache data block
downloaded from cloud storage and a parallel prefetchmethod
to speed up data block loading when cache misses.

5.1 Data Skipping
Based on the LogBlock structure, a multi-level data skip strategy is
proposed to filter irrelevant data blocks. It can filter data by LogBlock
through LogBlock map, and filter data by column and column block
through SMA. Unlike ORC[16], Parquet[17] and CarbonData[10],
in addition to column statistics, indexes are also used during data
skipping. An example is given in Figure 8.

This is a sample SQL for log retrieval:



SELECT log FROM request_log WHERE tenant_id = 0 AND ts >= ‘2020-11-11 00:00:00’ 

AND ts <= ‘2020-11-11 01:00:00’ AND ip = ‘192.168.0.1’ AND latency >= 100 AND fail = ‘false’

LogBlock pruning

log rowid set

col ‘latency’ 

<10, 500>

index
col ‘ip’ 

<‘192.168.0.1’, ‘192.168.0.120’>

col 

LogBlock_0

wo index

4

with index

col 

3

1

LogBlock map

LogBlock<tenant_id, min_ts, max_ts>

<0, 2020-11-11 00:00:00, 2020-11-11 01:00:00> LogBlock_0

<0, 2020-11-11 01:00:00, 2020-11-11 02:00:00> LogBlock_1

<1, 2020-11-11 00:30:00, 2020-11-11 01:00:00> LogBlock_2

… …

filter

ip = ‘192.168.0.1’ 

latency >= 100

<min, max>block_id

0 <10, 100>

1 <100, 300>

decompressed 

data block

tenant_id = 0 

AND ts >= ‘2020-11-11 00:00:00’ 

AND ts <= ‘2020-11-11 01:00:00’

filter

column

column block

fail = ‘false’
col ‘fail’ 

<‘false’, ‘false’>

2 skipped

Figure 8: An example of data skipping strategy.

SELECT log FROM request_log WHERE tenant_id = 12276
AND ts >= '2020-11-11 00:00:00'
AND ts <= '2020-11-11 01:00:00'
AND ip = '192.168.0.1' AND latency >= 100 ANd fail = 'false'
1○ shows how to filter and skip LogBlocks through LogBlock map

based on the filter conditions of column tenant_id and ts . Inside
a LogBlock, columns and column blocks can be skipped through
the filter conditions of other columns. The entire column can be
filtered using the <min,max> statistics of each column (f ail in
this example), as shown in step 2○. For column blocks that cannot
be filtered by the predicate on the columns (ip in this example),
the rowid of all rows that meet the predicate will be collected by
fetching and looking up the index. as shown in 3○. For columns that
have not been indexed (such as latency), the entire column block
(e.g. block 0) can be filtered using the column block’s <min,max>
statistics, as shown in step 4○. In the remaining column blocks, the
matching rowid will be collected by decompressing and sequentially
scanning each column block. After merging the rowid set that meets
the filter conditions, the log data can be finally loaded according to
it.

5.2 Cache and Parallel Prefetch Strategy
In the query process, some data needs to be repeatedly accessed,
such as metadata files, index files, and hot data files. If these files
are waiting to be loaded from OSS on the critical path during query
execution, the query performance will be greatly reduced due to
high network latency.
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Figure 9: A demonstration of multi-level data cache mecha-
nism.

First, we discussed the details of data loading during the query
process. Figure 9 represents the loading process of a LogBlock,
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Figure 10: Parallel prefetch method workflow.

including metadata, index and data files. In order to avoid managing
many small objects and files on OSS, we pack various files in each
LogBlock into one large tar file and write them as a whole. However,
in order to avoid reading irrelevant data, we allow each small file
to be sought and loaded separately. Besides, we have introduced
a file cache on the system. We put each file block loaded from
OSS into the memory block cache (8GB). When its size exceeds
the threshold, the memory cache will spill to the SSD block cache
(200GB). The block manager is responsible for the expiration and
swapping of the cache. We also added the object memory cache.
The cache can effectively prevent frequent object allocations, which
greatly increases the frequency of JVM GC. Object cache and file
cache form a multi-level cache.

In addition, we designed a parallel prefetch strategy to avoid
serial loading of data during the query process. Figure 10 shows
the parallel loading process. Before parallel loading, the file to be
prefetched should be divided into data blocks according to the
metadata, and repeated data block read IO requests will be merged
to avoid repeated loading.

6 EVALUATION
All experiments were performed on a cluster consisting of 9 ECS
virtual machines (ecs.g6.8xlarge) in Alibaba Cloud. It has 32 CPU
cores, 128GB RAM and 3TB SSD disk. The cluster includes 6 agents
and 3 controllers, and each agent and controller process uses 6 CPU
cores and 16 GB memory. There are 24 worker nodes, each node
uses 8 CPU cores and 32 GB memory.

6.1 DataSets
LogStore can be used to store various types of logs, such as system
logs, application logs, and IoT device logs. And we construct a sam-
ple table which stores the application logs used for the experiment.
Among them, tenant_id and ts are used as the partition key to
divide data into LogBlocks, , and indexes are created for all columns.
We use Yahoo! Cloud Serving Benchmark (YCSB) framework[24]
to measure the performance. The tenant logs inserted is under the
Zipfian distribution controlled by the parameter θ . Here, the test
data we simulated contains 1000 tenants, and the weight of tenant k
is proportional to ( 1k )

θ . When θ is higher, the workload of the ten-
ant will be more skewed. If θ = 0, then it corresponds to a uniform
distribution. When the parameter is set to θ = 0.99, the generated
workload is similar to the highly skewed data distribution in the
production environment, as shown in the figure 11.

6.2 Traffic Control
Figure 12 shows the impact of different traffic load balancing algo-
rithms on the write throughput, the write latency (for writing a
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Figure 12: System Performance Under Different Balance Al-
gorithm

batch of 1000 log entries), and the number of route rules under dif-
ferent degrees of data skew. As the skewness of log data increases,
without flow control, throughput will drop sharply with higher
latency. Especially under θ = 0.99, the throughput drops to less
than 1 million, and the delay is as high as 2000 milliseconds. While
using the traffic control algorithms (both greedy algorithm or max

flow algorithm) can keep system throughput and latency at a good
performance, close to uniform distribution performance.

However, the greedy algorithm chooses the least loaded shards
to carry the overflow workload, which does not consider the global
system runtime state and cannot achieve the optimal solution. In
addition, the greedy algorithm always adds more shards to the hot
tenants to share the load, which tends to distribute the workload
to more shards. In contrast, the maximum traffic algorithm gen-
erates a balanced plan that takes into account the runtime status
of tenants, shards, and workers. And it tries to eliminate system
hot spots by first adjusting the weights without increasing rout-
ing rules. Figure 12(c) shows that the max flow algorithm can use
fewer route rules and achieve better performance under various θ
configurations.
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(b) Worker accesses standard deviation balanced by Max Flow algorithm.

Figure 13: Accesses standard deviation under Max Flow al-
gorithm

Figure 13 shows the effect of the max flow algorithm on the load
imbalance between different shards and nodes. Obviously, after
using the max flow algorithm, the standard deviation of the shard
and worker accesses is reduced. If the skew factor is low (for exam-
ple, θ ≤ 0.4), the standard deviation of the shard access frequency
increases slightly, and the standard deviation of the worker access
frequency rarely changes, which means that even without traffic
control, LogStore can cope with the slight skew between tenants.
However, when the skew factor continues to increase, the stan-
dard deviation of the shard and worker accesses begins to increase
sharply without traffic control. Because the max flow algorithm
considers the current load and capacity of all shards and workers
to calculate the weight of the flow distribution, it can generate a
balanced plan and reduce the shard accesses standard deviation by
2.8 times, and the staff accesses standard deviation by 5 times.

Figure 14 shows the running status of each shard and worker
when θ = 0.99. Before rebalancing, the access frequency of shards
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Figure 14: Detail accesses per second under Max Flow algo-
rithm

is approximately Zipfian distribution. After the traffic control is
turned on, the shard access is significantly reduced. Theworkload of
workers is almost balanced, and the CPU utilization of all workers
is close to α (85%). If the max flow algorithm finds that the system
is about to be overloaded, the controller will scale the cluster or
trigger the backpressure mechanism to protect the system.

6.3 Query Performance
Here we estimate the effect of the optimizations in Section 5. First,
we evaluate each optimization separately to demonstrate the perfor-
mance improvement of each strategy independently. Then, we test
with all optimization enabled on a mixed workload that simulates
online log retrieval queries to verify that the comprehensive query
performance of our system can meet the requirements.

When designing the experimental cases, we select the most com-
monly used query template in practice, retrieve the logs of a single

tenant within a specific time range, and add various filter condi-
tions for each field. By adjusting different time ranges and query
conditions, we can generate queries with different scenarios.

In order to simulate the online environment, we used the bench-
marking tool to generate test data with a history of 48 hours for 1000
tenants (with the skew parameter θ = 0.99). The skewed test data
help observe the impact of different data sizes of tenants on query
performance when evaluating various optimizations. Our query
set contains 6000 queries, and six queries with different filtering
predicates are generated for each tenant.

6.3.1 Data Skipping. Since the data of tenants are under the Zipfian
distribution, we only display the latency statistics of the top 100
tenants in Figure 15 and Figure 16, and the difference between the
rest 900 tenants is small.

 With Data Skipping

Figure 15: Impact of data skipping strategy on query latency.

As shown in Figure 15, after enabling the data skipping strategy,
the average query latency has improved by 1.7 times. The largest
tenant has the most significant improvement, reaching 2.6 times.
Because the overhead of loading the index also needs to be consid-
ered, when the amount of data is relatively small, the performance
improvement is not significant. All in all, with more data, data
skipping strategies improve performance more effectively.

6.3.2 Parallel Prefetch Strategy & Multi-level Cache. Figure 16
shows the experimental results of the parallel prefetch strategy.
For comparison, we also studied the query performance when the
data is stored locally. Next, we focus on the query performance in
three cases: storing data in local storage, using the parallel prefetch
strategy (using 32 threads) and storing data on OSS, storing data
on OSS without the parallel prefetch strategy.
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Figure 16: Impact of parallel prefetch method on query la-
tency.

Without the parallel prefetching strategy, the query performance
of local storage will be 18.5 times faster than the data on OSS. How-
ever, when using the parallel prefetch strategy, the gap with local



storage is reduced to only 6 times. It shows that the parallel prefetch
strategy can effectively narrow the performance gap between OSS
access and local storage access. In addition, the multi-layer cache
module caches data loaded from OSS. When the data is revisited,
the data will be read directly from the local cache, which means
that when the same query is executed the second time, it will be 6
times faster than the first time.

6.3.3 Overall Performance. Finally, we examine the query perfor-
mance by comparing the performance before and after enabling all
optimizations under a real query workload.

 After Optimization

Figure 17: Effect of all query optimization methods.

In Figure 17, before enabling optimizations, queries with a delay
of more than 10 seconds accounted for more than 50%, and even 1%
of queries took more than 30 seconds, which is unacceptable for
users. In contrast, after enabling optimizations, 99% of the queries
return data within 2 seconds. In addition, 90% of the queries are
returned within 1 second, while more than 75% of the queries are
returned within 100 milliseconds. The results show that the above
optimization strategies significantly improve performance.

7 RELATEDWORK
Traditional row-oriented RDBMS can also be used for log storage,
but has limited data capacity and scalability. NoSQL databases
(such as MongoDB[45] and HBase[13, 31]) were proposed to solve
the problems of scalability and schema flexibility. And they need
additional plug-ins (such as sphinx) to implement full-text retrieval
features. As a dedicated log storage, ElasticSearch[12] has powerful
full-text retrieval capabilities. But due to its weakwrite performance
and tenant isolation, it is more suitable for single-tenant log storage.
Big data systems, such as Hive[14], Impala[21], Presto[53] only
provide offline log storage and query functions.

C-Store[49], Vertica[40] proposed a hybrid architecture with
a write-optimized store and read-optimized store. We also imple-
mented a lightweight real-time write-optimized store to undertake
high write throughput, then converted it into indexed and com-
pressed data structures. Amazon’s Redshift[35] and Aurora[54]
provide a high-performance data consistency design of the shared
storage architecture. The shared data architecture proposed by
Snowflake[27] uses cloud object storage as the primary data stor-
age. We refered to Snowflake to design our cloud storage layer to
meet the needs of a scalable and low-cost log storage.

Several multi-tenant storage techniques have been proposed
to consolidate multiple tenants on shared servers. Schism[26] is

a shared-nothing distributed database, and it introduces a graph-
partitioning algorithm to minimize the number of distributed trans-
actions. E-store[51] balances tuple accesses across a set of elastic
partitions based on heuristics. However, the reprovisioning of these
systems needs data migration. Pinot[37] implements a random
greedy strategy by taking a random subset of servers and adding
servers. Inspired by the balance of hot tuples, we proposed a balance
strategy on multi-tenant traffic.

The columnar storage format, ORC[16], Parquet[17] and Carbon-
Data [10] are widely used in the OLAP and big data systems. They
organize tuples in a compressed columnar format with row groups,
see PAX[1]. DB2 BLU[48] further introduces a frequency-based dic-
tionary compression method, allowing most SQL operations to be
performed on compressed values. However, the above-mentioned
works do not have an effective data structure or index for full-text
search within a block. Data Blocks[41] implements a new light-
weight index called PSMAs to improve early selection evaluation.
However, the data compression of data blocks has a lower compres-
sion ratio than other works, which cannot meet our demand for
low storage costs. Therefore, we use Zstd[30] compression method
with high compression ratio, and add an inverted index based on
Lucene[15] in LogBlock.

8 CONCLUSIONS
Log storage is a relatively mature technical field. Based on the
Lucene index structure, extensive research has been conducted
on full-text retrieval solutions. However, when using the existing
systems to store logs on cloud, we encountered new problems,
which have not yet been fully discussed. These issues include ultra-
high throughput, multi-tenant management, tenant traffic control,
scalable and low-cost storage.

In this paper, we designed a cloud-native storage architecture to
achieve high throughput and low storage costs. When faced with
high data skew and traffic fluctuations, we proposed a global traffic
balance algorithm to keep the write traffic stable. At the same time,
we implemented a column format, LogBlock, and data skip strategy,
and parallel prefetch mechanism to reduce the delay caused by
the network overhead of cloud storage. Finally, experimental data
reveals that when using the max flow algorithm, hot spots can be
eliminated with less routing rules added. Meanwhile, it shows that
although the query latency is inevitably increased due to cloud
storage, we can still control the latency within an acceptable range
through various optimization strategies.

In future work, we will try to use vectorized query execution and
"just in time" (JIT) query compilation to improve execution perfor-
mance. In addition, we will focus on improving query performance
by optimizing the data structure of the real-time store.
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