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Abstract—In Alibaba’s IoT platform, we face the challenge
of processing analytical queries involving both structured and
unstructured data. Normally, collaborative queries need deep
learning (DL) models and relational algebras to work intertwined
to produce sophisticated analytical answers. To be able to
support collaborative queries, a variety of approaches have been
proposed. In this paper, we present the three most representative
ones and study their advantages and limitations. The first one
translates the collaborative query into a series of database
and DL sub-queries and then maintains the dependence of the
intermediate results of two sub-systems and computes the final
results on the fly. The second one transforms a DL model to
a database built-in User Defined Function(UDF) implemented
in C++. The whole collaborative query is then processed by
the database system independently. The third one is our novel
solution proposed in the paper, DL2SQL, where neural operators
underneath DL models are rewritten as SQL queries, and
collaborative queries are processed using native SQL syntax. A
cost model for our SQL-native neural operators is designed to
leverage the database’s optimizer to generate an efficient query
plan. All three approaches are implemented on the ClickHouse.
Finally, we use the real-world workloads on Alibaba’s IoT
platform as our benchmark and deploy various approaches on
both an embedded device and a Cloud server to compare their
performance. Results show that DL2SQL outperforms others in
most scenarios and is more extensible.

Index Terms—Query Processing, Query Optimization, In-
database Inference

I. INTRODUCTION

Deep learning(DL) has shown great successes in many
domains, including computer vision, natural language pro-
cessing, and speech recognition [1]–[6]. Most existing work
usually treats date management and deep learning as two lines
of research. Deep learning emphasizes the effectiveness of
various models, while data management systems contribute to
data storage and processing. However, deep learning models
are usually packed with database systems to form a solution
in real-world applications. Typically, an analytic task in the
solution calls for an ETL process to obtain the transformed
data or features, a well-tuned DL model for the predictions
over the transformed data, and some sophisticated SQL scripts
for the final result. Such a non-trivial task incurs significant
efforts and high processing overheads.

Take a fabric printing setup on Alibaba’s IoT platform as
an example. As shown in Fig. 1, multiple sensors are installed
on each printer collecting heterogeneous data such as printing
video, logging records, meter count, temperature, humidity,
etc., and the edge server corresponding to a printer hosts an
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Fig. 1: An Illustration of the Fabric Printing Example

embedded database system collecting those real-time sensor
data. For instance, a printing fault detection task needs the
sensor readings and criteria to analyze if some faults are
caught. In this case, the following query may be issued.

SELECT patternID, transID
FROM FABRIC F, Video V
WHERE F.humidity > 80 and F.temperature > 30

and F.printdate > ’2021-01-01’
and F.printdate < ’2021-1-31’
and F.transID = V.transID
and V.date > ’2021-01-01’
and V.date < ’2021-1-31’
and nUDF detect(V.keyframe) = FALSE;

The above query seeks the transactions where various
defects are detected on textiles. Video data are maintained in
a separate table and can be joined with the main table via the
transaction ID(transID). All other sensor data and transaction
data are aggregated in the main table. nUDF detect refers
to a User Defined Function(UDF), where a pre-trained neural
model is loaded to classify the keyframes of a video for the
textile printing into “Defect”(TRUE) or “Not Found”(FALSE).
To simplify the discussion, we call the UDF implementing
the neural model inference as nUDF and the query combined
native query and the nUDF as a collaborative query.

To be able to support collaborative query processing, there
are three basic strategies: independent processing, loose in-
tegration, and tight integration [7]. Independent processing
treats database and Machine Learning(ML) framework as two
separate systems, employing the database to manage data and
exporting data to the ML framework for model training and
inference, such as Microsoft MLS1, Amazon Sagemaker [8],

1https://microsoft.github.io/sql-ml-tutorials/



MindsDB2. Loose integration migrates the machine learn-
ing code from the ML framework to the database system
by re-implementing the corresponding training and inference
algorithm in the database using UDF Programming Model,
e.g., MadLib [9], Vertica-ML [10], and DB4ML [11]. Tight
integration maps the ML tasks into a batch of aggregate query
statements and optimizes them using database techniques.
On the other hand, the independent processing and loose
integration strategies are widely adopted by existing work.
The tight integration, to our knowledge, has attracted interest
from many researchers, but there is no mature product in the
industry. Previous work, such as AC/DC [12] and LMFAO
[13], only supports tight integration for traditional machine
learning algorithms(e.g., KNN [14] and SVM [15]).

Based on the requirement of our user scenario on Al-
ibaba’s IoT platform, we focus on the inference process on
low-priced edge devices with limited computation capacity,
where the neural model is trained on cloud servers in an
offline manner and then deployed on various edge devices
for online inference. The performance of online inference is
the bottleneck of real-time analysis. Therefore, following the
idea of tight integration, we present an in-database inference
approach in this paper. Different from the previous work using
a tight integration strategy, our approach aims to support deep
learning models. Specifically, our in-database inference ap-
proach implements the inference pathway of necessary neural
operators in SQL, together with the native relational SQL
queries forming a system without cross-system I/O cost.

In summary, we make the following contributions:
1) We illustrate and compare three types of in-database

inference strategies: independent processing, loose inte-
gration, and tight integration. We summarize their advan-
tages and drawbacks.

2) We propose a new tight integration approach, DL2SQL,
which transforms the neural model inference into pure
SQL statements by implementing popular neural opera-
tors as SQL queries.

3) The SQL-implemented neural operators pose new chal-
lenges for the database’s optimizer. Hence, we propose
our customized cost model and apply hint rules for the
database’s optimizer to choose a proper query plan.

4) We collect data from real applications on our IoT plat-
form and conduct extensive experiments to compare the
three strategies. Results show that DL2SQL outperforms
others in most cases thanks to its removal of the cross-
system overhead.

The remainder of the paper is organized as follows. We
formalize our collaborative queries and define four types of
queries in Section II. We show the independent processing,
loose integration, and our tight integration approaches in
Section III. We modify the cost model of the database system
in Section IV. We compare all three approaches in Section
V. Section VI reviews some related work, and Section VII
concludes the paper.

2https://mindsdb.com

II. PROBLEM DEFINITION

As discussed, a collaborative query consists of two parts
and can be described by (Qdb, Qlearning), where Qdb can
be processed by a database and Qlearning requires the par-
ticipation of a neural network for inference. Depending on
different combinations of Qdb and Qlearning , we classify a
collaborative query into four types presented in Table I.

As shown in the first row of Table I, the exemplary
Type 1 query aims to retrieve the total printing meters for
the ”Floral Pattern”, where the output of Qlearning (i.e.,
nUDF classify(V.keyframe) = ’Floral Pattern’) is used as a
filter for Qdb to rule out irrelevant results. In this manner,
Qdb and Qlearning are independent of each other and can
be executed in parallel, even if the parallel processing may
not be the optimal plan. The second row of Table I gives
an exemplary Type 2 query that aims to estimate the defect
rates of each pattern. In this example, the aggregate operator
in Qdb needs the output of nUDF in Qlearning to produce
the final result. In this case, Qdb depends on Qlearning.
Suppose various models are trained for different humidity and
temperature combinations. The third row of Table I shows
a Type 3 query, where Qlearning needs the output of Qdb

to determine which neural models should be used. In this
case, Qlearning depends on Qdb. Lastly, interdependence may
exist between Qlearning and Qdb. As shown in the fourth row
of Table I, the Type 4 query tries to identify whether the
printed pattern image is consistent with the pattern recorded
in the transaction log. In this case, how to estimate the
cost and efficiently process Qlearning and Qdb becomes a
challenging task. As illustrated in the following query, two
models(i.e., detect and classify) are included in Qlearning.
When the detect model in Qlearning predicts that 95% of the
original data records are irrelevant, and the classify model
in Qlearning predicts that more than 60% of the original data
records are relevant, it would be more efficient to execute the
detect model before the classify model.

SELECT patternID, transID
FROM FABRIC F, Video V
WHERE F.transID = V.transID

and nUDF detect(V.keyframe) = TRUE
and nUDF classify(V.keyframe) = ’Floral Pattern’;

III. COLLABORATIVE QUERY PROCESSING

To support collaborative query processing, we study three
possible approaches in this section. The first two approaches
are adopted by existing work [7], while the tight integration
one based on native SQL neural operators is our novel ap-
proach.

A. Independent Processing

Given a collaborative query, as illustrated in Fig. 2a, the
application layer is responsible for parsing the query, gener-
ating a series of Qdb and Qlearning sub-queries, distributing
sub-queries onto corresponding the database system and the
DL system, collecting results from both the database and the



TABLE I: Types of nUDF Queries

Query Type Correlations Example Query Difficulty
Type 1 Qdb/Qlearning independent SELECT sum(meter) FROM FABRIC F, Video V WHERE F.printdate> Easy

’2021-01-01’ and F.printdate<’2021-1-31’ and F.transID=V.transID and V.date>
’2021-01-01’ and V.date<’2021-1-31’ and nUDF classify(V.keyframe)=’Floral Pattern’

Type 2 Qdb depends on Qlearning SELECT patternID, count(nUDF defect(V.keyframe)=TRUE)/sum(meter) FROM FABRIC F, Video V Medium
WHERE F.printdate>’2021-01-01’ and F.printdate<’2021-1-31’ and F.transID=V.transID

and V.date>’2021-01-01’ and V.date<’2021-1-31’ GROUP BY patternID
Type 3 Qlearning depends on Qdb SELECT patternID, transID FROM FABRIC F, Video V WHERE F.humidity>80 and Medium

F.temperature>30 and F.printdate>’2021-01-01’ and F.printdate<’2021-1-31’ and F.transID=
V.transID and V.date>’2021-01-01’ and V.date<’2021-1-31’ and nUDF detect(V.keyframe)=FALSE

Type 4 Qlearning and Qdb SELECT patternID FROM FABRIC F, Video V WHERE F.printdate>’2021-01-01’ Hard
depend on each other and F.printdate<’2021-1-31’ and F.transID=V.transID and V.date> ’2021-01-01’ and

V.date<’2021-1-31’ and F.patternID != nUDF recog(V.keyframe)
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Fig. 2: Three Types of Collaborative Query Strategies

DL system, and computing the final result. The dependency
between Qdb and Qlearning is actually maintained by the user
application. The Qdb part is handled by the database, where
a data cube can be established to speed up the processing of
aggregation queries. The Qlearning part is processed by a DL
system, where DL models are typically trained in an offline
manner and used by the model serving component offered by
the DL system in an online manner.

For complex Type 4 queries shown in Table I, the applica-
tion layer needs to do a lot of coordination work, including
forwarding prediction results from the DL system to the
database system and transferring the querying results from
the database system to the DL system. It incurs significant
I/O and data transformation overheads between two systems
because data transferring between two systems is a must.
In addition, serialization and de-serialization of intermediate
results between relational data schema and tensor data schema
are often required. The independent processing strategy is
easy to implement for a fixed set of collaborative queries.
However, it is difficult for it to support arbitrary collaborative
queries. Different collaborative queries require different hand-
crafted query processing codes in the application layer since
different collaborative queries usually correspond to different
data transformations and DL models. It leads to tremendous
development efforts.

B. Loose Integration

To reduce the cross-system I/O overheads, as shown in
Fig. 2b, the loose integration approach implements the model
inference process as a built-in UDF of the database system. In
fact, using the UDF to extend database capability has been well

studied. Many systems, such as MindsDB and MLDB3, adopt
the loose integration strategy, realizing an inference UDF by
calling the corresponding APIs provided by the DL system. In
this case, UDF works as a bridge between the database system
and the DL system.

In this paper, we further replace the inference API calls with
the compiled C++ codes to improve the efficiency of such
kinds of UDFs. As shown in Fig. 2b, the model compilation
component is responsible for compiling a DL model to binary
files that can be directly used by a database kernel. The
compilation process contains three steps. Take the PyTorch as
an example. First, the model trained in PyTorch is converted
to Torch script via the tracing tool(provided in torch.jit.trace).
Second, a ScriptModule object is generated from the script
and serialized as a binary file. Third, the binary file is loaded
into the database kernel and directly used by the database
system. The database kernel has to be recompiled to enable
the corresponding UDF (i.e., compiled binary files). After the
recompilation, the database system does not need to interact
with the DL system anymore.

The loose integration strategy provides a unified database
interface for collaborative query processing and avoids heavy
data transformation and I/O overheads. Nevertheless, a new
model requires a recompilation of the database kernel and the
generated binary file. It cannot optimize the execution process
of the corresponding query plan since the binary file is treated
as a black box, and its execution cost cannot be effectively
estimated.

3https://github.com/mldbai/mldb



TABLE II: Supported Neural Operators and Structures

Neural Blocks Variants SQL Support

Pooling Average Pooling Supported
Max Pooling Supported

Activation ReLU Supported
Sigmoid Supported

Normalization Batch Normalization Supported
Instance Normalization Supported

Full Connection N.A. Supported
Convolution N.A. Supported

Deconvolution N.A. Supported
Residual Block N.A. Supported
Indentity Block N.A. Supported

Dense Block N.A. Supported

Attention Block Basic Attention Supported
Self Attention Unsupported

RNN LSTM Unsupported
GRU Unsupported

Graph Convolution N.A. Supported by
Graph DB

C. Tight Integration: DL2SQL

To avoid the coordination of the application layer, prevent
the communication between the database and the DL system,
and fully leverage the internal optimization techniques offered
by a DBMS, we propose a new solution, DL2SQL, in the
process of researching the tight integration strategy. DL2SQL
turns a deep learning model into relational tables, where each
record represents a parameter in the model and converts the
deep learning operators into the operations over the relational
tables. Fig. 2c illustrates the idea of DL2SQL, where neural
model resides in a database system, the inference is also con-
ducted inside a database system, and no DL system is involved
during the processing of collaborative query processing.

Different from Madlib [9] focusing on transitional machine
learning models, DL2SQL supports deep learning models
including Convolution Neural Network(CNN), such as LeNet
[1], VGG [4], ResNet [6], etc. Table II shows the supported
neural operators and blocks in our current implementation.

In the following, we discuss the implementation details of
SQL-based neural operators and our optimization techniques.
First, we present how to implement CNN in a database system
in Section III-C1. Then, we introduce how to implement other
neural operators in the database in Section III-C2.

1) Implementing CNN as SQLs: CNN is viewed as a basic
yet representative neural network layer that is widely used for
image classification. In the convolutional layer, a kernel matrix
scans over the input data to produce a feature map for the next
layer. Normally, values on the feature maps are computed by
taking the sum of the result of an element-wise multiplication
of the kernel and the input matrix. The dimensions of the
kernel can be adjusted to produce different feature maps with
different dimensions. In the following, we first present how
the kernel matrix and feature map are stored in a database.
Then we demonstrate how the actual convolution is conducted,
leveraging a native SQL query.

Storage. To model such a convolutional layer, we store the
feature map in FeatureMap table and the kernel matrix in
Kernel table, respectively, as shown in Fig. 3. Suppose we

MatrixID OrderID Value

1 1 2

1 2 1

... ... ...

1 9 5

2 1 3

2 2 4

... ... ...

2 9 2

KernelID OrderID Value

1 1 3

1 2 1

... ... ...

1 9 2

2 1 0

2 2 3

... ... ...

2 9 3

3 1 1

1 5 1

0 1 2

0 3 2

2 1 0

1 1 3

Kernel Table 

5*5*1 Feature Map 

2 1 3 4 5

1 3 4 5 7

3 4 5 7 2

4 5 7 2 1

5 7 2 1 4

Kernels 

... ... ...

Feature Map Table 

Fig. 3: Table Schema for Convolution

have two 3×3 kernels with striding 2 and no padding. We
generate 4 matrices for the convolutional layer and maintain
them together in a feature map table formatted as {MatrixID,
OrderID, Value} for an input 5×5×1 feature map. The Or-
derID is employed to serialize the matrix values for each kernel
computation. Similarly, the kernel matrices are also vectorized
and stored in a kernel table 4. As shown in Fig. 3, the first
row in the feature map table is {1, 1, 2} corresponding to
the first element in the 5×5×1 matrix, and the first row in
the kernel table is {1, 1, 3} corresponding to the first element
whose value is 3 in the kernel matrix. Note that some elements
in the feature map may be stored redundantly, owing to
the mechanism of CNN. For instance, {2, 1, 3} and {1, 3, 3}
correspond to the same element in the feature map.

Apart from the feature map and kernel matrix, the other
hyper-parameters (e.g., kernel size, stride, and padding size)
are stored in a meta-data table. In addition, the input and the
generated intermediate feature maps are stored in the database
in accordance with the feature map table schema.

Algorithm 1 illustrates how to turn an original feature map
F into a feature map table. As shown in lines 7-13, for each
channel in F , we calculate the currently involved elements in
F , assign them with the self-increasing OrderID, and put the
triples into the feature map table. Then, as shown in lines 14-
18, we update the coordinate values x and y and continue to
process the rest of the original feature map.

Computation. After storing the convolutional layer in the
database, we can perform the convolutional operation, relying
on the feature map table and the kernel table.

The computation is straightforward. The convolution opera-
tion is essentially realized by an inner-join between the feature
map table and the kernel table. As illustrated in Q1 below,
the feature map table and kernel table are joined under the
condition of equal OrderID. Then the result is computed via
the sum of the result of an element-wise multiplication.

4If the feature maps contain multiple channels, we maintain a feature table
for each channel.



Algorithm 1: Generation of Feature Map Table
Input: Input F , Kernel K
Output: SQLs for Creating the Feature Map Table

1 FeatureMap = ∅, k = K.height, s = K.striding,
Order Header = 0

2 for i = 1 to F.channel do
3 MatrixID = 1
4 for y = 1 to F.height do
5 for x = 1 to F.width do
6 OrderID ← Order Header
7 for Coordinate y = y to y + k do
8 for Coordinate x = x to x + k do
9 V alues ← F .Value(Coordinate x,

Coordinate y)
10 Insert {MatrixID, OrderID,

Values} into FeatureMap
11 OrderID ++
12 end
13 end
14 x ← x + s, MatrixID ++
15 end
16 y ← y + s
17 end
18 Order Header ← Order Header + k2

19 end
20 return FeatureMap

Q1: CREATE TEMP TABLE Layer Output(
SELECT MatrixID as TupleID,

SUM(A.Value * B.Value) as Value
FROM FeatureMap A INNER JOIN Kernel B
ON A.OrderID = B.OrderID
GROUP BY KernelID, MatrixID);

Figure 4 demonstrates how a feature map is produced by
Q1. As shown, the inner-join is performed for each sub-
matrix and the kernel. For example, we can apply Q1 for the

sub-matrix

2 1 3
1 3 4
3 4 5

 and the kernel

3 1 1
1 5 1
0 1 2

. After

applying the sum of element-wise multiplication, we obtain
44.

Since a neural network usually consists of multiple layers,
we need to transform the output of convolution into the input
feature map table format for subsequent use. Clearly, the
output of Q1 is in a different schema from the input feature
map table illustrated in Fig. 3. The output of Q1 is a tuple list,
using the previous MatrixID as the TupleID for each record.
To convert the tuple list to a matrix (i.e., feature map), we
introduce a kernel mapping table that records the relationship
among MatrixID, OrderID and TupleID, and is able to map
TupleID to MatrixID via a join operation, as shown in Fig. 5.
In fact, when the kernel, the input feature map, padding,
and stride are all fixed, the relationships among MatrixID,
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OrderID, and TupleID are fixed as well. As shown in Fig. 4,
let k denotes the width (the height as well) of the kernel,
s denotes the stride, p denotes the padding. If p = 0, in
the feature map, we have ⟨TupleID=1, Value=2⟩, ⟨TupleID=2,
Value=1⟩, ⟨TupleID=3, Value=3⟩. For the first sub-matrix,
we have ⟨MatrixID=1, OrderID=1, Value=2⟩, ⟨MatrixID=1,
OrderID=2, Value=1⟩, ⟨MatrixID=1, OrderID=3, Value=3⟩,
etc. Suppose s = 2. For the subsequent sub-matrix, we
have ⟨MatrixID=2, OrderID=1, Value=3⟩, ⟨MatrixID=2, Or-
derID=2, Value=4⟩, ⟨MatrixID=2, OrderID=3, Value=5⟩, etc.
As such, we can obtain the kernel mapping table T , where
⟨MatrixID=1, OrderID=1, TupleID=1⟩, ⟨MatrixID=1, Or-
derID=2, TupleID=2⟩, ⟨MatrixID=1, OrderID=3, TupleID=3⟩,
⟨MatrixID=2, OrderID=1, TupleID=3⟩, etc.

Abstractly, we are able to re-index the tuple list Ti+1 starting
with index x and the width of kernel k, and Ti+1 is generated
from the ith convolution layer as follows. Ti+1 ={x,...,x +
W 2

i − 1}, where Wi is the width of the input feature map of
the ith convolution layer. The sub-sequence {x, ..., x + k −
1, x+Wi, ..., x+Wi + k− 1, ..., ..., x+ (k− 1)×Wi ..., x+
(k − 1)×Wi + k − 1} belongs to the first sub-matrix and is
assigned to MatrixID=1. Likewise, we are able to construct
the second sub-matrix, the third sub-matrix and etc.

Algorithm 2 shows the specific steps of generating the
kernel mapping table. As shown from line 6 to line 10, the
MatrixID, OrderID, and TupleID values of each record in the
kernel mapping table are generated from a nested loop that
produces k2 elements. Since the kernel mapping table only



Algorithm 2: Generation of Mapping Table
Input: FeatureMap F , Kernel K
Output: SQLs for Creating the Kernel Mapping Table

1 MappingTable = ∅, MatrixID = 0, x Header = 0, k
= K.height, s = K.striding

2 W1 = F.width, W2 = W1−k
s +1

3 while MatrixID < W 2
2 do

4 count = 0, x ← x Header
5 while count < W2 do
6 for i = 0 to k do
7 for j = 0 to k do
8 OrderID ← j + i ∗ k
9 TupleID ← x+ j +W1 ∗ i

10 Insert {MatrixID, OrderID,
TupleID} into MappingTable

11 end
12 end
13 MatrixID++, count++
14 x ← x + s
15 end
16 x Header ← x Header + W1 * s
17 end
18 return MappingTable

depends on k, Wi, and s 5. Therefore, we generate the involved
mapping tables in an offline way. After a mapping table has
been generated, the below query is submitted to create a new
feature map table:

Q2: CREATE View FeatureMap(
SELECT MatrixID, OrderID, Value
FROM Layer Output A, Kernel Mapping B
WHERE A.TupleID = B.TupleID);

After Q2 is performed, we can apply Q1 again to conduct
the CNN computation for the next layer.

2) Implementing Other Neural Operators: In a typical
CNN-based model, CNN is often used together with Batch
Normalization(BN), Rectified Linear Unit(ReLU), and Pooling
operators.

BN is an approach that normalizes the layers’ inputs by re-
centering and re-scaling, making neural networks faster and
more stable. BN can be computed as follows.

BN =
input− µ√

σ2 + ε
(1)

where input is the input data, µ is the mean of input, σ2

is the variance of input, and ε is a constant to prevent the
denominator from being zero. ReLU is a common activation
function used in neural networks to overcome the gradient
disappearance, which can be computed as follows.

ReLU = max(0, input) (2)

5Here, p = 0.

Fig. 6: Summary of a Complete CNN

Obviously, the BN and ReLU layer can be directly imple-
mented as the SQL math algebra, so we omit the implemen-
tation details.

The pooling operator needs to split the input feature map
into multiple sub-matrices for computation like the convolu-
tional layer. The only difference with the convolutional layer is
that the pooling layer performs some aggregation operations,
such as the calculation of the maximum value in each sub-
matrix instead of convolution. Therefore, we propose a process
similar to Q1 to realize the pooling operator. Assuming we
adopt the max-pooling aggregation, Q3 shows how the pooling
is performed in a database system.

Q3: CREATE TEMP TABLE Pooling Output(
SELECT MatrixID as TupleID,

MAX(A.Value) as Value
FROM FeatureMap A
GROUP BY MatrixID);

Some operators, such as full connection and basic atten-
tion, can be derived from the implementations of CNN. For
example, the full connection can be considered a specific CNN
operator with kernel size 1 and no striding. The basic attention
operator is a variant of full connection. So we discard the
details of those operators.

After implementing the basic neural operators, we are able
to put them together and build more sophisticated neural
networks. Fig. 6 demonstrates how a 3-layer CNN model with
BN and ReLU is established upon the basic neural operators
implemented in a database system. It is normally used as the
basic building block for the neural models of other structures.

Next, we focus on how a residual block in ResNet is imple-
mented. A typical residual block consists of three convolution
blocks and a shortcut block. We simulate the shortcut block
using the following SQL:

Q4: CREATE VIEW feature cbshortcut conv(
SELECT MatrixID, OrderID, Value
FROM ( SELECT MatrixID as TupleID,

SUM(A.Value * B.Value) as Value



FROM FeatureMap A
INNER JOIN Kernel B
ON A.OrderID = B.OrderID
GROUP BY KernelID, MatrixID)
as Layer Output, Kernel Mapping

WHERE Layer Output.TupleID
= Kernel Mapping.TupleID);

CREATE TEMP TABLE feature cbshortcut conv bn(
SELECT MatrixID, OrderID, ((Value - (SELECT

AVG(Value) FROM feature cbshortcut conv)) /
((SELECT stddevSamp(Value) FROM
feature cbshortcut conv) + 0.00005)) as Value

FROM feature cbshortcut conv);

Q4 first conducts a CNN operator for the input and then
applies a batch normalization.

We neglect the details of the three convolution blocks,
which are almost identical to the shortcut block. Let fea-
ture cb3 conv bn denote the result produced by the last
convolution block. Below we show how the residual link is
formed, along with a ReLU activation:

Q5: CREATE TEMP TABLE cb output(
SELECT A.MatrixID, A.OrderID,

A.Value + B.Value as Value
FROM feature cbshortcut conv bn A,

feature cb3 conv bn B
WHERE A.MatrixID = B.MatrixID);

UPDATE cb output SET Value = 0 where Value < 0;

D. Comparison of Three Approaches

In this subsection, we present our comparison of the three
strategies, which is summarized in Table III.

The independent processing strategy is easy to implement
because it takes the database and the DL system as two
black boxes, leaving the application responsible for parsing
the collaborative queries and dealing with the internal depen-
dency. Adopting this strategy, we can easily support complex
neural models and distributed processing. Meanwhile, we can
seamlessly introduce new hardware, such as GPUs or APUs,
into the system for speedup. However, this strategy lacks
reusability and requires rewriting the application layer for
processing a new type of collaborative query.

The loose integration requires the developer to compile
their trained models into serializable files and then write
customized UDF to load models from those files. The built-in
UDF can support parallel processing or GPU acceleration if
the underlying database system provides such APIs. Neverthe-
less, we need to rewrite and recompile our UDF for each new
model.

The DL2SQL strategy re-implements various neural oper-
ators in a database system, using native SQL clauses. The
implemented neural operators can be easily assembled to
realize various neural networks. Moreover, since we only rely
on translated SQL neural operators to process a collaborative

query, the database system is able to optimize the query
processing in a natural manner when the execution cost can
be effectively estimated.

All approaches need to maintain feature maps and interme-
diate results and hence incur additional storage overhead. We
show the storage cost of all approaches in Table IV. We use
ResNet5 to ResNet40 as our example models, and more details
can be found in the experiment section. DL2SQL represents
its neural model in relational tables, incurring a slightly higher
cost than the other two approaches, which maintain models in
file systems using compression. The additional cost, however,
is acceptable for modern hardware, even edge devices.

IV. COLLABORATIVE QUERY OPTIMIZATION

As mentioned above, the DL2SQL strategy can leverage
the DBMS optimizer to generate its query plan. However, we
discover that the DBMS optimizer cannot precisely estimate
the size of intermediate results generated by the neural op-
erators. It normally over-estimates the number of join results
which will be exaggerated exponentially after several iterations
of neural operator computations. On the other hand, we can
accurately model the cost using the kernel sizes and input
features based on the implementations of neural operators. In
this section, we present our customized optimization approach
to generate hints for the database optimizer.

A. Cost Model of SQL Implementation

To properly estimate the processing overhead of neural
operators, we need to estimate the cardinality of each fea-
ture map table. Let Fin and Fout represent the input and
output tensors of the convolutional layer, respectively, where
Fin ∈ RHin×Win×Nin , Fout ∈ RHout×Wout×Nout . Hin and
Win are the height and width of Fin, respectively, and Nin

is the channel size of Fin. Hout, Wout and Nout are defined
similarly for the output feature map.

Let kh and kw denote the height and width of the CNN
kernels 6. Let s and p denote the striding and padding value
(we assume that we adopt the same striding and padding value
for height and width). The relationship between the input
tensors and output tensors can be computed as:

Hout =
Hin + 2p− kh

s
+1,Wout =

Win + 2p− kw
s

+1 (3)

In our SQL implementation, the sizes of kernel tables in
the current layer and next layer are kin = kh ∗ kw ∗Nin and
kout = kh ∗kw ∗Nout. The cardinality of the input feature can
be estimated as Tin = Hout ∗Wout ∗ kin.

For a fixed kernel, the join selectivity between the feature
map table and the kernel table is estimated as:

SJ =
1

kin
(4)

Then, the cardinality of the output feature map table is:

Tout = Tin ∗ SJ ∗ kout (5)

6In most cases, kh equals to kw .



TABLE III: Comparison of Three Approaches

Approaches Implementation
Complexity Flexibility and Reusability Opportunities for Optimizations Scalability I/O Cost Support for GPUs

Independent
Processing Easy

Need to rewrite
the codes for a new query

Consider databases and DL systems
as black boxes and unable to optimize High High Easy

Loose
Integration Medium

Need to rewrite and
recompile the UDFs for a new query

UDF cannot be optimized
by the database’s optimizer Medium Medium Depends on the database

Tight
Integration(DL2SQL) Hard

Translate the query
into SQL neural operators

Create new cost model and
apply the database’s optimizer Medium Low Depends on the database

TABLE IV: Storage Overheads with Different Model Depths

Model Depth DL2SQL(KB) DB-UDF(KB) DB-PyTorch(KB)
5 4096 3838 3253

10 21504 17325 14803
15 38910 32003 26354
20 56316 45586 37905
25 73722 60543 49455
30 91128 73899 61006
35 108534 88577 72556
40 125354 102942 84107

To speed up the join processing, we build indices on columns
MatrixID, OrderID, and KernelID. The processing of
join is performed by scanning the feature map table and
probing the kernel tables. Kernel tables are probed multiple
times during the processing. Since each probing produces a
value in the output table, we can use Tout to denote the times
that the kernel tables are probed. Accordingly, the cost of the
join operation is approximated as:

Cjoin = Tin + Tout ∗ kin (6)

The next step of a CNN operator is the mapping process
shown in Fig. 5. The cost is approximately identical to
scanning the output table since the kernel mapping table is
typically small, which is fully maintained in the L2 cache. As
such, the overall CNN cost is approximately:

Cout = Tin + Tout ∗ kin + Tout (7)

For the next CNN operator, we can use Nout to replace Nin

and continue the estimation. The cardinality of the input for
the next CNN operator is approximately:

Tin
′ = kout ∗

[
(Tout

kout
)

1
2 + 2p− kh

s
+ 1

]2

(8)

Other neural operators, such as BN, ReLU, Pooling, only
need to scan the feature map table once. Thus, the cost can be
calculated as a linear function to the feature map. The residual
block, on the other hand, consists of several convolution blocks
and is estimated based on the cost of convolution.

B. Hints for Collaborative Query

As shown in Table I, the two parts, Qdb and Qlearning, have
a dependence on each other in some collaborative queries. So
we define some rules as the hints for the database’s optimizer
to choose a proper query plan.

To achieve this, we need to evaluate the selectivity of
nUDF in a collaborative query. We first learn the probability
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distribution Pr for each class ci in an arbitrary nUDF. Given
an input and all pre-defined classes {c0, c1, ..., cn}, we have:

n∑
i=0

Pr(ci) = 1, P r(ci) ≤ 1 (9)

During the offline training process of the neural model for
nUDF, we build a histogram H(ci) for each target class ci.
H(ci) counts the number of training samples that are predicted
to be ci. So the function Pr can be empirically estimated as:

Pr(ci) =
H(ci)∑n
i=0 H(ci)

(10)

Finally, for the nUDF testing the input sample against class
ci, we use Pr(ci) as its selectivity.

Given a collaborative query, we have the following rules.
First, if the nUDF appears as a prediction, we have two
strategies: 1) evaluating the nUDF during the table scan; 2)
delaying the evaluation as much as possible. The first strategy
incurs a full cost for the nUDF, but it avoids unnecessary tuples
participating in the following processing. On the other hand,
the second strategy reduces the cost of processing nUDF, since
many tuples are pruned in previous operations. The optimizer
generates the final query plan by comparing different cost
estimations. Fig. 7 shows the idea of the second strategy. We
rely on our customized cost model of the database system to
compare the two strategies and generate a hint to select a better
one.

Second, if the nUDF appears in the select clause, we
will evaluate the nUDF as the last operator. In this way, the
database optimizer can generate a plan by ignoring the nUDF
in the beginning.

Third, we adopt the symmetric hash join algorithm if the
nUDF appears as the join condition. Suppose we have a join
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Fig. 8: Average Performance of Multiple Queries on Different Devices with Selectivity=0.01%

defined as T0.nUDF (x) = T1.y. Namely, the two tables are
joined on the nUDF result of column x and column y. We
maintain hash tables for nUDF (x) (i.e., the prediction results
of nUDF ) and values of y, respectively. For each incoming
value of T0/T1, we probe all values at the corresponding hash
bucket of T1/T0 to perform the join. Ideally, the whole hash
tables are maintained in memory. We apply the LRU strategy
to select the victim when the buffer is full. Because the nUDF
is performed in a batch manner (a batch of feature maps are fed
to the model together), we apply a bucket-based LRU strategy.
Once we detect a new value from T0.nUDF (x), we will load
the corresponding bucket of T1 completely into the memory,
avoiding the consecutive cache misses.

V. EVALUATION

We implement all three strategies on an in-memory version
ClickHouse and deploy the modified database on an embedded
edge device powered by the ARM V8 CPU with 32GB mem-
ory. For the DL framework, we adopt PyTorch and its C++
Distributions LibTorch for serving models. For comparison,
we also deploy them on our in-house server (with Quadro
P6000 GPU and Xeon CPU).

We evaluate the performance of the three implementations
using the dataset collected from Alibaba’s IoT platform for
the textile printing scenario. Our testing database consists of
five tables: video, fabric, client, order, and device. The video
table maintains the surveillance data generated by the IoT
cameras for the textile printers. Videos are split into small
clips using an equal-size time window. The fabric table records
the basic information of the fabric pattern, e.g., the pattern
image and its ID. The client table and order table denote the
customers and their printing orders. The device table maintains
the sensor data generated for each printer, such as temperature
and humidity. There are 100 million tuples in total (the sizes of
tables follow a ratio of “100:10:1:10:1”). To reduce the storage
overhead, we resize the resolution of all videos to 224×224×3
and have more than 100GB of videos.

We train a model repository consisting of 20 neural net-
works for various tasks, such as textile defect detection, clothes

classification, textile type classification, and textile pattern
recognition. We adopt the ResNet34 [6] as the backbone model
for each task and tune the parameters for different tasks.
Furthermore, to reduce the computation overhead, we apply
the distillation technique [16]–[18] to learn a student CNN
composed of three Conv+BN+ReLu layers (the prediction
accuracy is 87% compared to the 93% of the ResNet34). In the
experimental results, we report and analyze the performance of
our student model first and then examine the results of ResNet
with different depths.

We create a query template for each type displayed in Table
I that picks a random DL task corresponding to a model in
the model repository. All neural models are trained offline,
and the neural model corresponding to a collaborative query is
integrated into the system on the fly. We generate 100 queries
for each type with a preset selectivity on the SQL predicates
and mix them as our query benchmark to report the average
processing cost per query.

A. Overall Result

Fig. 8 shows the overall performance of different strategies
using the student models. By default, the accumulative selec-
tivity of Qdb predicates is 0.01%. We perform our experiments
with the following different configurations:

• DL2SQL and DL2SQL-OP denote the DL2SQL approach
without and with query optimization, respectively.

• DB-UDF implements the UDF approach.
• DB-PyTorch represents the independent approach where

the database and PyTorch work like black boxes.
We evaluate the approaches on two hardware settings. The
first one is our edge device equipped with an ARM CPU and
no GPU (the first four bars in Fig. 8). The second one is a
typical GPU server(Quadro P6000 GPU and Xeon CPU) from
the Alibaba Cloud. We test both CPU and GPU modes for the
four approaches on the Cloud server. We break down the cost
into three parts: loading cost, inference cost, and relational
algebra cost. The loading cost includes the cost of loading
neural models and data into the system. It also contains the



TABLE V: Performance Comparison with Different Selectivity on Edge Server

DL2SQL-OP DB-UDF DB-PyTorch
Selectivity(%) Inference(s) Loading(s) All(s) Inference(s) Loading(s) All(s) Inference(s) Loading(s) All(s)

0.01 0.441 2.256 2.697 4.558 4.617 9.175 4.199 7.589 11.788
0.1 0.263 1.129 2.783 4.63 4.631 9.261 4.2 7.589 11.789
0.2 0.618 2.175 2.793 4.54 4.531 9.071 4.199 7.591 11.79
0.4 0.857 2.259 3.116 4.516 4.41 8.926 4.21 7.592 11.802
0.6 1.308 2.261 3.569 4.341 4.277 8.618 4.23 7.594 11.824
0.8 2.254 2.231 4.485 4.437 4.23 8.667 4.24 7.597 11.837
1 4.651 2.174 6.825 4.568 4.292 8.86 4.24 7.599 11.839

TABLE VI: Performance Comparison with Different Model Depths on Edge Server

Model Configuration DL2SQL-OP DB-UDF DB-PyTorch
Depth Parameters Inference(s) Loading(s) All(s) Inference(s) Loading(s) All(s) Inference(s) Loading(s) All(s)

5 828418 0.138 1.198 1.336 2.282 2.243 4.525 2.478 1.957 4.435
10 3781890 0.165 2.341 2.506 2.291 2.274 4.565 1.982 2.524 4.506
15 6734850 0.199 3.237 3.436 2.29 2.263 4.553 1.987 2.558 4.545
20 9687810 0.227 4.555 4.782 2.309 2.282 4.591 1.975 2.572 4.547
25 12640770 0.258 4.508 4.766 2.321 2.308 4.629 2.001 2.596 4.597
30 15593730 0.289 4.306 4.595 2.321 2.327 4.648 1.959 2.542 4.501
35 18546690 0.319 4.593 4.912 2.332 2.341 4.673 1.961 2.543 4.504
40 20909570 0.348 6.194 6.542 2.343 2.358 4.701 1.969 2.546 4.515

I/O cost between the database system and the DL system. The
inference cost is the prediction time incurred by the DL model.
The relational algebra cost denotes the overhead of processing
relational operators in the database system.

Fig. 8 shows the overall performance of all the ap-
proaches with different configurations. On the edge device,
the DL2SQL-OP performs the best. Compared with the other
approaches, both the loading and inference costs are the
lowest. It avoids unnecessary inference compared with the
DL2SQL by employing the proposed optimization. On the
GPU server, all approaches work better than their counterparts
on the CPU, except the DB-UDF approach. Although the
usage of GPU effectively reduces the prediction overhead, the
loading cost increases significantly, owing to the I/O between
CPU memory and GPU memory.

In addition, we vary the query selectivity values and neural
model depths and evaluate the performance of different ap-
proaches. The results are reported in Table V and VI, respec-
tively. We first change the overall selectivity of the relational
predicates from 0.01% to 1%. The DL2SQL-OP consistently
performs better than the others, but we also observe that
the gap between them is narrowed as more predictions are
triggered. Interestingly, the DB-UDF and DB-PyTorch are less
affected by the selectivity, indicating the selectivity has an
insignificant correlation with the inference overhead for DB-
UDF and DB-PyTorch.

In Table VI, we directly use ResNet5 to ResNet40 to
evaluate the effect of different neural model depths. We omit
the relational algebra cost because the cost of processing
relational operators is two or three orders of magnitude smaller
than the inference and loading costs for a deeper neural model.
We set the selectivity as 0.1% and calculate the average
cost. Clearly, the results show that DL2SQL-OP works better
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than DB-UDF and DB-PyTorch in terms of inference. For
a shallow neural network, the running time of DL2SQL-OP
is smaller than DB-UDF and DB-PyTorch. Nevertheless, for
a deeper neural model, DB-PyTorch outperforms the other
two. After performing a breakdown analysis, we find that the
DL2SQL still achieves a better inference performance, but its
loading cost (load the neural model from relational tables)
increases significantly, suggesting that the existing relational
table format may slow down the tensor manipulations.

B. Detailed Analysis

Fig. 9 reports the running time of each CNN block in the
model(distilled from ResNet34 to 3 Conv+BN+ReLu blocks)
used in Fig. 8. In Fig. 9, Conv1 denotes the total cost of
all neural operators used in the first CNN block. Reshape1
represents the cost of the mapping process shown in Fig. 5.
Classification is the cost of softmax prediction. According
to the experimental results, the main bottleneck is the convo-
lution operators, suggesting that a greater parameter size leads
to more running time.



Fig. 10: Percentage of Processing Costs in DL2SQL
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In addition, we profile the execution of generated SQL
and investigate the running time distribution of different SQL
clauses. Fig. 10 shows the costs of different relational op-
erations in the generated queries. The results show that the
relatively expensive operations are Join and GroupBy. Fur-
thermore, we find that many joins are processed inefficiently.
In order to join the feature map table and kernel table in
Fig. 3, the feature map table is scanned and searched for
corresponding tuples in the kernel table using OrderID.

One way to avoid inefficient Join and GroupBy operators
is to pre-join those tables together during the data generation
process. Fig. 11 shows the performance of CNN blocks using
three different pre-join strategies. The default strategy is to
adopt no pre-join as before. The second strategy is to avoid
the join in the mapping process (i.e., Q2 presented in Section
III) and the GroupBy operation of pooling (i.e., Q3 presented
in Section III). The third strategy avoids the join process
between the feature map table and kernel table. As illustrated
in Fig. 11, avoiding unnecessary joins can effectively improve
the performance of CNN blocks. This indicates that there are
many optimization opportunities that can be explored.

C. Effect of Cost Model

Fig. 12 shows estimations of the default database cost
model, our customized cost model, and the actual running cost
for Type 1 queries. Note that cost models return estimated
I/O+CPU costs, and we normalize costs into the running time
based on the ratio r = seq time

seq scan cost .
We vary the sizes of CNN kernel and input feature map and

illustrate the results in Fig. 12a and Fig. 12b, respectively. The
CNN computation incurs more overhead for a larger kernel
size and feature map size. Our customized outperforms the
default DBMS cost model (note that we adopt the log-scale
for y-axis).

We further examine the estimation for each neural operator
and show the results in Fig. 13. It also indicates that our
customized cost model can return a more precise estimation.

Finally, we verify the effectiveness of hints for collaborative
queries in Fig. 14. By varying the selectivity, we observe
that hint rules can significantly improve the performance by
pruning unnecessary computation.

VI. RELATED WORK

The fusion of two research tracks, database, and artificial
intelligence, is recently accelerating due to the blooming of
deep learning techniques. Wang et al. [19] summarizes the
challenges and opportunities.

AI for DB receives many research interests from the
database community. A series of works have been proposed
for database tuning [20]–[23], database index design [24]–[29],
and database query optimization [30]–[35].

Ottertune [20] groups database knobs based on their impacts
on the performance, and employs a learning approach to
predict proper values for important database knobs. CDBTune
[21] and QTune [22] extend the idea by using a reinforcement
learning model to pick a proper configuration for the database
system regarding a pre-defined query workload. Some new
DBMSs, such as SkinnerDB [36] and NeoDB [30], have in-
corporated learning-based tuning and optimization techniques
into their core module, showing a significant improvement
over conventional tuning approaches.

Kraska et al. [24] considers the database indexing process
as a learning process for the cumulative distribution function
(CDF). Neural models are applied to simulate the CDF and to
improve the performance. In a recently proposed benchmark
[37], the learned indexes outperform conventional indexes,
such as B-tree and Bw-tree [38], for a large margin.

Another branch of research focuses on query optimizations.
For example, learning-based approaches are adopted to support
cardinality estimation [34], plan generation [35], data parti-
tioning [39], and transaction processing [40].

DB for AI is a new emerging topic, where state-of-the-art
database techniques are applied to support learning-based pro-
cessing. Most existing works expand the database’s capability
using UDF extensions. For instance, MadLib [9] is an open-
source library that provides in-database analysis capabilities.
It uses UDAF to implement different ML algorithms and pro-
vides a set of SQL-based algorithms for machine learning, data
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mining, and statistics. Vertica-ML [10] uses a P2P architecture
that enables data parallelism and model parallelism. Each ML
algorithm consists of a Metafunction and several UDFs. The
Metafunction passes parameters and implements the algorithm
control logic to call the specific UDTF. UDTF uses the SDK
provided by Vertica to implement the details.

Different from the UDF approach, MLog [41] proposes a
high-level declarative language that integrates machine learn-
ing models into DBMS. Learning-based tasks written as MLog
will be translated into TensorFlow jobs for processing and
hence, also face the problem of system barrier.

Some other researchers apply database techniques to facil-
itate the machine learning process. LMFAO [13] represents
the data-intensive computation required by ML models as
batches of group-by aggregates over the relational joins in
the database. Karanasos et al. [42] integrates an open-sourced

machine learning engine, ONNX, into the SQL server and
propose a co-optimization approach. Oracle AutoML [43]
presents a pipeline used in Oracle to support the process of
AutoML. Jankov et al. [44] examines how to exploit database
engines to train backpropagation models efficiently. ModelDB
[45] proposes using the DBMS to manage gradually evolved
machine learning models.

VII. CONCLUSION

In this paper, we investigate a new type of query, the
collaborative query, and study three possible processing strate-
gies. The first strategy considers both the database and the
Deep Learning(DL) system as black boxes and processes the
collaborative query by invoking the APIs of the corresponding
system. It incurs high I/O costs. The second strategy imple-
ments the DL models as built-in User Defined Function(UDF)
of the database system, where the collaborative query can be
processed without relying on a DL system. It incurs high
compilation costs. The third strategy, our novel DL2SQL,
implements popular neural operators using SQL syntax. It
solves the above problems. The processing of the collaborative
query is translated into a series of SQL queries that can be
naturally optimized. To evaluate the performance of the three
strategies, we use a textile printing dataset from Alibaba’s IoT
platform and a collection of real-world tasks. The experimental
results show that the DL2SQL significantly outperforms the
others for small-to-medium size neural models. Moreover, if
a pre-join strategy is introduced, the efficiency of DL2SQL
can be further improved, suggesting that a lot of optimization
work can be done on top of DL2SQL.
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