
HybrIDX: New Hybrid Index for Volume-hiding
Range Queries in Data Outsourcing Services

Kui Ren‡, Yu Guo†, Jiaqi Li‡, Xiaohua Jia†, Cong Wang†, Yajin Zhou‡, Sheng Wang§, Ning Cao£, Feifei Li§
‡Zhejiang University, †City University of Hong Kong, §Alibaba Group, £Hangzhou Mishu Technology.
{kuiren, lijiaqi93, yajin zhou}@zju.edu.cn, y.guo@my.cityu.edu.hk, {congwang, csjia}@cityu.edu.hk,

{sh.wang, lifeifei}@alibaba-inc.com, ncao@hzmstech.com

Abstract—An encrypted index is a data structure that assists
untrusted servers to provide various query functionalities in the
ciphertext domain. Although traditional index designs can pre-
vent servers from directly obtaining plaintexts, the confidentiality
of outsourced data could still be compromised by observing
the volume of different queries. Recent volume attacks have
demonstrated the importance of sealing volume-pattern leakage.
To this end, several works are made to design secure indexes with
the volume-hiding property. However, prior designs only work
for encrypted keyword search. Due to the unpredictable range
query results, it is difficult to protect the volume-pattern leakage
while achieving efficient range queries.

In this paper, for the first time, we define and solve the chal-
lenging problem of volume-hiding range queries over encrypted
data. Our proposed hybrid index framework, called HybrIDX,
allows an untrusted server to efficiently search encrypted data
based on order conditions without revealing the exact result
size. It resorts to the trusted hardware techniques to assist
range query processing by moving the comparison algorithm
to trusted SGX enclaves. To enable volume-hiding data retrieval,
we propose to host encrypted file blocks outside the enclave in an
encrypted volume-hiding structure. Apart from this novel hybrid
index framework, we further customize a result caching method
to obfuscate the results co-occurrence among different queries.
We formally analyze the security strengths and complete the
prototype implementation. Evaluation results demonstrate the
feasibility and practicability of our designs.

I. INTRODUCTION

An encrypted index offers a secure interface for data owners
to outsource private data to an untrusted server, while se-
lectively retrieving data without decryption. It is recognized
as a fundamental component of building privacy-preserving
applications. Early studies on secure index construction mainly
focus on the direction of keyword search [1]–[7]. Along
with the development of data outsourcing paradigm, enabling
efficient range queries over secure indexes has attracted a lot of
attention from both academia and industry [8]–[11]. A typical
example in the encrypted database community [12]–[17] is
finding all matched files according to order conditions such as
indexed values or timestamps.

Over the past decade, the demand for designing range-based
indexes has been expected to be addressed by the innovation
of cryptographic techniques, e.g., Order-preserving/revealing
encryption (OPE/ORE) schemes [18]–[27], which allow or-
der comparisons to be performed directly on ciphertexts. In
practice, however, these schemes are developed as crypto-
graphic primitives and can hardly accommodate system-wise

security requirements [28]–[36]. Specifically, range queries
reveal the different number of return results (i.e., volume-
pattern) and the results co-occurrence pattern. Recent leakage-
abuse attacks [28]–[32] have shown how these leakages can
be exploited to learn sensitive information about the query
content and outsourced data. To mitigate this security concern,
a simple approach is to apply naive padding. However, this
approach would introduce expensive storage overhead because
the result set is padded to the maximum length.

In the literature, only a few recent works [37]–[39] have
started to study practical index designs with the protection
of volume-pattern. In [37], Kamara et al. proposed the first
practical volume-hiding encryption scheme by using the multi-
map data structure [38]. The follow-up design [39] utilized
cuckoo hashing and differential privacy to further reduce the
volume and storage overhead. Unfortunately, neither of the
existing schemes can support volume-hiding range queries
because of two challenging issues. Firstly, unlike keyword
search functions, the result size of different range queries
cannot be pre-defined. Clients without pre-knowledge of the
result size have to download all the data in order to hide the
volume-pattern leakage, which demands a large amount of
bandwidth overhead. Secondly, different range queries reveal
the results co-occurrence pattern, which can be exploited for
inferring the plaintext distribution. For example, the result
set associated with the endpoint values must appear in all
the other range query results. By observing the results co-
occurrence among different queries, an attacker can still learn
the result distribution even if the volume-pattern has been well-
protected [28]–[30]. Therefore, how to enable volume-hiding
range queries over encrypted indexes is still challenging and
remains to be fully explored.

In this paper, for the first time, we solve the problem of
volume-hiding range queries in the data outsourcing paradigm.
Our proposed hybrid index framework, called HybrIDX, can
effectively address the aforementioned challenges while being
efficient in supporting range queries. To achieve our design
goals on both security and usability, we propose to bring
together the advancement of both volume-hiding data structure
and trusted hardware to build the desired index construction.
To hide the result size of different range queries, we first
propose to utilize the trusted enclave to securely convert any
range query into multiple independent sub-queries with equal
fixed volume. While seemingly inconvenient, this way of query

Untrusted Host

Enc. MM Indexes

Enclave Indexes

Volume-hiding Storage
HybrIDX

Data Applications

Fig. 1: Overview of main HybrIDX components.

processing is actually consistent with the rationale of many
practical applications in information retrieval, which would
on-demand display a subset of query results per round to the
client upon request [40].1

In order to concretely achieve the fixed volume for sub-
queries, we explore the volume-hiding storage structure from
the bucketization-based padding method [37] that converts file
blocks of different values into multiple block ciphertexts with
a fixed length. As directly outsourcing the resulting volume-
hiding ciphertexts cannot support range queries, we devise
a range-based index inside the trusted enclave to indicate
the corresponding encrypted file blocks, as shown in Fig.1.
Besides, we customize a batch query protocol for our purpose
to retrieve range query results in a volume-hiding manner.

Under this hybrid index framework, we then consider how
to further mitigate the co-occurrence pattern leakage among
different range queries. Particularly, we propose a secure
caching method that caches retrieved results inside the enclave
and refreshes them periodically. With the assistance of an
enclave-based caching method, not only can we efficiently
obfuscate the co-occurrence leakage among different queries,
but also we can avoid high communicational cost between
the client and servers for indexes refresh. We believe the
proposed hybrid index design provides useful guidelines and
new insights on designing secure indexes for modern data
outsourcing services. The main contributions of this paper can
be summarized as follows:
• We present HybrIDX, the first hybrid index framework

that enabling volume-hiding range queries over encrypted
data. It stores encrypted file blocks of indexed values
in the form of volume-hiding structure and conducts
efficient range comparisons inside the enclave.

• We carefully tailor a secure batch query protocol and a
result caching method for volume-pattern protection and
co-occurrence pattern obfuscation.

• We provide thorough analysis investigating security and
efficiency guarantees of the proposed designs. By char-
acterizing and analyzing the leakage profiles from both
the index construction and the query protocol, we prove
the security of our schemes.

• We implement the system prototype and conduct a com-
prehensive evaluation. The experiment results show that

1Similar insight has also been utilized by prior art Oblix [41], but for ranked
keyword search that is different from our focus on range queries.

TABLE I: Security characterization of representative
schemes for secure range query operations

Primitives Query
Efficiency

Leakage Protection
Order
Result

Search
Pattern

Access
Pattern

Volume
Pattern

OPE
ROPF [23] O(logm) BS 7 7 7

Ideal-OPE [24] O(logm) AS 7 7 7

POPE [22] O(logm) BS 7 7 7

ORE
CLWW [20] O(m) AS 7 7 7

Lewi-Wu [18] O(m) AS 7 7 7

PHORE [19] O(m) AS 7 7 7

Enclave
HardIDX [42] O(logm) 3 3 7 7

Opaque [43] O(logm) N/S 3 3 7

ZeroTrace [44] O(logn) N/S 3 3 7

Oblix [41] O(log2 n) N/S 3 3 3∗

EnclaveDB [45] O(logm) 3 3 3 7

HybrIDX O(logm) 3 3 3 3

1 3∗: result may be lossy.
2 BS: before search ⊂ AS: after search.
3 n: number of total records; m: number of indexed values, n >> m.
4 N/S: the feature may be potentially supported, but not explicitly handled.

our range query protocol can fetch all matched results
within a short latency, and achieve better query efficiency
compared with existing cryptographic solutions.

The rest of this paper is organized as follows. Section II
introduces background knowledge and related work involved
in our designs. Section III presents our system architecture
and threat assumptions. Section IV introduces our system
design. Our security analysis is conducted in Section V, and
an extensive array of evaluation results is shown in Section VI.
Finally, we conclude the paper in Section VII.

II. RELATED WORK

A. Encrypted Range Queries

Searchable encryption (SE) scheme for secure range queries
has been an active research area in the past decade [18]–
[27]. To make a clear comparison, we have summarized the
representative solutions and compiled their security features in
Table I. The early studies, known as order-preserving encryp-
tion (OPE) [23], can preserve the original orders of plaintexts
by using a random order-preserving function (ROPF). Thus, an
untrusted server is able to make numeric comparisons between
ciphertexts as if it had operated on plaintexts. However,
orders are directly leaked from OPE ciphertexts, which make
OPE ciphertexts suffer from the sorted attacks [34]. In [24],
Popa et al. proposed an ideal OPE scheme (Ideal-OPE) by
encrypting values via standard encryption, but it requires
multiple interactions for client-side comparison. To mitigate
the order leakage, the notion of order-revealing encryption
(ORE) was proposed [26]. ORE ciphertext has no particular
order, while order relations are revealed during dedicated com-
parison protocols [18]–[20]. However, ORE schemes would

not be necessarily applicable in real-world applications be-
cause orders are masked in each ORE ciphertext. It requires
the server to perform a linear scan on the whole ORE-
based indexes for range queries. Considering the potentially
huge amount of outsourced data in servers, this problem is
particularly challenging as it is extremely difficult to meet the
performance requirement [17]. Moreover, recent leakage-abuse
attacks [33], [36] and volume attacks [28]–[30] show that the
plaintext distribution can still be determined by observing the
comparison results and volume size.

B. Volume-hiding Scheme

Recent volume attacks [28]–[30] on searchable encryption
schemes have brought an emphasis on the importance of
volume-hiding property, which is the new concept behind
leakage-abuse attacks. To hide the volume-pattern leakage, a
simple solution is to apply naive padding so that each result
size is the maximum length. However, naive padding results
in too much storage overhead larger than the original dataset.
In [37] and its follow-up work [38], Kamara et al. proposed the
first volume-hiding encryption scheme for encrypted keyword
search. The core idea is to map the file blocks of each keyword
into multiple ciphertext blocks with a fixed length, and later
use the (fixed) maximum volume of the input datasets to
retrieve the matched results from these ciphertext blocks. Since
the retrieved results of each query are padded up to the fixed
size, the property of volume-hiding is achieved. In a concurrent
and independent work [39], Patel et al. provided another
different volume-hiding scheme based on cuckoo hashing and
differential privacy to further reduce the padding overhead.
However, none of the existing volume-hiding schemes can
support range queries over encrypted data.

C. Hardware Enclaves and SGX

Trusted execution environments (TEE) or secure enclaves
such as Intel SGX are recent advances in computer processor
technology [46]. It provides three main security properties:
isolation, sealing, and remote attestation. First, SGX enforces
isolation by storing the pre-defined code and data in a hard-
ware guarded memory (limited 128 MB) that only particular
enclave code can access it. The processor ensures that any
software outside the enclave cannot read or modify it. Second,
sealing enables encrypting and authenticating the enclave
data. Third, remote attestation can establish a secure channel
between the external party and the enclave, which guarantees
that the target code is indeed running securely and unmodified
within the enclave of the remote system. By deploying the
enclave code to the server, it allows the untrusted server to
securely maintain data on behalf of the data owner.

Several attempts have been made to securely process sen-
sitive data with trusted hardware [41]–[45], [47]–[50]. The
work [42] used the trusted hardware to devise encrypted key-
value stores, but did not support update operations and cannot
protect the access-pattern leakage. To address this issue, most
of works [41], [43], [44] mainly focus on using ORAM [51]
for oblivious data processing. In Lightbox [49], the authors

ℒ1=G(𝒗1||1) f1 padding

ℒ2=G(𝒗2||1) f2 f3 f4

ℒ3=G(𝒗2||2) f5 padding

ℒ4=G(𝒗3||1) f6 f7

Query:≥𝒗1||2

SGX-enabled DB Server

𝒗1
𝒗3𝒗2

…… …

Client

Enclave

HybrIDX Indexes

… …

f1

f6 f7 ℒ1 ℒ4 …

Fig. 2: Overview of HybrIDX architecture.

proposed an encrypted cache approach to improve the process
efficiency, as demanded by their enclave-based stateful net-
work middlebox. Very recently, EnclaveDB [45] was proposed
to devise an encrypted database system by hosting all data in
the enclave memory. However, such straightforward treatment
would not be able to deploy in real-world systems because
the memory size of an enclave is limited. Moreover, all above-
mentioned solutions do not consider volume-pattern protection
for range queries and the performance overhead of making
all memory accesses through its ORAM-based index can be
significant as shown in Table I.

III. SYSTEM OVERVIEW

A. Architecture Overview

Fig. 2 shows our system architecture, containing two types
of entities: a client of the data application and an SGX-enabled
storage server. HybrIDX is particularly suitable for the clients
who wish to outsource their sensitive dataset to remote servers
and later enjoy encrypted query services. Before outsourcing
encrypted files to the server, the client extracts index values
(Fig.2: v) from the dataset to generate range-based indexes.
The related file of each value is divided into multiple file
blocks with equal length. Then, the client transforms the file
blocks (Fig.2: f) into multiple block ciphertexts with padding
in a volume-hiding fashion. Finally, the client can deploy the
range-based indexes on the enclave via SGX remote attestation
and outsources the volume-hiding file blocks to the server in
the form of encrypted label-value (L-V) pairs.

The storage server in HybrIDX consists of a tree-based
index inside an enclave and a set of encrypted L-V pairs
hosted by the untrusted storage. It provides an interface for
clients to search and update L-V pairs by using batch query
algorithms. Specifically, the client executes encrypted range
queries by establishing a secure channel with the enclave for
sending query tokens. The enclave processes the token over its
range-based indexes via binary search and generates pseudo-
random labels to fetch encrypted file blocks from external
storage. In HybrIDX, different range query results are cached
inside the enclave for later secure index refresh.

HybrIDX achieves efficient range queries by hosting tree-
based indexes inside secure enclave memory. Obviously, this
hardware-assisted construction can provide better performance
than existing software-centric solutions (e.g., ORE-based in-
dex), which usually demand a linear scan. For volume-pattern
protection, HybrIDX maps file blocks from different ranges to
encrypted volume-hiding data structure. To search values that

lie in a range of domains, the enclave generates secure labels
based on query requests from the client, which provides the
server with a controlled capability to return a fixed number
of results. Therefore, our hybrid index design fully scrambles
the result distribution. With this observation, we believe that
our proposed design could be a more practical starting point
for developing secure data outsourcing services.

B. Threat Model

We consider a powerful adversary that can control the entire
software stack on the server-side, except the code inside the
enclave. It follows the protocols specified by the client but
attempts to infer the plaintext information from the available
data and background knowledge about the dataset distribution.
In particular, the adversary can monitor query protocols and
learn about query tokens, accessed index items, and encrypted
results during each batch query. Due to the protection of SGX,
the adversary cannot directly access the contents of protected
memory pages and CPU registers. Denial-of-service attacks
and side-channel attacks through cache-timing [52]–[54] are
beyond the scope of this work but have been addressed by
orthogonal studies like [55]. The client is always secure and
trusted. The encryption keys are securely stored at the client-
side and the enclave. Besides, there is a secure channel in place
to support secure communications between the client and the
server-side enclave.

C. Preliminaries

Notation: The set of all binary strings of length n is denoted
as {0, 1}n. The output x of an algorithm F (.) is denoted by
x← F (.), and an element x being sampled randomly from a
set X is denoted by x $← X . We define L[i] as the i-th element
of the array L. We use “b.c” to denote a floor function, and
use “|.|” to represent the number of data. We refer to “||” as
the concatenation operation.
Symmetric encryption: A symmetric encryption scheme
(KGen,Enc,Dec) is a set of three polynomial time algo-
rithms: the key generation algorithm KGen takes a security
parameter λ as input and outputs a secret key k; the encryption
algorithm Enc takes a key k and a value v ∈ {0, 1}n as inputs
and outputs a ciphertext c ∈ {0, 1}n; the decryption algorithm
Dec takes a key k and a ciphertext c as inputs and returns v.
Pseudo-random function: A pseudo-random function f(.)
transforms each element x of the set X to an output y ∈ Y
with a secret key kf ∈ K such that y is computationally
indistinguishable from a truly random function. A pseudo-
random function f : X × K → Y is (t, q, εf) secure if for
every oracle algorithm A making at most q oracle queries and
with polynomial runtime at most t: |Pr[Af(.,kf) = 1|kf ←
K] − Pr[A

g = 1|g ← F : X → Y]| < εf where εf is a
negligible function in f .

IV. THE PROPOSED DESIGN

In this section, we present the designs of our hybrid indexes
in detail based on the hardware-assisted indexes and the
volume-hiding data structure. We will show that HybrIDX can

support secure and efficient range queries and effectively hide
the volume-pattern and co-occurrence pattern. Features such
as batch queries, results caching, and update operations are
also presented for security and practical considerations.

A. Design Rationale

To enable volume-hiding range queries over encrypted data,
the main challenging issue is to construct the underlying
index framework. To this end, volume-hiding primitives for
encrypted keyword search are designed [37]–[39]. The core
idea is to map a set of file blocks with padding into multiple
block ciphertexts with equal length, and later use the maximum
(fixed) volume to retrieve these results. However, it is difficult
to directly apply existing volume-hiding structure to build
range query indexes because of two main reasons: 1) Volume-
hiding encryption requires pre-knowledge on the maximum
volume among different queries. Since the maximum volume
of range queries is the entire dataset, it is impossible to
use a pre-defined volume to obtain all range query results;
2) Different range queries reveal the results co-occurrence
pattern, which can be exploited for inferring the plaintext
values. For example, when conducting a “<” comparison, the
minimum value is always a subset of the other range query
results. Although the design of volume-hiding structure can
protect the exact result size, the result co-occurrence among
different range queries can still leak the data distribution.
Therefore, we are aware that existing cryptographic solutions
still fall short of meeting the volume-hiding requirements.

To resolve the aforementioned challenges, we identify that
the major obstacle in designing the volume-hiding index is to
learn the volume of different range queries. Our insight is to
devise a new hybrid index framework that utilizes the latest
trusted hardware techniques to compute the query volume and
maintains the relevant file blocks with fixed size outside the
enclave. In particular, we first construct a range-based index
on data values and store it inside the enclave. The enclave
index can be used for converting any range query results into
multiple sub-set with fixed volume so that the number of return
results in each round is fixed. Since the range-based index
is delegated with lightweight comparison tasks, it is easy to
implement within the constrained trusted memory to assist
generic operations on encrypted files. Meanwhile, we leverage
the bucketization-based padding method in [38] to build secure
volume-hiding structure for storing file blocks with a fixed
size outside the enclave. With this hybrid index framework,
the range query results can be retrieved in a batched manner
with a fixed volume. Since the search result is in (fixed size)
cipher blocks with padding instead of individuals, the server
cannot learn the exact volume of range query results.

The above index framework allows encrypted range queries
while simultaneously achieving volume-hiding property. How-
ever, it does not directly facilitate results co-occurrence ob-
fuscation because the locations of fetched results are not
considered to be protected. To address this, we customize a
result caching technique that uses the enclave to re-encrypt
fetched results during each batch query. Specifically, different

Algorithm 1: Build: Build encrypted hybrid indexes
Input: Private keys {k1, k2}, secure PRF G, fixed size p,

index node N , and file blocks DB(v) for value v.
Output: Encrypted hybrid indexes {ISGX, IDB}.

1 Client.Build(v, DB(v)):
2 begin
3 for each index value v do
4 β ←

⌊
|DB(v)|

p

⌋
, divide DB(v) into β + 1 blocks;

5 Pad last block to p items if needed;
6 Set states {c||t} = 0;
7 for each file block do
8 L← G(k1, v||c||t), γ

$← {0, 1}λ;
9 V ← {f1||..||fp} ⊕G(k2, γ), c++;

10 Add {L, V, γ} to IDB;

11 Put states {c||t} to new node N [v];

12 Store encrypted file blocks IDB at untrusted storage;

13 Enclave.Insert(v, N):
14 begin
15 for each value v do
16 if N.value == “null” then
17 N [v] = {c||t};
18 Add new node N [v] to ISGX;

19 else if N.value < v then
20 Run Insert(v, Nright);

21 else if N.value > v then
22 Run Insert(v, Nleft);

23 Store range-based indexes ISGX at trusted enclave;

re-encrypted (previous) results are cached inside the enclave
and later swapped with the external storage for fetching query
results. Since the cached results are shuffled and re-encrypted
before storing outside the enclave, an attacker cannot distin-
guish the result association among different range queries.
Thus, the results co-occurrence pattern can be protected with
our caching method. The detailed index building procedures
and range query protocols are conducted in the next section.

B. Hybrid Index Construction

Based on the above design rationale, Algorithm 1 presents
the building procedure of our encrypted hybrid indexes in
detail, which is executed at the client-side. The client first
divides the dataset DB(v) of value v into β+1 blocks, where
each block can store fixed p file blocks. Specifically, the client
masks multiple file blocks {f1||...||fp} into one ciphertext
block via computing V = {f1||...||fp}⊕G(k2, γ), where γ is
a random nonce. In our design, the last block is padded, so that
the number of items in each block is fixed. Then, the client
generates pseudo-random labels L = G(k1, v||c||t) to index
the corresponding encrypted results V , where G is a secure
PRF, c is a self-incremental counter, and t is an index state

Algorithm 2: Search: Secure batch query protocol
Input: Private keys {k1, k2}, secure PRFs {F,G}, en-

clave cache QSGX, indexes {ISGX, IDB}, query do-
main [qL, qR], query value v, and order conditions
cmp ∈ {≥,≤}.

Output: Plaintext file blocks.
1 Client.Token(v, cmp, [qL, qR]):
2 begin
3 k0 ← F (k1, s), s++;
4 T ← Enc(k0, v||cmp||[qL, qR]);
5 Send query token T to server-side enclave;

6 Enclave.Search(T , ISGX, IDB):
7 begin
8 s++, k0 ← F (k1, s);
9 {v||cmp||[qL, qR]} ← Dec(k0, T);

10 Find all range-match nodes {N [v1], .., N [vn]} in ISGX;
11 for each matched node N [vi], i ∈ {1, n} do
12 {ci||ti} ← N [vi], c = 0;
13 while c ≤ ci do
14 L← G(k1, vi||c||ti), c++;

15 for each label Lj , j ∈ {qL, qR} do
16 if Lj ∈ QSGX then
17 {Vj , γj} ← QSGX[Lj];

18 γ∗j
$← {0, 1}λ;

19 V ∗j ← Vj ⊕G(k2, γj)⊕G(k2, γ
∗
j);

20 Return {V ∗j , γ∗j } to the client;

21 else if Lj ∈ IDB then
22 Fetch {Vj , γj} via Enclave.Fetch(Lj , IDB);

23 γ∗j
$← {0, 1}λ;

24 V ∗j ← Vj ⊕G(k2, γj)⊕G(k2, γ
∗
j);

25 Return {V ∗j , γ∗j } to the client;

26 Return total size R = Enc(k0,
∑n
i=1 ci) to client;

27 Client.Decrypt(R, V ∗j , γ∗j):
28 begin
29

∑n
i=1 ci ← Dec(k0, R);

30 Initialize a queue Qresult with size
∑n
i=1 ci;

31 for each return result (V ∗j , γ
∗
j), j ∈ {qL, qR} do

32 Qresult[j] = G(k2, γ
∗
j)⊕ V ∗j ;

33 Get file blocks from Qresult;

that is used for tracking the number of times value v has been
queried before. The purpose of introducing the state t is to
prevent the storage server from knowing that updated indexed
blocks are associated with the same value v. After secure data
transformation, the client adds these encrypted items {L, V, γ}
to the storage IDB outside the enclave.

To retrieve these L-V pairs via range queries, we leverage
a hardware enclave to maintain the range-based index ISGX,
as shown from Line 13 to Line 23 of Algorithm 1. In our
design, each binary tree node N [v] maintains an index value

Algorithm 3: Fetch: Secure result fetch protocol
Input: Private keys {k1, k2}, secure PRF G, the related

range-matched node N [vi], indexes {ISGX, IDB},
pseudo-random label Lj in IDB.

Output: Re-encrypted indexes {L′, V ′, γ′}.
1 Enclave.Fetch(Lj , IDB):
2 begin
3 {Vj , γj} ← IDB[Lj];
4 Load {Lj , Vj , γj} into QSGX;
5 Re-encrypt results via Enclave.Rebuild(N [vi], Vj , γj);
6 Randomly select a cached label L† for eviction;
7 {V †, γ†} ← QSGX[L

†];
8 Store {L†, V †, γ†} at IDB;

9 Enclave.Rebuild(N [vi], Vj , γj):
10 begin
11 ti ← N [vi], t′i = ti + 1; /* update states */

12 Add state t′i to the node N [vi];

13 L′j ← G(k1, vi||j||t′i), γ′j
$← {0, 1}λ;

14 V ′j ← Vj ⊕G(k2, γj)⊕G(k2, γ
′
j);

15 Cache {L′j , V ′j , γ′j} inside QSGX;

v, the number of L-V pairs c, and its current index state t,
which can later be used for the enclave to generate pseudo-
random labels. With this well-ordered index, the enclave can
efficiently conduct range queries via binary search. Finally, the
hybrid indexes are uploaded to the server. That is, the range-
based indexes ISGX and the volume-hiding cipher blocks IDB

are securely deployed at the trusted enclave and server-side
storage, respectively.

C. Batch Query Protocol

The secure batch query protocol following the hybrid index
construction is presented in Algorithm 2. Given a query value
v and order condition cmp, the client can retrieve a fixed
number of search results on the matching condition during
each batch query. The client firstly generates the query token
T = Enc(k0, v||cmp||[qL, qR]), where k0 is a shared session
key2 and [qL, qR] is the query domain to determine how many
results should be returned per query. Then, the enclave can
decrypt the query token and generates the query target labels
{LqL , .., LqR} to fetch the encrypted file blocks. Specifically,
if the label is cached inside the QSGX, the enclave considers
that the target results have been queried before, and returns
previously cached results together with a one-time mask to
the client. Otherwise, the enclave needs to fetch encrypted file
blocks from IDB via Algorithm. 3.

For obfuscating the results co-occurrence pattern, each ac-
cess item should be cached inside the QSGX and re-encrypted
by the enclave, as shown in Algorithm. 3. Specifically, the
enclave randomly selects previous cached items inside the
QSGX and swaps them with external target results in IDB

2The secure channel is implemented via the Intel SGX SSL protocol.

Algorithm 4: Update: Secure data insertion protocol
Input: Private keys {k1, k2}, secure PRF G, indexes

{ISGX, IDB}, and newly add file blocks fnew for
the index value v.

Output: Updated hybrid indexes {ISGX, IDB}.
1 Client.AddToken(v, fnew):
2 begin
3 γ

$← {0, 1}λ, Tadd ← Enc(k0, γ||v||fnew);
4 Send add token Tadd to server-side enclave;

5 Enclave.Add(Tadd, N , ISGX, IDB):
6 {γ||v||fnew} ← Dec(k0, Tadd);
7 begin
8 if N.value == v then
9 {c||t} ← N [v], c′ = c+ 1;

10 Update c′ in the node N [v];
11 Lnew ← G(k1, v||c′||t);
12 Vnew ← {fnew} ⊕G(k2, γ);

/* Pad this block to p items if needed */

13 else if N.value < v then
14 Run Add(Tadd, Nright, ISGX, IDB);

15 else if N.value > v then
16 Run Add(Tadd, Nleft, ISGX, IDB);
17 else
18 Add new node N [v] = {0||0} to ISGX;
19 Lnew ← G(k1, v||0||0);
20 Vnew ← {fnew} ⊕G(k2, γ);

21 Add new indexes {Lnew, Vnew, γ} to IDB;

for cached eviction. Meanwhile, each returned result is re-
encrypted with a updated state t′i and a new nonce γ′j . Finally,
the re-encrypted results {L′j , V ′j , γ′j} are cached inside QSGX.

After receiving encrypted results {V ∗, γ∗}, the client firstly
decrypts the total result size R and generates a queue Qresult

to maintain file blocks. Then it unmasks each block ciphertext
V ∗ via computing {f1||...||fp} ← G(k2, γ

∗)⊕V ∗, and stores
the corresponding file blocks {f1||...||fp} to the queue Qresult.
In our design, the total result size is returned, which can help
the client to adaptively adjust the response size for the next
query. Thus, after a sequence of batch queries, the remaining
file blocks can be retrieved from the server.

D. Dynamic Update Protocol

Following existing works on secure databases [4], we con-
sider that it is critical to quickly index newly generated data
and make them promptly available for search and utilization.
To this end, we propose the update protocol in Algorithm 4.
To insert a new file block fnew with an index value v, the
client first sends the update request Tadd to the enclave. After
decrypting the request, the enclave searches the index value
v with ISGX and updates the corresponding counter c. After
that, it generates the newly-added index items {Lnew, Vnew}
with the incremented counter c′ and the new random nonce

γ. Since new index items are generated from the latest state,
the server cannot learn whether the newly-added items contain
a value that was searched before. Therefore, our design also
achieves the security notion of forward-privacy [6], [50], i.e.,
keeping newly updated indexes unlinkable to previous search
results. Meanwhile, new indexes are also padded to the fixed
length, thus the volume-hiding property is preserved. Finally,
these newly added indexes {Lnew, Vnew, γ}are inserted to the
storage IDB.

The proposed refresh scheme caches each accessed item
inside the enclave and uses new random masks for index bulk
updates. For security consideration, the size of the cache space
should be much larger than the index item, i.e., |QSGX| >>∑qR
j=qL

(|Lj |+ |Vj |+ |γj |). This design has two features. First,
it ensures that multiple query results can be cached together to
prevent attackers from tracking the association between tokens
and cached results. Second, the correct tracking probability is
less than

∑qR
j=qL

(|Lj | + |Vj | + |γj |)/|QSGX|. By leveraging
enclave caching, we carefully integrate the batch query proto-
col with this refresh scheme to achieve results co-occurrence
pattern obfuscation.
Side-channel elimination: Our hybrid indexes prevent against
adversaries who have a snapshot of the encrypted data. How-
ever, an adversary could potentially infer the index construc-
tion inside the enclave by tracing accessed enclave pages and
branches (also known as side-channel attacks [55]).

As acknowledged in prior SGX-enabled systems [41], [43],
[44], we note that the side-channel attacks are application de-
pendent, and many countermeasures addressing certain types
of attacks have been proposed. In our design, we propose to
load ISGX indexes into the enclave and conduct the range
query operations. If the range-based indexes ISGX can be
stored at a single enclave page, this side-channel leakage is
not exploitable because memory accesses within the same page
are indistinguishable. However, since the binary tree size may
exceed the page memory available in the enclave, enclave
pages have to be swapped in and out in this case. In this
worst case, our design could suffer from the page-level side-
channel attacks. To eliminate such leakage, a recent oblivious-
access data structure [56] can readily be adapted to our range-
based indexes inside the enclave. The high-level idea is to use
multiple random nodes to store the same index value instead
of using a single node. Then the enclave can use a breadth-first
search method with dummy operations to obfuscate the search
path leakage. As a performance tradeoff, the query throughput
would be downgrade due to the additional computation cost for
dummy operations. By using this fine-grained implementation,
we can achieve data-independent accesses and thwart the side-
channel leakages.

V. COMPLEXITY AND SECURITY ANALYSIS

In this section, we conduct a formal security analysis for
our proposed scheme. We first define leakages during pro-
tocols and quantify security guarantees following the adopted
primitives. We prove that our scheme can achieve properties of

volume-hiding and results co-occurrence obfuscation. Besides,
we provide a rigorous complexity analysis for our scheme.

A. Space Complexity

As mentioned, directly applying the naive padding approach
would consume much space cost because the volume size
of items are all set to the maximum index length Lmax =
maxv∈V |DB(v)|. Thus, the space complexity of this approach
is O(m · Lmax), where m is the number of index items.
In contrast, our design can use flexible padding blocks Pi
to achieve optimal space complexity: O(m · λ +

∑m
i=1 Pi),

where λ > 0 and Pi ∈ {0, .., Lmax − 1}. From a high level
point of view, our design follows the same intuition in [38] to
maintain encrypted results in a volume-hiding manner. Thus,
we follow [38] to provide a formal space analysis for our
proposed design. Without lose generality, we assume that the
padding block P follows a uniform distribution. Then the
storage overhead of our design can be bounded as follows.

Theorem 1. The size of hybrid index construction is at most

m · (λ+ (Lmax − 1) · (1
2
+

√
ln(1/ϕ)

2m
))

with probability at least 1− ϕ.

Proof. Let Pi denotes the additional padding block for the i-th
index item, where i ∈ {1,m}. As Pi is the uniform distribu-
tion over {0, Lmax − 1}, the additional storage overhead is
P =

∑m
i=1 Pi with the expectation E[P] = m · (Lmax−1)/2.

According to the Hoeffding’s second inequality, we have that
for all σ ≥ 0,

Pr[P ≥ m · (Lmax − 1

2
+ σ)] ≤ exp(−2 ·m · σ

2

(Lmax − 1)2
)

By setting σ = (Lmax − 1) ·
√

ln(1/ϕ)/2m, we have that

Pr[P ≥ m · (Lmax − 1) · (1
2
+

√
ln(1/ϕ)

2m
)] ≤ ϕ

In general, we refer to the parameter λ as the record length,
so that the total storage overhead is S = P + m · λ, which
follows the Theorem 1 that

Pr[S ≤ m · (λ+ (Lmax − 1) · (1
2
+

√
ln(1/ϕ)

2m
))] ≥ 1− ϕ

According to Theorem 1, we get that the storage overhead
is at most α · m · (Lmax − 1) by setting λ = (Lmax − 1) ·
(2α − 1)/4 and ϕ1 = exp(−m · (2α − 1)2/8). Since that
λ > 0, we can get α > 1/2; Meanwhile, only if α < 1, the
storage overhead of our proposed design can provide a better
storage complexity than naive padding approach, i.e., m·Lmax.
Therefore, our design can achieve optimal space complexity
when letting 1/2 < α < 1 with 1− ϕ1 probability.

B. Security Analysis

In this subsection, we provide a formal security analysis to
demonstrate the security guarantees of our proposed scheme.
Recall that we uniquely bridge the trusted hardware techniques
and volume-hiding data structure to build encrypted hybrid
indexes. The security of the hardware enclave enables the
client to perform range queries while protecting the order
leakage. Meanwhile, the bucketization-based padding method
and batch query protocols ensure that the server cannot learn
the exact result size in each round of returning data. Fol-
lowing the security notion for searchable encryption scheme,
we present a rigorous security analysis to demonstrate that
HybrIDX achieves strong protection on query requests and
outsourced files.

We first define the leakage functions of our design, including
the partial access set pattern (Aq), cache eviction set (Eq), and
eviction history set (Hq). Explicitly, Aq indicates the partial
access set from IDB returned for a query q. Eq leaks the
eviction set from the enclave cache QSGX for q and Hq tracks
the eviction history set. In our design, we use a one-time key
to encrypt query requests so that the adversary cannot trace
the dependencies between each query and results. It can only
learn repeated queries by observing whether results are cached
inside the enclave. Formally, we define the leakage functions
as below:

Aq = {L|(L, v) ∈ SGXout},
Eq = {L|(L, v) ∈ SGXin},
Hq = {q|(L, v) ∈ Aq or (L, v) ∈ Eq, q ∈ Q}.

where Q is the query list. In particular, SGXin denotes that
results are cached inside the enclave and SGXout denotes
results are fetched from IDB. We define the setup leakage
Lstep for a given DB(v):

LStep = (m, 〈|L|, |V |〉),

where m is the number of encrypted L-V pairs, and 〈|L|, |V |〉
are ciphertext lengths of labels and file blocks. When a client
sends a search request, the view of an adversary is defined in
the leakage LSrch as:

LSrch = (Aq, Eq, Hq),

where the leakage contains access items and fixed number
of encrypted results with padding. During file insertion, the
leakage LUpdt captured by an adversary is defined as:

LUpdt = (op, {L, µ}),

where op represents update operations and {L, µ} is the set
of updated items with the number µ. Note that our design
leverages fresh random masks generated from the latest state
to encrypt the newly added values and previous query results.
Thus, the adversary cannot learn the association between the
newly added indexes and any query made in the past [6], [50].
Following the simulation-based security definition in [2]–[4],
we give the formal security definition:

Definition 1. Let Ω = (Build,Search,Update) be the secure
index-based scheme of encrypted range queries, λ be the
security parameter, and let LStep, LSrch and LUpdt be the
leakage functions. We define the following probabilistic exper-
iments RealΩ,A(1

λ) and IdealΩ,A,S(1
λ) with a probabilistic

polynomial time (PPT) adversary A and a PPT simulator S:
RealΩ,A(1

λ): A selects a dataset DB(v) and asks the
client to generate the index and ciphertexts via the Build and
Update algorithms. Then A launches a polynomial number of
batch queries and asks the client for the tokens and resulting
ciphertexts via the algorithm Search. Finally, A outputs a bit
as the output.
IdealΩ,A,S(1

λ): A selects a dataset DB(v), and S sim-
ulates an index and ciphertexts for A based on LStep. From
LUpdt, S performs the update operations. Then A adaptively
performs a polynomial number of queries. From the leakage
LSrch in each batch query, S simulates tokens and ciphertexts,
which are processed over the simulated index. Finally, A
outputs a bit as the output.

Let L = (LStep,LSrch,LUpdt), Ω is adaptively L-secure for
all PPT adversaries A, there exists a simulator S such that:
Pr[RealΩ,A(1

λ) = 1]−Pr[IdealΩ,A,S(1λ) = 1] ≤ negl(λ),
where negl(λ) is a negligible function in λ.

Lemma 1. Ω is an adaptive L-secure scheme under the
random-oracle model if F,G are secure PRFs.

Definition 2. Let S0=(v0, q(v0)) and S1=(v1, q(v1)) be two
signatures from adversary A where q(v) is the length of result
size associated with v. We define the game GameµA,L(m, q)

for leakage function L = (LStep,LSrch) with m total records,
fixed volume q, and µ ∈ {0, 1} :
GameµA,L(m, q): A generates two signatures S0, S1 and

asks the client to generate the index with the signature Sµ.
The client sends LStep to the adversary A. The A launches
a polynomial number of batch queries. For each query, the
client computes LSrch. Finally, A outputs a bit as the output.

Let PrµA,L(m, q) be the probability that A outputs 1 when
playing game GameµA,L(m, q). A leakage function is volume-
hiding if and only if for all adversaries A and for all queries
q(v) ∈ {1,m} : Pr0

A,L(m, q)=Pr
1
A,L(m, q).

Lemma 2. Leakage function L=(LStep,LSrch) of our query
scheme is volume-hiding.

Therefore, we can obtain the main theorem of this section
by combining the lemma 1 and lemma 2 as follows:

Theorem 2. Ω is L-secure volume-hiding scheme under the
random-oracle model if F,G are secure PRFs.

Proof of lemma 1. Our proposed design is essentially based
on the SE scheme in [38], except that we employ the hardware
enclave to realize the range query protocol. More precisely, it
leverages the enclave to re-encrypt the accessed indexes with
fresh random masks for result set obfuscation. Besides, query
tokens are encrypted with a one-time key for preserving the
security strength. We prove the existence of a simulator S
such that for all polynomial-time adversaries A, the output

of RealΩ,A(1
λ) and IdealΩ,A,S(1

λ) are computationally
indistinguishable. Given LStep, the simulator S can generate
the simulated encrypted indexes, which is indistinguishable
from the real one. It initializes a dictionary with m items,
where each item contains |L|-bit and |V |-bit random strings
as a label-value pair. From LSrch, S can simulate the first query
and its corresponding results. In particular, for each token in
the query, it generates a random string as a simulated token
in the simulated indexes. Then, S operates a random oracle to
point at randomly selected items in the dictionary and reveals
the same simulated label to match the real ones observed from
the leakage LSrch. The identical number of simulated records
are considered as the simulated results. The simulation can be
extended to a number of adaptive queries. S records the ap-
peared results by observing whether results are cached inside
the enclave SGXin. The cached results can be simulated with
fresh strings and stored at the simulated indexes. When adding
new indexes, the results can also be simulated according to
the LUpdt. Due to the pseudo-randomness of PRF and the
semantic security of one-time key encryption, A should not
be able to distinguish between the real interactions and the
simulated ones. The outputs of experiments RealΩ,A(1

λ) and
IdealΩ,A,S(1

λ) are computationally indistinguishable. This
completes the proof.

Proof of lemma 2. The objective is to prove that the adversary
A cannot learn the exact number of matched files associated
with any values and only leak the fixed volume of a query. In
particular, we consider any two signatures S0, S1 as defined in
Definition 2. We note that the leakage LStep for IDB consists
of m items, and LSrch consists of only fixed volume q. The
leakage functions of LStep and LSrch are identical for both
signatures. As a result, the adversary A cannot distinguish
any two signatures, i.e., Pr0

A,L(m, q)=Pr
1
A,L(m, q).

VI. EXPERIMENTAL EVALUATION

A. Prototype Implementation

To assess the performance of HybrIDX, we implement a
prototype in C++ and deploy it to a Ubuntu server (16.04).
We conduct a thorough experimental evaluation on the SGX-
enabled server with an Intel(R) Core(TM) i7-7700 processor
(3.6 GHz) and 16GB RAM. The SGX physical memory is
set to 128MB due to the hardware constraints. To evaluate
the query efficiency when handling a large-scale dataset, we
pre-insert 160K data records and randomly assign them to 1K
index values. We generate a Redis (v5.0.3) cluster to maintain
the encrypted volume-hiding storage. Our system uses Apache
Thrift (v0.9.2) to implement the remote procedure call (RPC)
between the client and servers. For cryptographic primitives,
we use Intel SGX SSL and OpenSSL (v1.1.0g) to implement
the symmetric encryption via AES-128 and the pseudo-random
function via HMAC-256. Overall, our implementation consists
of 16885 lines of code (LOC).

B. Performance Evaluation

Our experimental evaluation targets on testing the practical-
ity of the proposed hybrid index design, including initialization
time, memory cost, range query efficiency, and throughput. We
also compare our hybrid index design with pure cryptographic
solutions and the plaintext version in this section.
Evaluation on hybrid indexes: We first evaluate the total
time cost of building the encrypted hybrid index when using
algorithm 1. As shown in Fig. 3(a), we observe that the time
cost of system initialization increases linearly with the number
of data records. Specifically, the client only takes less than 5s
to finish the build procedure when encrypting 160K records.
In addition, we emphasize that this initialization process is a
one-time cost, and the server can efficiently add new indexes
without influencing the other built indexes.

In Fig. 3(b), we investigate the CDF of the padding cost un-
der different padding schemes. For the naive padding scheme,
each index item is padded to the maximum length of the query
results. Thus, the additional padding cost for each index item
is (Lmax−|DB(v)|), where Lmax is the maximum result size.
As we can see from Fig. 3(b), such a simple approach would
introduce a huge storage overhead. For instance, the introduced
space cost for over 70% of index items is more than 0.8 KB,
of which approximately 20% of index items are more than 1.8
KB. Regarding the padding cost of the volume-hiding scheme,
it depends on the bit length of each block p. Specifically, each
padded block introduces (p−|DB(v)| mod p) padding cost.
Besides, it also generates new labels (b |DB(v)|

p c×256 bits) to
index the resulting block ciphers. As shown in Fig. 3(b), the
introduced overhead for over 80% volume-hiding indexes are
less than 0.4 KB. The results confirm that our hybrid index
framework can achieve optimized storage consumption.
Evaluation on query efficiency: To assess the practicality of
our query protocol, we further measure the range query latency
over encrypted hybrid indexes. The total latency consists
of the time cost for cryptographic operations at the server-
side and the time cost for secure token generation at the
client-side. In particular, Fig. 3(c) measures the performance
comparison between our hybrid index design with the ORE-
based indexes in [18] and a plaintext version. In our proposed
design, the enclave conducts range queries over its in-memory
index via binary search, and then generates the corresponding
pseudo-random labels based on the range query results to
fetch the encrypted file blocks. Since the in-memory index
is well-ordered, so that the query performance can reach the
processing speed similar to the plaintext version. In contrast,
an ORE-based index does not directly present order relations
and thus a sorted index cannot be used. It requires a linear
scan on the whole ORE-based indexes to evaluate the order
results. Specifically, when the number of matched results is
10K, the query latency of our design is around 0.14s, which
is almost 18× faster compared to the ORE-based scheme.
The evaluation result confirms that HybrIDX benefits from
the hardware-assisted index framework and can support secure
range queries efficiently.

10K 20K 40K 80K 160K
Number of data values

0

1.0

2.0

3.0

4.0

5.0

Ti
m

e
co

st
 (s

)

HybrIDX InitTime

(a) HybrIDX initialization time

0 0.4 0.8 1.2 1.6 2
Storage overhead (KB)

0

0.2

0.4

0.6

0.8

1

C
D

F
(%

)

Naive padding
HybrIDX

(b) HybrIDX storage overhead

0.1K 1K 2K 5K 10K
Number of result size

0

0.6

1.2

1.8

2.4

3.0

Ti
m

e
co

st
 (s

)

ORE Index
HybrIDX
Redis

(c) Encrypted query comparison

1 2 4 8 16
Number of servers

0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
co

st
 (s

)

5K
10K
15K

(d) Encrypted query latency

10 100 200 500 1000
Number of duplicates

0

1K

2K

3K

4K

5K

En
tri

es
/ s

HybrIDX
Redis

(e) Encrypted query throughput

1K 2K 4K 8K 16K
Number of newly added values

0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
co

st
 (s

)

HybrIDX AddTime

(f) Insertion latency

Fig. 3: Evaluation for HybrIDX performance.

To evaluate the scalability of our index design, we accord-
ingly evaluate the query latency when using multiple data
servers. As shown in Fig. 3(d), we can find that as the number
of data servers increases, the query latency that returns a fixed
number of search results is reduced dramatically in a similar
proportion. When the number of matched records is 15K, the
query latency with 8 servers is around 0.29s, which is roughly
half of the latency with 4 servers. The results confirm that
HybrIDX performs satisfactorily at scale and can effectively
handle queries in parallel.

To gain a deeper understanding of the query performance,
we also compare the query throughput with a plaintext Redis
version in Fig. 3(e) when varying the number of duplicates per
indexed value. In our design, the file blocks for an indexed
value are randomly mapped into multiple block ciphertexts.
During each query, the enclave increments a counter to gen-
erate the labels for fetching these encrypted blocks. Thus, the
number of labels corresponding to a query value increases
with the number of duplicates. This volume-hiding design can
protect the relations between indexed values and different file
blocks, but it introduces an additional computational cost of
cryptographic operations. In contrast, a plaintext index can
map duplicates to a single reference and fetches these records
all in a scan. As shown in Fig. 3(e), we find that both HybrIDX
and Redis indexes follow a similar downward trend as the
number of duplicates increases. The throughput of HybrIDX
decreases from about 587 items/s to 166 items/s as the number
of duplicates increases from 100 to 500. When all results of
each index value can be mapped to a single block, the query
throughput can achieve up to 1.1K items per second, which is
fast enough for practical applications. According to evaluation

results, our hybrid index design is shown to be capable of
providing a flexible balance on data security, space utilization,
and query efficiency.

Recall that our proposed design also supports incremental
updates for newly added files. In Fig. 3(f), we accordingly
evaluate the incremental scalability by measuring the time cost
for index item insertion. Note that the latency of the update
processing includes the time cost of index traversal, state
update, and new index generation. Nonetheless, the update
latency is still slightly faster than the time cost of system
initialization. This is because the enclave index is already
sorted so that it can efficiently locate the index node that needs
to be updated. As shown in Fig. 3(f), when the number of
newly added files is 16K, it just takes 0.45s to insert these
newly added index items.

VII. CONCLUSION

In this paper, we introduce a new hybrid index frame-
work, called HybrIDX, that enables volume-hiding range
queries over encrypted data. HybrIDX is designed to care-
fully combine the trusted hardware techniques and volume-
hiding structures while mitigating individual disadvantages
of these technologies. Compared with previous designs, Hy-
brIDX simultaneously enables a dramatic speed-up over pure
cryptographic designs and protection from volume attacks.
Besides, an enclave caching method is proposed for secure
results obfuscation that is compatible with our hybrid index
framework. Extensive experimental results have shown that the
proposed design is provably secure and highly efficient.

ACKNOWLEDGMENT

This work was supported by Alibaba-Zhejiang University
Joint Research Institute of Frontier Technologies, Renyun
Digital, the Research Grants Council of Hong Kong under
Grants CityU 11202419, CityU 11212717, CityU 9042819,
and C1008-16G, and the National Natural Science Foundation
of China under Grants 61732022, 61772236, and 61572412.

REFERENCES

[1] E.-J. Goh, “Secure indexes,” in IACR Cryptology ePrint Archive, vol.
2003, p. 216, 2003.

[2] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, pp. 895–934, 2011.

[3] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. of ACM CCS, 2012.

[4] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner, “Dynamic searchable encryption in very large databases:
Data structures and implementation,” in Proc. of NDSS, 2014.

[5] M. Chase and S. Kamara, “Structured encryption and controlled disclo-
sure,” in Proc. of ASIACRYPT, 2010.

[6] Y. Guo, C. Zhang, and X. Jia, “Verifiable and forward-secure encrypted
search using blockchain techniques,” in Proc. of IEEE ICC, 2020.

[7] Q. Wang, Y. Guo, H. Huang, and X. Jia, “Multi-user forward secure
dynamic searchable symmetric encryption,” in Proc. of NSS, 2018.

[8] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
protecting confidentiality with encrypted query processing,” in Proc. of
ACM SOSP, 2011.

[9] Y. Guo, C. Wang, X. Yuan, and X. Jia, “Enabling privacy-preserving
header matching for outsourced middleboxes,” in Proc. of IWQoS, 2018.

[10] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner,
“Rich queries on encrypted data: Beyond exact matches,” in Proc. of
ESORICS, 2015.

[11] “Bigquery project.” Online at https://cloud.google.com/bigquery/, 2014.
[12] Y. Guo, X. Yuan, X. Wang, C. Wang, B. Li, and X. Jia, “Enabling

encrypted rich queries in distributed key-value stores,” IEEE TPDS,
vol. 30, no. 7, pp. 1283–1297, 2018.

[13] V. Pappas, B. Vo, F. Krell, S. Choi, V. Kolesnikov, A. Keromytis, and
T. Malkin, “Blind Seer: A Scalable Private DBMS,” in Proc. of IEEE
S&P, 2014.

[14] R. Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted
database system,” in Proc. of VLDB Endowment, 2019.

[15] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gade-
pally, R. Shay, J. D. Mitchell, and R. K. Cunningham, “Sok: Crypto-
graphically protected database search,” in Proc. of IEEE S&P, 2017.

[16] S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang, “Servedb: Secure,
verifiable, and efficient range queries on outsourced database,” in Proc.
of ACM ICDE, 2019.

[17] X. Yuan, Y. Guo, X. Wang, C. Wang, B. Li, and X. Jia, “Enckv: An
encrypted key-value store with rich queries,” in Proc.of ACM AsiaCCS,
2017.

[18] K. Lewi and D. J. Wu, “Order-Revealing Encryption: New Construc-
tions, Applications, and Lower Bounds,” in Proc.of ACM CCS, 2016.

[19] D. Cash, F.-H. Liu, A. ONeill, M. Zhandry, and C. Zhang, “Parameter-
hiding order revealing encryption,” in Proc. of ASIACRYPT, 2018.

[20] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu, “Practical Order-
Revealing Encryption with Limited Leakage,” in Proc. of FSE, 2016.

[21] C. Mavroforakis, N. Chenette, A. O’Neill, G. Kollios, and R. Canetti.,
“Modular order-preserving encryption,” in Proc. of SIGMOD, 2015.

[22] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich, “Pope: Partial
order preserving encoding,” in Proc. of ACM SIGSAC, 2016.

[23] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions,” in
Proc. of CRYPTO, 2011.

[24] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol for
order-preserving encoding,” in Proc. of IEEE S& P, 2013.

[25] F. Kerschbaum, “Frequency-hiding order-preserving encryption,” in
Proc. of ACM CCS, 2015.

[26] D. Bogatov, G. Kollios, and L. Reyzin., “A comparative evaluation of
order-revealing encryption schemes and secure range-query protocols,”
in Proc. of VLDB Endowment, 2019.

[27] Y. Jing, Y. Zheng, Y. Guo, and C. Wang, “Sok: A systematic study of
attacks in efficient encrypted cloud data search,” in Proc. of SBC, 2020.

[28] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks on
secure outsourced databases,” in Proc. of ACM CCS, 2016.

[29] M.-S. Lacharit and B. Minaud, “Improved reconstruction attacks on
encrypted data using range query leakage,” in Proc. of IEEE S&P, 2018.

[30] Z. Gui, O. Johnson, and B. Warinschi, “Encrypted databases: New
volume attacks against range queries,” in Proc. of ACM SIGSAC, 2019.

[31] I. Demertzis, D. Papadopoulos, C. Papamanthou, and S. Shintre, “Seal:
Attack mitigation for encrypted databases via adjustable leakage,” in
USENIX Security, 2020.

[32] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting leakage abuse
attacks,” in Proc. of NDSS, 2020.

[33] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else is revealed by
order-revealing encryption?” in Proc. of ACM CCS, 2016.

[34] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proc. of ACM CCS, 2015.

[35] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart,
“Leakage-abuse attacks against order-revealing encryption,” in Proc. of
IEEE S&P, 2017.

[36] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proc. of ACM CCS, 2015.

[37] S. Kamara, T. Moataz, and O. Ohrimenko, “Structured encryption and
leakage suppression,” in Proc. of CRYPTO, 2018.

[38] S. Kamara and T. Moataz, “Computationally volume-hiding structured
encryption,” in Proc. of EUROCRYPT, 2019.

[39] S. Patel, G. Persiano, K. Yeo, and M. Yung, “Mitigating leakage in
secure cloud-hosted data structures: Volume-hiding for multi-maps via
hashing,” in Proc. of CCS, 2019.

[40] A. William and T. Tullis, “Measuring the user experience: collecting,
analyzing, and presenting usability metrics,” in Newnes, 2013.

[41] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa, “Oblix: An
efficient oblivious search index,” in Proc. of IEEE S&P, 2018.

[42] B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and A.-R.
Sadeghi, “Hardidx: Practical and secure index with sgx,” in Proc. of
DBSec, 2017.

[43] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in Proc. of NSDI, 2017.

[44] S. Sasy, S. Gorbunov, and C. W. Fletcher, “Zerotrace: Oblivious memory
primitives from intel sgx,” in IACR Cryptology ePrint Archive, 2017.

[45] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database
using sgx,” in Proc. of IEEE S&P, 2018.

[46] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proc. of ACM HASP, 2013.

[47] D. Vinayagamurthy, A. Gribov, and S. Gorbunov, “Stealthdb: a scalable
encrypted database with full sql query support,” in Proc. of Privacy
Enhancing Technologies, 2019.

[48] S. Eskandarian and M. Zaharia, “Oblidb: oblivious query processing for
secure databases,” in Proc. of VLDB Endowment, 2019.

[49] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren, “Lightbox:
Full-stack protected stateful middlebox at lightning speed,” in Proc. of
ACM CCS, 2019.

[50] V. Viet, S. Lai, X. Yuan, S.-F. Sun, S. Nepal, and J. K. Liu, “Acceler-
ating forward and backward private searchable encryption using trusted
execution,” in Proc.of ACNS, 2020.

[51] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and S.
Devadas, “Path oram: an extremely simple oblivious ram protocol,” in
Proc. of ACM CCS, 2013.

[52] F. Brasser, U. Muller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.
Sadeghi, “Software grand exposure: Sgx cache attacks are practical,” in
Proc. of WOOT, 2017.

[53] J. Gotzfried, M. Eckert, S. Schinzel, and T. Muller, “Cache attacks on
intel sgx,” in Proc. of EUROSEC, 2017.

[54] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Mal-
ware guard extension: Using sgx to conceal cache attacks,” in Proc. of
DIMVA, 2017.

[55] M.W.Shih, S.Lee, T.Kim, and M.Peinado, “T-sgx:eradicating controlled-
channel attacks against enclave programs,” in Proc. of NDSS, 2017.

[56] X. Wang, K. Nayak, C. Liu, T. H. Chan, E. Shi, E. Stefanov, and Y.
Huang, “Oblivious data structures,” in Proc. of CCS, 2014.

