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All w; can be calculated in O(ulog u) time:

1. We maintain O(log u) partial w;s at a time.

2. Compute affected w; and contribution from
each v(x) in O(log u) time.

2. Process v(x)s in sorted order. [GKMS01]

[GKMS01] A.C. Gilbert, et al. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In VLDB, 2001.
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@ A common choice for a histogram is the Haar wavelet histogram.

o We obtain the Haar wavelet coefficients w; recursively as follows:

Affected

wi

S[[ e w0 vl = -
/

olGlCRCRERERERT

W) v@) vBE) @) V) vE) v) vE)

All w; can be calculated in O(ulog u) time:

1. We maintain O(log u) partial w;s at a time.

2. Compute affected w; and contribution from
each v(x) in O(log u) time.

2. Process v(x)s in sorted order. [GKMS01]

~

~
I

w

[GKMS01] A.C. Gilbert, et al. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In VLDB, 2001.
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Introduction: Histograms

o We may also compute w; with the wavelet basis vectors ;.

o wj=v-Yifori=1... u
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Outline

@ Introduction and Motivation

@ MapReduce and Hadoop
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Introduction: MapReduce and Hadoop

R
Record ID | User ID | Object ID ...
1 12872
2 19832

3 231

\HHOHHN% NS

o Traditionally data is stored in a centralized setting.
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Introduction: MapReduce and Hadoop

R
Record ID | User ID | Object ID ...
1 1 12872
2 8 19832
3 4 231

N £ ﬂ
RRZ:RluRzuRiJR,;

o Traditionally data is stored in a centralized setting.
o Now stored data has sky rocketed, and is increasingly distributed.
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Introduction: MapReduce and Hadoop

R
Record ID | User ID | Object ID ...
1 1 12872
2 8 19832
3 4 231

N £ ﬂ
RRZ:RluRzuRiJR,;

o Traditionally data is stored in a centralized setting.

o Now stored data has sky rocketed, and is increasingly distributed.

@ We study computing the top-k coefficients efficiently on distributed
data in MapReduce using Hadoop to illustrate our ideas.
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Background: Hadoop Distributed File System (HDFS)

o Hadoop requires a Distributed File System (DFS), we utilize the
Hadoop Distributed File System (HDFS).
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Background: Hadoop Distributed File System (HDFS)

o Hadoop requires a Distributed File System (DFS), we utilize the
Hadoop Distributed File System (HDFS).

NameNode R

’ Record ID | User ID | Object ID|. ..
1 1 12872 |...

-— 2 8 19832 |...

3 4 231 ...

DataNodes
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Background: Hadoop Distributed File System (HDFS)

o Hadoop requires a Distributed File System (DFS), we utilize the
Hadoop Distributed File System (HDFS).

R’s DataChunks (Splits)
NameNode

<«— | 64MB| 64MB | 64MB| 64MB

DataNodes
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Background: Hadoop Distributed File System (HDFS)

o Hadoop requires a Distributed File System (DFS), we utilize the
Hadoop Distributed File System (HDFS).

R’s DataChunks (Splits)
NameNode

<«— | 64MB| 64MB | 64MB| 64MB

_—
/

DataNodes
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Background: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several
Task Trackers.
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Background: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several
Task Trackers.

@ We assume one TaskTracker per physical machine.
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Background: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several
Task Trackers.

@ We assume one TaskTracker per physical machine.
JobTracker

f

TaskTrackers
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Background: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several

Task Trackers.
@ We assume one TaskTracker per physical machine.
JobTracker
’ Job Scheduling
Mapper Task Scheduling
E Reduce Task Scheduling

TaskTrackers
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Background: Hadoop Core

@ Hadoop Core consists of one master JobTracker and several

Task Trackers.
@ We assume one TaskTracker per physical machine.
JobTracker
’ Job Scheduling
Mapper Task Scheduling
E Reduce Task Scheduling
Mappers
Reducers

/] v

s
2 g E

TaskTrackers
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Background: Hadoop Cluster

@ In a Hadoop cluster one machine typically runs both the NameNode
and JobTracker tasks and is called the master.
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Background: Hadoop Cluster

@ In a Hadoop cluster one machine typically runs both the NameNode
and JobTracker tasks and is called the master.

@ The other machines run DataNode and TaskTracker tasks and are
called slaves.
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Background: Hadoop Cluster

@ In a Hadoop cluster one machine typically runs both the NameNode
and JobTracker tasks and is called the master.

@ The other machines run DataNode and TaskTracker tasks and are

called slaves.
NameNode + JobTracker

DataNodes + TaskTrackers
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Background: Hadoop Cluster

@ In a Hadoop cluster one machine typically runs both the NameNode
and JobTracker tasks and is called the master.

@ The other machines run DataNode and TaskTracker tasks and are

called slaves.
NameNode + JobTracker

A

Master

Slaves

DataNodes + TaskTrackers
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Background: MapReduce Job Overview

JobTracker
Job Configuration
E Distributed Cache

Mapper

Mapper

Mapper

Mapper

=
o
<
o
=
2
3

@ Next we look at an overview of a typical MapReduce Job.
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Background: MapReduce Job Overview

JobTracker

Job Configuration
Distributed Cache

SN

Mapper
=

Map Phase
@ Job specific variables are first placed in the Job Configuration which
is sent to each Mapper Task by the JobTracker.
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Background: MapReduce Job Overview

JobTracker

v Job Configuration
E Distributed Cache

Mapper
=

Map Phase
o Large data such as files or libraries are then put in the Distributed
Cache which is copied to each TaskTracker by the JobTracker.
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Background: MapReduce Job Overview

JobTracker

v Job Configuration
E Distributed Cache

Map Phase

@ The JobTracker next assigns each InputSplit to a Mapper task on a
TaskTracker, we assume m Mappers and m InputSplits.
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Background: MapReduce Job Overview

JobTracker

Job Configuration
E Distributed Cache

(ki,v1) (ko v2) o
Mapper
(ki v1) (ko, v2)
Mapper ) o
(ki vi) (ko. v2) -
Mapper 1
(ki) (ko )
Mapper L2
Map Phase

e Each Mapper maps a (ky, v1) pair to an intermediate (kz, v2) pair
and partitions by ko, i.e. hash(ky) = p; for i € [1,r], r = |reducers|.
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Background: MapReduce Job Overview

JobTracker

Job Configuration
E Distributed Cache

(ki, v1) (ko v2)
Mapper

(ko list(v2))
(ki v1) (ka, v2) ko, li
(ki v1) " (k2 v2) o U fist()

apper

-
(ki va) (ko v2) (ko list(v2))

Map Phase

@ An optional Combiner is executed over (ka, list(v2)).
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Background: MapReduce Job Overview

JobTracker

Job Configuration
E Distributed Cache

(ki v1) (Ko, v2) (ko list(v2)) (k2. v2)
Mapper ’ @ R Combiner

(ki v1) (Ko, v2) (ko list(v2)) (k2. v2)

(K1, v1) (K2, v2)

(Ko, v2) ko, list] ko v
Mopper o] ke fst(v2)
I

(o)~ o) [ Gnlite) —— (bw) [
oper ambiner

Map Phase

e The Combiner aggregates v, for a kp and a (ka, v») is written to a
partition on disk.
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Background: MapReduce Job Overview

JobTracker

Job Configuration
E Distributed Cache

(ki, v1) (Ko, v2) ] (ko list(v2)) (Ko, v2)
Mapper n Combiner
[p2]
(ki v1) (K2, v2) (ko lst(v2)) (koo v2) Reducer
1,1 2, Vo, 0. list(v Q.
[r] \Sombiner J
(k1) (o, v2) (ko fist(v2)) (ko, v2)
(ki,v1) (k2. v2) B (Ko, list(v)) (K2, v2)
Mapper Combiner
P2
Map Phase Shuffle/Sort Phase

@ The JobTracker assigns two TaskTrackers to run the Reducers, each
Reducer copies and sorts it's inputs from corresponding partitions.
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Background: MapReduce Job Overview

JobTracker

Job Configuration
E Distributed Cache Combiners reduce communication overhead!

(ki, v1) (Ko, v2) (ko list(v2)) (Ko, v2)
Mapper [or] Combiner
[p2]
(ki v) (ko ) (ko list()) (koy v2)
[r] \Sombiner J
(k1) (o, v2) (ko fist(v2)) (ko, v2)
Mapper P
(ki,v1) (k2. v2) B (Ko, list(v)) (K2, v2)
Mapper Combiner
P2
Map Phase Shuffle/Sort Phase

@ The JobTracker assigns two TaskTrackers to run the Reducers, each
Reducer copies and sorts it's inputs from corresponding partitions.
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Background: MapReduce Job Overview

JobTracker

Job Configuration
E Distributed Cache

(ki v1) (ko v2) ] (ko list(v2)) (k2. v2)
Mapper \2‘ Combiner (ks v3)
Reducer o1
(ki) (ko v2) (ko list(v2)) (ko v2) - .
[r]
(k1) (o, v2) (ko fist(v2)) (ko, v2) (ks va)
(ki,v1) (k2. v2) B (Ko, list(v)) (K2, v2)
Mapper Combiner
P2
Map Phase Shuffle/Sort Phase Reduce Phase

@ Each Reducer reduces a (ka, list(v2)) to a single (ks, v3) and writes
the results to a DFS file, o; for i € [1,r].
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Outline

© Exact Top-k Wavelet Coefficients
@ Naive Solution
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null)

- x, null
split 1 ( ) Mapper
split 2
SPlﬁt 3 (x, null)
split 4
(x, null)

@ Each of the m Mappers reads the input key x from its input split.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null) (x.1)
' x, null
ety ) )
split 2
spl?t 3 (x, null) (x,1)
split 4 4’
(x, null) (1)

e Each Mapper emits (x, 1) for combining by the Combiner.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null) (x,1) (x, vj(x))
Pt 1 (x, null) m (x,1) (x,vj(x))
split 2 PP -
SPlﬁt 3 (x, null) (x,vj(x))
split 4 Mapper 4_.
X, nuII x, 1 x,vj X)
o e

e Each Combiner emits (x, vj(x)), where v;(x) is the local frequency
of x.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null) (x,1) (x, vj(x))
Centralized Wavelet Top-k

- (x, null) (x.1) (x,v(x)) (x,v(x)) ‘
split 1 J
SFF:“t 2 mg’

it 3 (x, null (x.1)
(x, null)

@ (x,1) - (x,v(x))

@ The Reducer utilizes a Centralized Wavelet Top-k algorithm,
supplying the (x, v(x)) in a streaming fashion.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null) (x,1) (x, vj(x))
Centralized Wavelet Top-k

- (x, null) (x.1) (x,v(x)) close() ‘
split 1 J
sglit 3 m"

it 3 (x, null (x.1)
(x, null)

@ (x,1) - (x,v(x))

@ At the end of the Reduce phase, the Reducer’s close() method is
invoked. The Reducer then requests the top-k |w;|.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

Centralized Wavelet Top-k

top-k |w;| l

’ (x, null) x. 1 (x,vj(x))
oot | (Mapper DY :
spli

split 3 (x, null)

split 4 &.
\M w (x,1) . (%, vj(x))

@ The centralized algorithm computes the top-k |w;| and returns these
to the Reducer.
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

(x, null) @ (x,v(x)

)
split T (o mul ¢ Wapper 7Y, )

split 2
split 3 (x, null)

split 4 Xgl).
\M w (x,1) . (%, vj(x))

e Finally, the Reducer writes the top-k |w;| to its HDFS output file o;.

Centralized Wavelet Top-k

top-k |w;| l
o
top-k |wj|

2 =
<
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Exact Top-k Wavelet Coefficients: Naive Solution

JobTracker

n = Total records in input file.
Too Expensive!!!

O(n) Communication!!!

(x, null) (x,1) (x,vj(x))
Centralized Wavelet Top-k

top-k |w;
Sl T (x, null) m (x,1) p-k wi| l
split 2 PP
A N
top-k ||

split 3 (x, null) (x,1)

Jeffrey Jestes, Ke Yi i i Wavelet Histograms on Large Data in MapReduce



© Exact Top-k Wavelet Coefficients

@ Hadoop Wavelet Top-k: Our Efficient Exact Solution
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

wi = vt = (00 ) i = 00 Wiy
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

wi = vt = (00 ) i = 00 Wiy

Coordinator

w; j is the local value of w; in split j.

split 1 split 2 split 3 split 4
W11 W12 w13 Wia
W21 w22 w23 W24
W31 W32 w33 W34
Wy,1 Wy 2 Wu3 Wy .4
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

wi = vt = (00 ) i = 00 Wiy

@

split 1 split 2 split 3 split 4
W11 W12 w13 Wia
W21 w22 w23 W24
W31 W32 w33 W34
Wy,1 Wy 2 Wu3 Wy .4
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:

wi = vt = (00 ) i = 00 Wiy

m
w; = ¥ Wi j

Jj=1

split 1 split 2 split 3 split 4
W11 W12 w13 Wia
W21 w22 w23 W24
W31 W32 w33 W34
Wy,1 Wy 2 Wu3 Wy .4
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:
m m
wp =V -1 = (Zj:l vj) i = 21:1 Wi
@ Previous solutions assume local score s; ; > 0 and want the largest
Si =D i1 Sije

m
w; = ¥ Wi j

Jj=1

split 1 split 2 split 3 split 4
W11 W12 w13 Wia
W21 w22 w23 W24
W31 W32 w33 W34
Wy,1 Wy 2 Wu3 Wy .4
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Exact Top-k Wavelet Coefficients: Our Solution

@ We can try to model the problem as a distributed top-k:
m m
wp =V -1 = (Zj:l vj) i = 21:1 Wi
@ Previous solutions assume local score s; ; > 0 and want the largest
St =D i1 Sie
e We have w;; < 0 and w;; > 0 and want the largest |w;|.

m
w; = ¥ Wi j

Jj=1

split 1 split 2 split 3 split 4
W11 W12 w13 Wia
W21 w22 w23 W24
W31 W32 w33 W34
Wy,1 Wy 2 Wu3 Wy .4
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Exact Top-k Wavelet Coefficients: Our Solution

node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
er1|5] 20 e1|5] 12 e1]1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
eq|d| -2 e4[2| -5 e4(2| -3
er5|6] -15 s3] -14 e35/5| -6
er6|3] -30 €60| -20 €366/ -10
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Exact Top-k Wavelet Coefficients: Our Solution

® An item x has a local score si(x) at node i Vi € [1...m], where if
x does not appear si(x) = 0

node 1 node 2 node 3
id [x[[si(x) id | x [s(x) id | x[ss3(x)
er1]5] 20 e1|5] 12 es1|1] 10
es[2] 7 2|4 e2[3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|d4| -2 &4|2]| 5 e34(2] -3
er5]6|-15 es5|3] -14 es5/5| -6
ers|3]-30 e26]6] 20 36| 6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R

id | x|si(x)

e1]5| 20

e6|3]-30

€1]5] 12 e Each node sends:

6] -20 . .

o 1] 10 the top-k most pOSItIYE scored n.:ems

ers[6] 10 the top-k most negative scored items.

node 1 node 2 node 3

id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 s3] -14 e35/5| -6
es|3] 30 || e6[6] -20 | €566 10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[si(x)| 7 "[x[s(x)| A [T (x) |7 (x) | 7(x)
e (5] 20 1|10 |001| 42 -40 0
e6|3] -30 3|-30 [100| -8 -60 8
e1|5| 12 5| 32 |110] 42 2 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e1|1] 10

€36(6] -10

® The coordinator computes useful bounds for each received item.

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[si(x)| 7 [x|sC) | A [T (x) |7 (x) | 7(x)
e (5] 20 1|10 |001| 42 -40 0
e6|3] -30 3]-30 |100| -8 -60 8
e1|5| 12 5|32 |110] 42 2 | 22
e6|6] -20 6-30 |011] -10 | -60 | 10
e1|1] 10

€36(6] -10

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[s;(x)| 7 "[x[s(x)| A [T(x) |7 (x) ] 7(x)
e1|5[20 ]| 1|10 |001| 42 -40 0
e16|3] -30 3|-30 [100| -8 -60 8
15[ 12 ] 5| 32 |110| 42 2 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e1|1] 10

€36(6] -10

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[s;(x)| 7 [x[sC) | A |7 (x) |7 (x) | 7(x)
e (5] 20 1| 10 |001| 42 -40 0
e6|3] -30 3|-30 |100| -8 -60 8
e1|5| 12 5| 32 |110| 42 2 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e1|1] 10

€36(6] -10

® [ is a receipt indication bit vector,
if si(x) is received Fy(i) =1,

else F, (i) = 0.

node 1 node 2 node 3
id [x[s1(x) id [x[s(x) id | x|s3(x)
e11[5] 20 || e1[5] 12 es1[1] 10 |
en|2| 7 &4 7 e32]3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 €4|2| 5 e4)2| 3
er5|6] -15 s3] -14 e35/5| -6
er6]3] -30 | e6[6] -20 || e36]6] -10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[s(x)| 7 "[x|5(x)| A [T"(x) |7 (x)]7(x)
e11[5] 20 1|10 |001| 42 -40 0
e16|3] -30 3|-30 [100| -8 -60 8
e1]5] 12 ]| 5| 32 |110| 42 2 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e1|1] 10

€36(6] -10

® [ is a receipt indication bit vector,
if si(x) is received Fy(i) =1,

else F, (i) = 0.

node 1 node 2 node 3
id [x[s1(x) id [x[s(x) id | x|s3(x)
e11[5] 20 || e1[5] 12 es1[1] 10 |
en|2| 7 &4 7 e32]3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 €4|2| 5 e4)2| 3
er5|6] -15 s3] -14 e35/5| -6
er6]3] -30 | e6[6] -20 || e36]6] -10 ||
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[si(x)| 7 "[x[s(x)| A |7 (x) |7 (x) | 7(x)
e (5] 20 1| 10 |001f 42 -40 0
e6|3] -30 3|-30 [100] -8 -60 8
e1|5| 12 5| 32 |110| 42 2 | 22
e6|6] -20 6|-30 |011| -10 | -60 | 10
e1|1] 10

€36(6] -10

e 77 (x) is an upper bound on the total score s(x),
if s(x) received then 77(x) = 77 (x) + s;(x)
else 77 (x) = 77(x) + k'th most positive from node i

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[s;(x)] 7 "[x[s(x)| A [T (x) |7 (x) | 7(x)
e (5] 20 | 1|10 |001| 42 -40 0
e6|3] -30 3|-30 [100| -8 -60 8
e1|5] 12 ] 5| 32 |110] 42 2 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e |1] 10

€36(6] -10

e 77 (x) is an upper bound on the total score s(x),
if s(x) received then 77(x) = 77 (x) + s;(x)
else 77 (x) = 77(x) + k'th most positive from node i

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[si(x)| 7 "[x[5(x)| A [T (x) [7_(x)]7(x)
e (5] 20 1|10 |001| 42 -40 0
e6|3] -30 3|-30 [100| -8 -60 8
e1|5| 12 5| 32 |110] 42 22 | 22
e6|6] -20 6|-30 |011] -10 | -60 || 10
e1|1] 10

€36(6] -10

® 7 (x) is a lower bound on the total score sum s(x),
if 5i(x) received then 7 (x) = 7~ (x) + si(x)
else 77(x) = 77 (x) + k'th most negative score from node i

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[si(x)| 7 "x|s(x)| F [T(x) |7 (x) ] 7(x)
e 1|5 20 | 1|10 |001| 42 -40 0
e6|3] -30 3|-30 [100| -8 -60 8
e1|5] 12 | 5| 32 |110] 42 22 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e1|1] 10

es[6[-10 ]|

® 7 (x) is a lower bound on the total score sum s(x),
if 5i(x) received then 7 (x) = 7~ (x) + si(x)
else 77(x) = 77 (x) + k'th most negative score from node i

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[si(x)]| 7 x[s(x)]| A |77 () |7 (x) [7(x
e (5] 20 1|10 |001| 42 -40 0
e6|3] -30 3|-30 [100| -8 -60 8
e1|5| 12 5| 32 |110] 42 22 | 22
e6|6] -20 6|-30 |011] -10 | -60 || 10
e1|1] 10

€36(6] -10

o 7(x) is a lower bound on |s(x)| computed as,
7(x) = 0 if sign(7"(x)) # sign(T(x))

7(x) = min(|7(x)], |7~ (x)|) otherwise.

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id [x[si(x)| 7 "[x[s(x)| A [T (x) |7 (x) | 7(x)
e (5] 20 1|10 |001| 42 -40 0
e6|3] -30 3|-30 [100| -8 -60 8
e1|5| 12 5| 32 |110| 42 22 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e1|1] 10

€36(6] -10

o 7(x) is a lower bound on |s(x)| computed as,
7(x) = 0 if sign(7"(x)) # sign(T(x))

7(x) = min(|7(x)], |7~ (x)|) otherwise.

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id | x|si(x) x[s(x)| B [77(x) |7~ (x) | 7(x)
e (5] 20 1|10 |001| 42 -40 0
e6|3] -30 3|-30 [100| -8 -60 8
e1|5| 12 5| 32 |110] 42 22 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e [T T

e36|6] -10

o We select the item with the kth largest 7(x).
7(x) is a lower bound T; on the top-k |s(x)]| for unseen item x.

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id | x|si(x) x[s(x)| B [77(x) |7~ (x) | 7(x)
e (5] 20 1|10 |001| 42 -40 0
e6|3] -30 3|-30 [100| -8 -60 8
e1|5| 12 5| 32 |110] 42 22 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e [T T

e36|6] -10

® Any unseen item x must have at least:
one s;(x) > T1/m or
one si(x) < —Ty/m
To get into the top-k.

node 1 node 2 node 3
id | x| s(x) id | x|s(x) id |x|s3(x)
er1]5] 20 | e1]5] 12 | es1[1] 10 |
es|2| 7 &4 7 e2(3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
er5|6] -15 es5|3] -14 e35|5] -6
ers]3] -30 | e6[6] -20 || e36]6] -10 |
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| B [77(x) |7~ (x) | 7(x)
e1|5] 20 1] 10 |001| 42 -40 0
e6|3| -30 3|-30 |100| -8 -60 8
e1|5| 12 5|32 |110| 42 22 22
ee|6| -20 6|-30 |011| -10 -60 | 10
CHEY
e36(6| -10
Round 1 End
node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
V[ew[5] 20 V]ea|5| 12 V|ea|1] 10
en|2| 7 &4 7 e30]3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 €4|2| 5 e4)2| 3
er5|6] -15 s3] -14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| B [77(x) |7~ (x) | 7(x)
e1|5] 20 1] 10 |001| 42 -40 0
e6|3| -30 3|-30 |100| -8 -60 8
e1|5| 12 5|32 |110| 42 22 22
ee|6| -20 6|-30 |011| -10 -60 | 10
21 0
e36(6| -10
e T;/m sent to each site
node 1 node 2 node 3
id [x[si(x) id [x[s(x) id | x| s3(x)
V[ew[5] 20 V]ea|5| 12 V|ea|1] 10
en|2| 7 &4 7 e30]3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 €4|2| 5 e4)2| 3
er5|6] -15 s3] -14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id | x|si(x) x[s(x)| B [77(x) |7~ (x) | 7(x)
e (5] 20 1|10 |001| 42 -40 0
e6|3] -30 3|-30 [100| -8 -60 8
e1|5| 12 5| 32 |110] 42 2 | 22
e6|6] -20 6|-30 |011] -10 | -60 | 10
e [T T

e36|6] -10

o Each site finds items with
si(x) > Ti/mor
si(x) < Ty/m.

node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 42| 5 e4(2| -3
€56 -15 | es[3] -14 | e35|5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| B [77(x) |7~ (x) | 7(x)
e1|5] 20 1] 10 |001| 42 -40 0
e6|3| -30 3|-30 |100| -8 -60 8
e1|5| 12 5|32 |110| 42 22 22
ee|6| -20 6|-30 |011| -10 | -60 | 10
CTEIRC
e36(6| -10
o Items with [s;(x)| > T;/m are sent
to coordinator.
node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id [ x[s3(x)
V[ew[5] 20 V]ea|5| 12 V|ea|1] 10
en|2| 7 &4 7 e30]3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 42| 5 e4)2| 3
es[6] -15 | es[3] 14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| B [77(x) |7~ (x) | 7(x)
e1|5] 20 1] 10 |001| 42 -40 0
e 56| -15 3|-30 |100| -8 -60 8
e63|-30 5|32 |110| 42 22 22
e1|5] 12 6|-30 |011| -10 | -60 | 10
s 38
e6|6| -20
el 10
e6)6| -10
o Items with [s;(x)| > T;/m are sent
to coordinator.
node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
V[ew[5] 20 V]ea|5| 12 V|ea|1] 10
en|2| 7 &4 7 e30]3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 42| 5 e4)2| 3
es[6] -15 | es[3] 14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id [x[s(x)|___ _[x[s(x)]| i [7T ()7 () [7(x) [T'(x)
e1|5] 20 1| 10 |001| 246 | -4.6 0 | 246
e 56| -15 3| -44 |110|-36.6 | -51.3 |36.6 | 51.3
e63|-30 5] 32 |110| 39.3 | 246 |246|39.3
e1|5] 12 6|-45 |111| -45 -45 | 45 | 45
s [3] 1
e6|6] -20
ea|l) 10 e The coordinator updates the bounds for
es6[6] -10 each item it has ever received.
node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
V[ew[5] 20 V]ea|5| 12 V|ea|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 42| 5 e4)2| 3
es[6] -15 | es[3] 14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
e[5]20 1|10 |001]| 246 | 46 | O |246
e5/6] -15 3|-44 |110|-36.6 | -51.3|36.6 | 51.3
e6|3]-30 5| 32 |110| 39.3 | 24.6 |24.6| 39.3
e1|5[12 ] 6|-45 |111| -45 | -45 | 45 | 45
5|3 14 T,=22, T,/m=22/3
e6|6] -20
ea|l) 10 e The coordinator updates the bounds for
es]6] -10 each item it has ever received.

o Partial score sum s(5) = 20 + 12

node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
V[ew[5] 20 V]ea|5| 12 V|ea|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 42| 5 esq]2] -3
es[6] -15 | es[3] 14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
e [5] 20 | 1|10 |001]| 246 | 46 | O |246
e5|6] -15 3|-44 |110{-36.6 | -51.3|36.6 | 51.3
e6|3]-30 5| 32 [110] 39.3 | 24.6 |24.6| 39.3
e1[5] 12 ] 6|-45 |111| -45 | -45 | 45 | 45
5|3 14 T,=22, T,/m=22/3
e6|6] -20
ea|l) 10 e The coordinator updates the bounds for
es]6] -10 each item it has ever received.

® Receipt vector F5 = [110]

node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
Ve |5] 20 V]ea|5| 12 V]e1|1] 10
en|2| 7 &4 7 e30]3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 42| 5 esq]2] -3
es[6] -15 | es[3] 14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x|s(x)| F |77 (x) |7 (x) | 7(x) | 7'(x)
e [5]20 1|10 |001]| 246 | 46 | O |246
e 56| -15 3|-44 |110|-36.6 | -51.3|36.6 | 51.3
e6|3]-30 5| 32 [110] 39.3 | 24.6 |24.6| 39.3
1|5 12 6|-45 |111| -45 | -45 | 45 | 45
s 318
€6 -
ea|l) 10 e The coordinator updates the bounds for
es6[6] -10 each item it has ever received.

o 7'(x) is now tighter,
if si(x) received then 7 (x) = 77(x) + si(x)
else 77(x) = 71(x) + T1/m

node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 42| 5 e4(2| -3
€56 -15 | es[3] -14 | e35|5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficien

Our Solution

d x () [7'(x)
ells 0 | 246
as|6 36.6|51.3
asl3 2461393
&1l5 45 | 45

es|3

€466

el 10 e The coordinator updates the bounds for
e6)6| -10 each item it has ever received.

o 7 (x) is also tighter,
if si(x) received then 77 (x) = 77 (x) + s;(x)
else 77 (x) =7 (x) — T1/m

node 1

id | x]|s(x)
Ve |5] 20

en|2| 7

ei3|l] 6

erq|4| -2

es[6] -15 |
V| ews|3] -30

node 2

id | x|s(x)
V]ea|5| 12

|4 7

e3|l] 2

&4]2| 5

es[3] 14
V| e6]6] -20

Jeffrey Jestes, Ke Yi

node 3
id |x|s3(x)
V|esa|1] 10
e32|3] 6
es3|4| 5
e34)2] -3
e35|5] -6
V]es|6] -10

Building Wavelet Histograms on Large Data in MapReduce



Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
e1|5] 20 1|10 |001]| 246 | 46 | O |246
e5/6] -15 3|-44 |110|-36.6 | -51.336.6 | 51.3
e6|3]-30 5| 32 [110] 39.3 | 24.6 |[24.6 [ 39.3
e1|5| 12 6|-45 |111| -45 | -45 | 45 | 45
5|3 14 T,=22, T,/m=22/3
e6|6] -20
ea|l) 10 e The coordinator updates the bounds for
es]6] -10 each item it has ever received.

© Score absolute value bound 7(5) = min(39.3,24.6).

node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 42| 5 e4(2| -3
es[6] -15 | es[3] 14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| F [77(x) |7 (x) [ T(x)|7'(x)
e1|5] 20 1|10 |001]| 246 | 46 | 0 |246
e5/6] -15 3|-44 |110|-36.6 | -51.3|36.6|51.3
e6|3]-30 5| 32 [110] 39.3 | 24.6 |24.6(39.3
e1|5| 12 6|-45 |111| -45 | -45 | 45 | 45
5|3 14 T,=22, T,/m=22/3
e6|6] -20
ea|l) 10 e The coordinator updates the bounds for
es]6] -10 each item it has ever received.

® 7'(x) is an upper bound on |s(x)|,

7'(x) = max{|r* ()1, [T~ (x)[}

node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 42| 5 e4(2| -3
€56 -15 | es[3] -14 | e35|5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
e1|5] 20 1|10 |001]| 246 | 46 | O |246
e5/6] -15 3|-44 |110|-36.6 | -51.336.6 | 51.3
e6|3]-30 5] 32 [110] 39.3 | 24.6 [24.6][39.3
e1|5| 12 6|-45 |111| -45 | -45 | 45 | 45
5|3 14 T,=22, T,/m=22/3
e6|6] -20
ea|l) 10 e The coordinator updates the bounds for
es]6] -10 each item it has ever received.

® 7'(x) is an upper bound on |s(x)|,

7'(x) = max{|r* ()1, [T~ (x)[}

node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 42| 5 e4(2| -3
€56 -15 | es[3] -14 | e35|5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R

id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
e1|5] 20 110 |001| 246 | -46 | 0 |246
e5(6]-15 3|-44 |110|-36.6 | -51.3|36.6| 51.3
e6|3]-30 5| 32 |110] 39.3 | 24.6 |24.6| 39.3
e1|5] 12 6|-45 |111] -45 | -45 | 45 | 45
CTIEEL

e6|6| -20

e31|1] 10

€366 -10

® We select the item x with the kth largest 7(x), which serves as a
new lower bound T, on |s(x)| for any item.

node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 42| 5 e4(2| -3
€56 -15 | es[3] -14 | e35|5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
e1|5] 20 110 |001| 246 | -46 | 0 |246
e5(6]-15 3|-44 |110|-36.6 | -51.3|36.6| 51.3
ers|3] -30 5| 32 |110] 39.3 | 24.6 |24.6| 39.3
e1|5] 12 6|-45 |111] -45 | -45 | 45 | 45
e Z -;g T,=22, T,/m=22/3
€26 -
.1 10
€366 -10

® We select the item x with the kth largest 7(x), which serves as a
new lower bound T, on |s(x)| for any item.

node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
Ve |5] 20 V]ea|5| 12 V]e1|1] 10
en|2| 7 &4 7 e30]3] 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 42| 5 esq]2] -3
es[6] -15 | es[3] 14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10

Jeffrey Jestes, Ke Yi



Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
er1 5 20 1 101001 '1/1‘[; A‘R 0 ’7/1!;
e5(6]-15 3|-44 |110|-36.6 | -51.3|36.6| 51.3
ers|3] -30 532—11H0+393124-624:61393
e1|5] 12 6|-45 |111| 45 | -45 | 45 | 45
e Z -;g T,=22, T,/m=22/3
€26 -
.1 10
€366 -10

© Any item with 7/(x) < T, cannot be in the top-k and is pruned from

R.

node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id |x|s3(x)
V[ew[5] 20 V]ea|5| 12 V|ea|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
eq|d| -2 e4(2| -5 e4(2| -3
es[6] -15 | es[3] 14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
er1 5 20 1 101001 '1/1‘[; A‘R 0 ’7/1!;
e5(6]-15 3| -44 |110|-36.6 | -51.3|36.6 | 51.3
ers|3] -30 532 H639324-6246139%3
e1|5] 12 6|-45 |111| 45 | -45 | 45 | 45
e Z -;g T,=22, T,/m=22/3
€26 -
.1 10
€366 -10

® Any remaining items with a 0 in vector F, are selected.

node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
Ve |5] 20 V]ea|5| 12 V]e1|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq|4| -2 42| 5 esq]2] -3
es[6] -15 | es[3] 14 e35/5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
er1 5 20 1 10 001 '1/1‘5; A‘R 0 ’7/1/;
e 56| -15 3| -44 |110|-36.6 | -51.3 |36.6 | 51.3
e63|-30 532 —H0-—393—24-6—24-61393
e1|5] 12 6|-45 |111| -45 -45 | 45 | 45
e Z -;g T,=22, T,/m=22/3
e6/6] -
e (1] 10
e36(6] -10
Round 2 End
node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
Ve |5] 20 V]ea|5| 12 V]e1|1] 10
en|2| 7 &4 7 e30]3] 6
e3|1] 6 e3|l] 2 e3]4] 5
eiq|d| -2 &4]2| 5 e4)2] -3
V|ews[6] -15 V|es|3]| -14 es5|5] -6
V [es|3] -30 V| e6]6] -20 V| es]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
er1 5 20 1 101001 '1/1‘5; A‘R 0 ’7/1.4
e5|6] -15 3| -44 |110|-36.6 | -51.3|36.6 | 51.3
ers|3] -30 532 H639324-6246139%3
e1|5] 12 6|-45 |111| 45 | -45 | 45 | 45
e Z -;3 T,=22, T,/m=22/3
€26 -
e 1] 10
al6 10

5(3
® The coordinator asks for missing scores
for items still in R.

node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id |x|s3(x)
V[ew[5] 20 V]ea|5| 12 V|ea|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
V|ews[6] -15 V]es|3]| -14 ess|5] 6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
er1 5 20 1 10 001 '1/1‘5; A‘R 0 ’7/1.4
e 56| -15 3|-44 |110|-36.6 | -51.3 | 36.6| 51.3
e63|-30 5326393 24-6—124-61393
e1|5] 12 6|-45 |111| -45 -45 | 45 | 45
e Z -;3 T,=22, T,/m=22/3
€6 -
e (1] 10
el5 0
node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
Ve |5] 20 V]ea|5| 12 V|e1|1] 10
en|2| 7 &4 7 e2]3] 6 |
er3|l] 6 e3|l] 2 es3|4] 5
eiq|d| -2 &4]2| 5 e4)2] -3
V|ews[6] -15 V|es|3]| -14 es5|5] -6
V]ews[3] -30 V|e6]6] -20 V| e6]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x[s(x)| Fe [77(x) |7 (x) | 7(x) | 7'(x)
e1]5] 20 1110 0011246 45 Gy WA
e5|6|-15 3| -44 |110|-36.6 | -51.3 |36.6 | 51.3
e6)3|-30 5326393 24-6—124-61393
e1|5] 12 6|-45 |111| -45 -45 | 45 | 45
es Z -;3 T,=22, T,/m=22/3
€6 -
e (1] 10
PRI
e36|6] -10 \
node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
Ve |5] 20 V]ea|5| 12 V|e1|1] 10
en|2| 7 &4 7 e2]3] 6 |
er3|l] 6 e3|l] 2 es3|4] 5
eiq|d| -2 &4]2| 5 e4)2] -3
V|ews[6] -15 V|es|3]| -14 es5|5] -6
V]ews[3] -30 V|e6]6] -20 V| e6]6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id [x[s;(x) | ——{x[s(x)| i [T () |7 () [7(x) [T'(x)
e1]5] 20 1110 0011246 45 Gy WA
e5|6|-15 3| -44 |110|-36.6 | -51.3 |36.6 | 51.3
e6)3|-30 5326393 24-6—124-61393
e1|5] 12 6|-45 |111| -45 -45 | 45 | 45
es Z -;3 T,=22, T,/m=22/3
€6 -
e (1] 10
PRI
e36|6] -10 \
node 1 node 2 node 3
id [x[si(x) id [x[s(x) id |x|s3(x)
Ve |5] 20 V]ea|5| 12 V]e1|1] 10
en|2| 7 &4 7 e2]3] 6 |
er3|l] 6 e3|l] 2 es3|4] 5
eiq|d| -2 &4]2| 5 e4)2] -3
V|ews[6] -15 V|es|3]| -14 es5|5] -6
V]ews[3] -30 V|e6]6] -20 V| e6]6] -10

Jeffrey Jestes, Ke Yi i Building Wavelet Histograms on Large Data in MapReduce



Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x|s(x)| Fi
e1|5] 20 +—36—66+
e5|6|-15 3] -38 111
e16] 3| -30 CARCE BT
©1]5] 12 6] 45 [111
es Z ;g T, =22, T/m=22/3
€6 -
e (1] 10
e,/3] 6 5(3
e36/6| -10

o After collecting all scores, the coordinator
can determine top-k |s(x)|.

node 1 node 2 node 3

id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10

es|2] 7 &4 7 e (3] 6

e3|1] 6 e3|l] 2 e3]4] b

erq4|4] -2 &4|2| 5 e4(2| -3
V]es|6] -15 V|es|3| -14 e35|5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x|s(x)| Fi
e1|5] 20 +—36—66+
e5|6|-15 3] -38 111
e16] 3| -30 T
©1]5] 12 6] 45 [111
es Z ;g T, =22, T/m=22/3
€6 -
e (1] 10
e,/3] 6 5(3
e36/6| -10

o After collecting all scores, the coordinator
can determine top-k |s(x)|.

node 1 node 2 node 3

id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10

es|2] 7 &4 7 e (3] 6

e3|1] 6 e3|l] 2 e3]4] b

erq4|4] -2 &4|2| 5 e4(2| -3
V]es|6] -15 V|es|3| -14 e35|5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x|s(x)| Fi
e1]5| 20 +—+0—06+
e1s]6] <15 3[38 [111
e6)3|-30 532116
o1 |5] 12 6] 45 [111
I e N e
e6|6] -20
e31|1] 10
e32|3] 6

6

e36(6] -10
o After collecting all scores, the coordinator
can determine top-k |s(x)|.

node 1 node 2 node 3

id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10

es|2] 7 &4 7 e (3] 6

e3|1] 6 e3|l] 2 e3]4] b

erq4|4] -2 &4|2| 5 e4(2| -3
V]es|6] -15 V|es|3| -14 e35|5| -6
J|eis 3] -30 V[e26]6] -20 V|ess6] -10
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Exact Top-k Wavelet Coefficients: Our Solution

R R
id | x|si(x) x|s(x)| Fi
e1]5| 20 +—+0—06+
e5]6] -15 338 [111
e6)3|-30 532116
©.]5] 12 6] 45 [111
s3] -14
e6|6] -20
e31|1] 10
e32|3] 6
e36/6| -10
Round 3 End
node 1 node 2 node 3
id | x]|s(x) id | x|s(x) id |x|s3(x)
Ve [5] 20 V]ea|5| 12 V|e1|1] 10
es|2] 7 &4 7 e2(3| 6
e3|1] 6 e3|l] 2 e3]4] 5
erq4|4] -2 &4|2| 5 e4(2| -3
V]es|6] -15 V|es|3| -14 e35|5| -6
V [es|3] -30 V| e6]6] -20 V| ess]6] -10
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Outline

© Approximate Top-k Wavelet Coefficients
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;]
must be retrieved, but requires multiple phases.
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;]
must be retrieved, but requires multiple phases.

o If we are allowed an approximation, we could further improve:
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;]
must be retrieved, but requires multiple phases.
o If we are allowed an approximation, we could further improve:
© communication cost
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;]
must be retrieved, but requires multiple phases.
o If we are allowed an approximation, we could further improve:

@ communication cost
@ number of MapReduce rounds
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Approximate Top-k Wavelet Coefficients

e Hadoop Wavelet Top-k is a good solution if the exact top-k |w;]
must be retrieved, but requires multiple phases.
o If we are allowed an approximation, we could further improve:

@ communication cost
@ number of MapReduce rounds
© amount of I/O incurred

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:
@ Approximate distributed top-k.
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Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:

@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.
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Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:
@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.

o Forset A= A; UA),
Sketch(A) = Sketch(A1) op Sketch(Ay) for operator op.
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Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:
@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.

o Forset A= A; UA),
Sketch(A) = Sketch(A1) op Sketch(Ay) for operator op.
o The state of the art wavelet sketch is the GCS Sketch [CGS06].

[GCS06] G. Cormode, et al. Fast approximate wavelet tracking on streams. In EDBT, 2006.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:

@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.
o Forset A= A; UA),
Sketch(A) = Sketch(A1) op Sketch(Ay) for operator op.
o The state of the art wavelet sketch is the GCS Sketch [CGS06].
@ The GCS gives us, for v = vy + vy
GCS(v) = GCS(v1) + GCS(vp)

[GCS06] G. Cormode, et al. Fast approximate wavelet tracking on streams. In EDBT, 2006.
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Approximate Top-k Wavelet Coefficients

@ Some natural improvement attempts:

@ Approximate distributed top-k.
@ Approximating local coefficients with a linearly combinable sketch.

o Forset A= A; UA),
Sketch(A) = Sketch(A1) op Sketch(Ay) for operator op.
o The state of the art wavelet sketch is the GCS Sketch [CGS06].

@ The GCS gives us, for v = vy + vy
GCS(v) = GCS(v1) + GCS(va)

© Random sampling techniques.

[GCS06] G. Cormode, et al. Fast approximate wavelet tracking on streams. In EDBT, 2006.
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© Approximate Top-k Wavelet Coefficients
@ Linearly Combinable Sketch Method
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

split 1| (x, null)
split 2 I—.
split 3

split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

% In-Memory

split 1
split 2
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

% In-Memory

split 1
split 2
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker

% In-Memory

split 1
split 2
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker
In-Memory
Map

(x,v(x))
(%, vi(x))

close()

split 1| (x, null)

split 2 I—.
split 3
split 4

Mapper Sketch
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker
In-Memory
Map
(x,vj(x))

split 1| (x, null) ! (x,v,(x)) wavelet sketch
split 2 I—. Mapper i Sketch @
split 3 close()
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker
In-Memory
Map

(x,v(x))

split 1] (x, null) (x,v;(x)) wavelet sketch  wavelet sketch
split 2 I—. Mapper cl;s;() Sketch @ @

split 3
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker
In-Memory
Map
Combine Sketches
wavelet sketch
(x,vj(x))

split 1] (x, null) ’ (x,v;(x)) wavelet sketch  wavelet sketch
split 2 —— (" Mapper - Sketch [p1] Reducer
It 3 close()
split 4
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker
In-Memory
Map
Combine Sketches
wavelet sketch
(x,vj(x))

split 1] (x, null) ’ (x,v;(x)) wavelet sketch  wavelet sketch
split 2 —— (" Mapper - Sketch [p1] Reducer
It 3 close()
split 4 close()

Wavelet Sketch top-k
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker
In-Memory
Map
Combine Sketches
wavelet sketch
(x,vj(x))

split 1] (x, null) ’ (x,v;(x)) wavelet sketch  wavelet sketch
split 2 —— (" Mapper - Sketch [p1] Reducer
It 3 close()
split 4 top-k |w;|

Wavelet Sketch top-k
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Approximate Top-k Wavelet Coefficients: Sketch

JobTracker
In-Memory
Map
Combine Sketches
wavelet sketch
(x,vi(x)

split 1] (x, null) ’ (x,v;(x)) wavelet sketch  wavelet sketch
split 2 Mappe - Sketch [p1] Red e
S:;Ht . — pper dose() | Sketch | {1 | educer — 1
split 4 top-k |w;|

Wavelet Sketch top-k
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Outline

© Approximate Top-k Wavelet Coefficients

@ Our First Sampling Based Approach

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

JoooooEEEE
pEO0OCOCOOOO
OOoofpEEEE
ooooooooo

EEOEOROOEREOOEOEOCSEEROOEEOOSOEE N

n; Records in split j
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Well known fact: to approximate each v(x) with standard
deviation o = O(en) a sample of size ©(1/£2) is required.

OO0 @E@EE
Oooocooooo

JoooooEEEE
pEO0OCOCOOOO

EEOEOROOEREOOEOEOCSEEROOEEOOSOEE N

n; Records in split j
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Well known fact: to approximate each v(x) with standard
deviation o = O(en) a sample of size ©(1/£2) is required.

Node j samples t; = n; - p records where p = 1/52n.

oEOO0OO0O000O
OoOoOopEEEE
O0oooooooo

JoooooEEEE

EEOEOROOEREOOEOEOCSEEROOEEOOSOEE N

n; Records in split j
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Well known fact: to approximate each v(x) with standard
deviation o = O(en) a sample of size ©(1/£2) is required.

Node j samples t; = n; - p records where p = 1/52n.

ooooOomo0mOon IDHDD@IIBDIDD oooo
| DDIDD?D nO0E00EE EEO
] ID?ID OOOoOE0E00ONEENEO0OO0O oom
e
@: O DID@]DD@SDD ENEOEOEO0O000OEOR
[m] DI:IDQDD ERORO0O0000RO0O
oggoo UL} OO0

n; Records in split j
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Well known fact: to approximate each v(x) with standard
deviation o = O(en) a sample of size ©(1/£2) is required.

Node j samples t; = n; - p records where p = 1/52n.

u

=@=E uu@%m Sampl
ample

HRO oooom

u IE EDD om

u oo

u

n; Records in split j sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Emit
—_—

Emitted s;(x)

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Emit ”
o — 2

Coordinator

Emitted s;(x)

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

Coordinator

Emitted sp(x)
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

’ Construct

s(x)

Coordinator

Emitted sp(x)
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

W 1897/p

’ Construct W 1673/p
- D9/ W20/
s(x) v me/e

[1356/p
. o
Coordinator

v(x) =s(x)/pis v(x)'s
unbiased estimator

Emitted sp(x)
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

@ Note: € must be small for v to approximate v well.
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

@ Note: € must be small for v to approximate v well.
o Typical values for £ are 107* to 107°.
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

@ Note: € must be small for v to approximate v well.
o Typical values for £ are 107* to 107°.
e The communication for basic sampling is O(1/£2).
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

@ Note: € must be small for v to approximate v well.
o Typical values for € are 107* to 107°.
e The communication for basic sampling is O(1/£2).
o With 1 byte keys, 100MB to 1TB of data must be communicated!
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

@ Note: € must be small for v to approximate v well.

o Typical values for € are 107* to 107°.
e The communication for basic sampling is O(1/£2).

o With 1 byte keys, 100MB to 1TB of data must be communicated!
@ We improve basic random sampling with Improved Sampling.
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

@ Note: € must be small for v to approximate v well.

o Typical values for £ are 107* to 107°.
e The communication for basic sampling is O(1/£2).

o With 1 byte keys, 100MB to 1TB of data must be communicated!
@ We improve basic random sampling with Improved Sampling.

o Key idea: ignore sampled keys with small frequencies in a split.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Outline

© Approximate Top-k Wavelet Coefficients

@ An Improved Sampling Approach
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Approximate Top-k Wavelet Coefficients: Improved
Sampling

n; Records in split
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j samples t; = n; - p records using
Basic Sampling, where p = 1/52n.

Ooooooooooo
o s

n; Records in split
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j samples t; = n; - p records using
Basic Sampling, where p = 1/52n.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j samples t; = n; - p records using
Basic Sampling, where p = 1/52n.

Sample

E —

Oom DIB;:%QD

ERONOED ]

n; Records in split sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j sends (x,s;(x)) only if s;(x) > et;.

e The error in s(x) is < =L et; = epn = 1/e.

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j sends (x,s;(x)) only if s;(x) > et;.

e The error in s(x) is < =L et; = epn = 1/e.

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j sends (x,s;(x)) only if s;(x) > et;.

e The error in s(x) is < =L et; = epn = 1/e.

Emit
_ .

Emitted s;(x)

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Node j sends (x,s;(x)) only if s;(x) > et;.

e The error in s(x) is < =L et; = epn = 1/e.

~FH-¢
=

Coordinator

Emitted s;(x)

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

Coordinator

Emitted sp(x)
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

’ Construct

s(x)

Coordinator

Emitted sp(x)

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Improved

Sampling

1543
’ Construct m3451| Construct
- -
s(x) v(x)

Coordinator

Emitted sp(x)
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

B 2385/p
W 1897/p
01543
] Construct m34s1( Construct | W 1673/p

s(x)

Coordinator

Emitted sp(x)

e Each node sends at most t;/(ctj) = 1/¢ keys.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

B 2385/p
W 1897/p
01543
] Construct m34s1( Construct | W 1673/p

s(x)

Coordinator

Emitted sp(x)

e Each node sends at most t;/(ctj) = 1/¢ keys.
e The total communication is O(m/¢).
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

B 2345/p
W 1897/p
01543
] Construct m3s1| Construct | M 1673/
—_ B —
s(x) v(x)

Coordinator

Emitted sp(x)
e Each node sends at most t;/(ctj) = 1/¢ keys.
e The total communication is O(m/¢).

o E[v(x)] may be en away from v(x) as sj(x) < t; are ignored.
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Outline

© Approximate Top-k Wavelet Coefficients

@ Two-Level Sampling
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

OO0ODOEOONDOD0OECE00NENODRODO0O0OD
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n; Records in split
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Node j samples t; = n; - p records using
Basic Sampling, where p = l/azn.
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n; Records in split
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nj - p records using

Basic Sampling, where p = l/azn.

Node j samples t;
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nj - p records using

Basic Sampling, where p = l/azn.

Node j samples t;
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sj(x): Sampled Frequency Counts

n; Records in split
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

]
sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.

olf sj(x) > 1/(ey/m), emit (x, Sj(X)).
o Else emit (x, null) with probability ey/m - ().

]
sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.

o lf 5j(x) > 1/(ey/m), emit (x,s;(x)).
o Else emit (x, null) with probability ey/m - s(x).

]
sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.

olf sj(x) > 1/(ey/m), emit (x, Sj(X)).
o Else emit (x, null) with probability ey/m - s;(x).

]
sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.

olf sj(x) > 1/(ey/m), emit (x, Sj(X)).
o Else emit (x, null) with probability ey/m - s;(x).

Emit

sj(x): sampled s;(x)

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

Sample record x with probability min{e\/m - s;(x), 1}.

olf sj(x) > 1/(ey/m), emit (x, Sj(X)).
o Else emit (x, null) with probability ey/m - s;(x).

~EB-2
E

Coordinator

sj(x): sampled s;(x)

sj(x): Sampled Frequency Counts
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

Coordinator
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

’ Construct

Coordinator
s(x): estimator of s(x)

Sm(x): sampled spm(x)

@ To construct §(x).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

’ Construct

—_—

s(x)

Coordinator
s(x): estimator of s(x)

Sm(x): sampled spm(x)
@ To construct §(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

’ Construct
=)

Coordinator
s(x): estimator of s(x)

sm(x): sampled sm(x)
@ To construct §(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x, null) received, M(x) = M(x) + 1.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

’ Construct
=)

Coordinator
s(x): estimator of s(x)

Sm(x): sampled spm(x)
@ To construct §(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x, null) received, M(x) = M(x) + 1.
e Finally, s(x) = p(x) + M(x)/e/m.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

W 1897/p
W 1673/p  W3451/p)

Wiy [O1543
m3451| Construct

’ Construct
=)

Coordinator
s(x): estimator of s(x)

Sm(x): sampled spm(x)
@ To construct §(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x, null) received, M(x) = M(x) + 1.
e Finally, s(x) = p(x) + M(x)/e/m.
@ Then, V(x) =3(x)/p is an unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x) with standard deviation at most 1/¢.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x) with standard deviation at most 1/¢.

V(x) is an unbiased estimator of v(x) with standard deviation at most en.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x) with standard deviation at most 1/¢.

V(x) is an unbiased estimator of v(x) with standard deviation at most en.

e w; is an unbiased estimator for any w;.

e Recall w; = <V,1b,'>, for w,' = (_¢j+1,2k + ¢j+1,2k+1)/\/ U/2j where (b is
a [0,1] vector defined for j=1,...,logu and k =0,...,2 — 1. The
521,7 2k+2)u/2’+1 ( )

variance of w; is bounded by

x=2ku /2141
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x) with standard deviation at most 1/¢.

V(x) is an unbiased estimator of v(x) with standard deviation at most en.

Theorem

e w; is an unbiased estimator for any w;.

e Recall w; = <V,1b,'>, for w,' = (_¢j+1,2k + ¢j+1,2k+1)/\/ U/2j where (]5 is
a [0,1] vector defined for j=1,...,logu and k =0,...,2 — 1. The

521,7 2k+2)u/2’+1 S( )

variance of w; is bounded by ST D ok 2141

Theorem

The expected total communication cost of our two-level sampling

algorithm is O(y/m/e).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

split 1
split 2 MapRunner
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1
split 2 MapRunner
split 3
split 4

@ RandomizedRecordReader j (RR;) samples n;/e%n records.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector
In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
(1)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector
In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
close()
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector
In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
(x,5(x))
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
@ RR; randomly selects n;/e%n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘ RandomizedRecordReader‘ E
(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

@ Mapper j samples key x from s with probability min{e\/m - sj(x),1}.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

@ Mapper j samples key x from s with probability min{e\/m - sj(x),1}.
o If sj(x) > 1/(ey/m), emit (x,s;j(x)).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

@ Mapper j samples key x from s with probability min{e\/m - sj(x),1}.
o If sj(x) > 1/(ey/m), emit (x,s;j(x)).
o Else emit (x, 0) with probability ey/m - sj(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘ RandomizedRecordReader‘ E
(x, null)
: (x.5(x)
split 1 (x, null) (x:si(I0)  (x,5(x)]0)
split 2 MapRunner Mapper @ @
split 3 close()
split 4

@ Mapper j samples key x from s with probability min{e\/m - sj(x),1}.
o If sj(x) > 1/(ey/m), emit (x,s;j(x)).
o Else emit (x, 0) with probability ey/m - sj(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

’ s;= split j sample frequency vector
In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
(x.s(x))
split 1 (x, null) (x,sj(x)[0)
split 2 MapRunner [p1] Reducer
split 3
split 4

@ Construct s(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘ RandomizedRecordReader‘ E
(x, null)
. (x,51(x)) (x,8(x))

split 1 (x, null) (x,5(x)[0) (x,5(x)|0)
split 2 MapRunner Mapper [p1] Reducer
split 3 close()
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘ RandomizedRecordReader‘ E
(x, null)
. (x,51(x)) (x,8(x))

split 1 (x, null) (x,5(x)[0) (x,5(x)|0)
split 2 MapRunner Mapper [p1] Reducer
split 3 close()
split 4

@ Construct s(x).

o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘ RandomizedRecordReader‘ E
(x, null)
. (x,51(x)) (x,8(x))

split 1 (x, null) (x:si(I0)  (x,5(x)]0)
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
@ Finally, s(x) = p(x) + M(x)/ev/m.
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
‘RandomizedRecordReader‘ E (x,v(x))
(x, null) T
: (x.5(x) (o 8(x)
split 1 (x, null) (x,sj(x)|0) (x,8;(x)|0)
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
@ Finally, s(x) = p(x) + M(x)/ev/m.

@ Reducer uses v(x) =5(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
[ Centralized Wavelet Top- |
‘RandomizedRecordReader‘ E (x \E(x))
(x, null) T
‘ (x,8j(x)) (x.s(x))
split 1 (x, null) (x;5;(x)|0) (x,5;(x)[0)
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
@ Finally, s(x) = p(x) + M(x)/ev/m.
@ Reducer uses v(x) =5(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
[ Centralized Wavelet Top- |
‘RandomizedRecordReader‘ E (x \E(x))
(x, null) T close()
. (x.5(x) (5(x))
split 1 (x, null) (x;5;(x)|0) (x,5;(x)[0)
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
@ Finally, s(x) = p(x) + M(x)/ev/m.
@ Reducer uses v(x) =5(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
[ Centralized Wavelet Top- |
‘RandomizedRecordReader‘ E (x \E(x))
(x, null) T top-k |wj]
‘ (x,8j(x)) (x.s(x))
split 1 (x, null) (x;5;(x)|0) (x,5;(x)[0)
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
@ Finally, s(x) = p(x) + M(x)/ev/m.
@ Reducer uses v(x) =5(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

JobTracker nj= records in split j

” s;= split j sample frequency vector

In-Memory
Map
[ Centralized Wavelet Top- |
‘RandomizedRecordReader‘ E (x \E(x))
(x, null) T top-k |w;|
‘ (x,8j(x)) (x.s(x))
split 1 (x, null) (x,sj(x)|0) (x,8(x)]0) /L—\
split 2 MapRunner Mapper [p1 ] Reducer )——+ o
Split 3 close() top-k |w;|
split 4

@ Construct s(x).
o If (x,sj(x)) received, p(x) = p(x) + s;(x).
o Else if (x,0) received, M(x) = M(x) + 1.
@ Finally, s(x) = p(x) + M(x)/ev/m.
@ Reducer uses v(x) =5(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

e Consider: € = 107*, m = 103, and 4-byte keys .
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

e Consider: € = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/22).
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Sampling

e Consider: € = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/22).
o Approximately 400MB of data must be communicated!
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

e Consider: € = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/22).
o Approximately 400MB of data must be communicated!

@ The communication for improved sampling is O(m/¢).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

e Consider: € = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/22).
o Approximately 400MB of data must be communicated!

@ The communication for improved sampling is O(m/¢).
o Approximately 40MB of data must be communicated.

The communication for two-level sampling is O(y/m/e).
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

e Consider: € = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/22).
o Approximately 400MB of data must be communicated!

@ The communication for improved sampling is O(m/¢).
o Approximately 40MB of data must be communicated.

The communication for two-level sampling is O(y/m/e).
o Only 1.2MB of data needs to be communicated!
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Approximate Top-k Wavelet Coefficients: Two-Level

Sampling

e Consider: € = 107*, m = 103, and 4-byte keys .

@ The communication for basic sampling is O(1/22).
o Approximately 400MB of data must be communicated!

@ The communication for improved sampling is O(m/¢).
o Approximately 40MB of data must be communicated.

The communication for two-level sampling is O(y/m/e).
o Only 1.2MB of data needs to be communicated!
o 330-fold reduction over basic sampling and 33-fold reduction over
improved sampling!
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Experiments: Algorithms

@ We implement the following methods in Hadoop 0.20.2:
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@ We implement the following methods in Hadoop 0.20.2:
o Exact Methods:

@ The baseline solution is denoted Send-V,
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Experiments: Algorithms

@ We implement the following methods in Hadoop 0.20.2:
o Exact Methods:

@ The baseline solution is denoted Send-V,
@ Our three round exact solution is denoted H-WTopk, (meaning
"Hadoop Wavelet Top-k").
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@ We implement the following methods in Hadoop 0.20.2:
o Exact Methods:

@ The baseline solution is denoted Send-V,
@ Our three round exact solution is denoted H-WTopk, (meaning
"Hadoop Wavelet Top-k").

o Approximate Methods:
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Experiments: Algorithms

@ We implement the following methods in Hadoop 0.20.2:
o Exact Methods:

@ The baseline solution is denoted Send-V,
@ Our three round exact solution is denoted H-WTopk, (meaning
"Hadoop Wavelet Top-k").

o Approximate Methods:
o Improved Sampling is denoted Improved-S.
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Experiments: Algorithms

@ We implement the following methods in Hadoop 0.20.2:

o Exact Methods:
@ The baseline solution is denoted Send-V,
@ Our three round exact solution is denoted H-WTopk, (meaning

"Hadoop Wavelet Top-k").

o Approximate Methods:
o Improved Sampling is denoted Improved-S.
o Two-Level Sampling is denoted TwolLevel-S.
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Experiments: Algorithms

@ We implement the following methods in Hadoop 0.20.2:
o Exact Methods:
@ The baseline solution is denoted Send-V,
@ Our three round exact solution is denoted H-WTopk, (meaning
"Hadoop Wavelet Top-k").
o Approximate Methods:
o Improved Sampling is denoted Improved-S.
o Two-Level Sampling is denoted TwolLevel-S.
o The Sketch-Based Approximation using the GCS-Sketch is denoted
Send-Sketch.
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
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@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:

@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU

@ One is reserved for the master (running JobTracker and NameNode).
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
@ One is reserved for the master (running JobTracker and NameNode).

© 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
@ One is reserved for the master (running JobTracker and NameNode).
© 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU

@ One is reserved for the (only) Reducer.
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
@ One is reserved for the master (running JobTracker and NameNode).
© 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU

@ One is reserved for the (only) Reducer.

@ 1 machine with 2GB of RAM and an Intel Core 2 1.86GHz CPU
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Experiments: Setup

@ Experiments are performed in a heterogeneous Hadoop cluster with
16 machines:
@ 9 machines with 2GB of RAM and an Intel Xeon 1.86GHz CPU
@ 4 machines with 4GB of RAM and an Intel Xeon 2GHz CPU
@ One is reserved for the master (running JobTracker and NameNode).
© 2 machines with 6GB of RAM and an Intel Xeon 2.13GHz CPU

@ One is reserved for the (only) Reducer.

@ 1 machine with 2GB of RAM and an Intel Core 2 1.86GHz CPU

@ All machines are directly connected to a 1000Mbps switch.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.
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o We utilize the WorldCup dataset to test all algorithms on real data.
o There are a total of 1.35 billion records.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.
o There are a total of 1.35 billion records.
e Each record has 10 4 byte integer attributes including a client id and
object id.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.
o There are a total of 1.35 billion records.
e Each record has 10 4 byte integer attributes including a client id and
object id.
o We assign each record a clientobject 4 byte integer id in u = 2%°
which is distinct for unique parings of a client id and object id.
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o We utilize the WorldCup dataset to test all algorithms on real data.
o There are a total of 1.35 billion records.
e Each record has 10 4 byte integer attributes including a client id and
object id.
o We assign each record a clientobject 4 byte integer id in u = 2%°
which is distinct for unique parings of a client id and object id.
o WorldCup is stored in binary format, in total it is 50GB.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.
o There are a total of 1.35 billion records.
e Each record has 10 4 byte integer attributes including a client id and
object id.
o We assign each record a clientobject 4 byte integer id in u = 2%°
which is distinct for unique parings of a client id and object id.
o WorldCup is stored in binary format, in total it is 50GB.

o We utilize large synthetic Zipfian datasets to evaluate all methods.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.
o There are a total of 1.35 billion records.
e Each record has 10 4 byte integer attributes including a client id and
object id.
o We assign each record a clientobject 4 byte integer id in u = 2%°
which is distinct for unique parings of a client id and object id.
o WorldCup is stored in binary format, in total it is 50GB.
o We utilize large synthetic Zipfian datasets to evaluate all methods.
o Keys are randomly permuted and discontiguous in a dataset.
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Experiments: Datasets

o We utilize the WorldCup dataset to test all algorithms on real data.
o There are a total of 1.35 billion records.
e Each record has 10 4 byte integer attributes including a client id and
object id.
o We assign each record a clientobject 4 byte integer id in u = 2%°
which is distinct for unique parings of a client id and object id.
o WorldCup is stored in binary format, in total it is 50GB.
o We utilize large synthetic Zipfian datasets to evaluate all methods.

o Keys are randomly permuted and discontiguous in a dataset.
o Each key is a 4-byte integer and stored in binary format.
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Experiments: Defaults

o Default values:

Symbol Definition Default
@ Zipfian skewness 1.1
u max key in domain | log, u =29
n total records 13.4 billion

dataset size 50GB

I} split size 256MB
m number of splits 200
B network bandwidth | 500Mbps
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Experiments: Vary k
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Experiments: Vary k
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Experiments: Vary k
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Experiments: WorldCup Dataset
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Experiments: WorldCup Dataset
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Conclusions

@ We study the problem of efficiently computing wavelet histograms in
MapReduce clusters.
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Conclusions

@ We study the problem of efficiently computing wavelet histograms in
MapReduce clusters.
o We present both exact and approximate algorithms.
o Twolevel-S is especially easy to implement and ideal in practice.

o For 200GB of data with log, u = 29 it takes 10 minutes with only
2MB of communication!
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@ We study the problem of efficiently computing wavelet histograms in
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o We present both exact and approximate algorithms.
o Twolevel-S is especially easy to implement and ideal in practice.
o For 200GB of data with log, u = 29 it takes 10 minutes with only
2MB of communication!
@ Our work is just the tip of the iceberg for data summarization
techniques in MapReduce.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Conclusions

@ We study the problem of efficiently computing wavelet histograms in
MapReduce clusters.

o We present both exact and approximate algorithms.
o Twolevel-S is especially easy to implement and ideal in practice.
o For 200GB of data with log, u = 29 it takes 10 minutes with only
2MB of communication!
@ Our work is just the tip of the iceberg for data summarization
techniques in MapReduce.

@ Many others remain including:
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Conclusions

@ We study the problem of efficiently computing wavelet histograms in
MapReduce clusters.
o We present both exact and approximate algorithms.
o Twolevel-S is especially easy to implement and ideal in practice.
o For 200GB of data with log, u = 29 it takes 10 minutes with only
2MB of communication!
@ Our work is just the tip of the iceberg for data summarization
techniques in MapReduce.
@ Many others remain including:
other histograms including the V-optimal histogram,
sketches and synopsis,
geometric summaries (e-approximations and coresets),

o
]
o
o graph summaries (distance oracles).
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Thank You

Q and A
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Introduction: Histograms

@ We may also compute w; with the wavelet basis vectors ;.
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Introduction: Histograms

@ We may also compute w; with the wavelet basis vectors ;.

[x [1[2]3[4]56] 7] 8]
[v(x)[3]5]10[8]2[2]10]14]

}
wi total average
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Introduction: Histograms

@ We may also compute w; with the wavelet basis vectors ;.

[12[ 3 ]a[5]6[7]8]
[v(x)[3]5]10[8]2[2]10]14]

}
wi total average

wg = (v, ) =
([0 0 V(3) 0000 0],’(/)6) + ([ 000 V(4) 000 0],’w6>
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Introduction: Histograms

@ We may also compute w; with the wavelet basis vectors ;.

[x [1[2]3[4]56] 7] 8]
[v(x)[3]5]10[8]2[2]10]14]

}
wi total average
1

Wz a (=0
w3 |2.5 a Wy | 5 as (=1
Ws‘l‘ ‘34 W6‘—1| ‘35 W7‘ ‘as WB‘Z‘ ‘37 (=2

N

v(l) v(2) v@E) v(#) v(B) v(6) (7)) v(E)
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Introduction: Histograms

@ We may also compute w; with the wavelet basis vectors ;.

[x [1[2]3[4]56] 7] 8]
[v(x)[3]5]10[8]2[2]10]14]

}
wi total average

w03 |a (=0
w3 |25 a Ws| 5 a3 (=1

ws [T Jou w6 [ 2] 0 Jas 0] Jas we[2]

N
1014 (=3

v(l) v(2) v@E) v(#) v(B) v(6) (7)) v(E)
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Introduction: Histograms

@ We may also compute w; with the wavelet basis vectors ;.

[x [1[2]3[4]56] 7] 8]
[v(x)[3]5]10[8]2[2]10]14]

}
Wl total average
W2 a (=0
ws 2.5 a wa| 5 a3 (=1
Ws‘l‘ ‘34 W6‘—1| ‘35 W7‘0‘ ‘as WB‘Z‘ ‘37 (=2

N
1014 (=3

v(l) v(2) v@E) v(#) v(B) v(6) (7)) v(E)
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Background: Hadoop MapReduce, Map Phase

JobTracker

split 1
split 3

split 4

@ The JobTracker assigns an InputSplit to a TaskTracker, a
MapRunner task runs on the TaskTracker to process the split.
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Background: Hadoop MapReduce, Map Phase

JobTracker

RecordReader

(K1, v1)

split 1
split 2
split 3
split 4

@ The MapRunner acquires a RecordReader from the InputFormat for
the file to view the InputSplit as a stream of records, (kq,v1).
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Background: Hadoop MapReduce, Map Phase

JobTracker

RecordReader

(K1, v1)

Buffer
split 1 (K2, v2)
split 3
split 4

@ The MapRunner invokes the user specified Mapper for each (kq,v1),
the Mapper emits (ka, v2) and stores in an in-memory buffer.
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Background: Hadoop MapReduce, Map Phase

JobTracker

RecordReader

(K1, v1)

Buffer
split 1 (k2, v2) (ko, list(v2)) (ko, v2)
split 2 @ E' Combiner @
split 3 \E' v
split 4

@ When the buffer fills, the optional Combiner is executed over
(ka, list(v2)), and a (ko, v2) is dumped to a partition on disk.
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Background: Hadoop MapReduce, Shuffle and Sort Phase

JobTracker

(K2, v2)

« BF=] -— [l

Reducer: (k. v2) Reducer:
Copy Sort

T

(Ko, v2)

@ The JobTracker assigns Reducers to TaskTrackers for each partition,
each reducer first copies on (ka, v2) and then sorts on k.
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Background: Hadoop MapReduce, Reduce Phase

JobTracker

J

(koo v2)
. "
. Reducer: (ko ) Reducer: (ko fist(2)) Reducer: (ks v5)
. Copy Sort Reduce o

;

(Ko, v2)
P2

@ The sorting output (k, list(v,)) is processed one k; at a time and
reduced, the reduced output (ks, v3) is written to reducer output o;.
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

(x, null)
(x, null)

split (x. null)

S\

Mapper

oo
T | T

| = S| e————
NI

Building Wavelet Histograms on Large Data in MapReduce

Jeffrey Jestes, Ke Yi, Feifei Li




Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

S\

(x, null) (x,1) In-Memory
foml) A D) In-Memory
2 M Map

(x, null) (x.1)
Mapper 4—% I’\r;l»Memoly
ap
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

S\

(x, null) close() In-Memory
Mapper Map
(x; null) Manoer close() In-Memory
o2l — NP Map
(x, null) lose()
close In-Memory
Map
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

S\

(x, null) close() (x, vi(x))[ Streaming
Mapper Compute w;
(x; null) " close() (x, va(x))[ Streaming
/—’ apper Compute w;
x, null
( ) — close() | |, v3() ) Streaming
Compute w;
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

Priority Queue:

D]]] Largest w;
JobTracker
HDFS:
’ w;; Streamed to disk
D]]] Priority Queue:
Smallest w; ;
D]]] Priority Queue:

Largest w;;

HDFS:
w;j Streamed to disk

Priority Queue:

Smallest w;

Priority Queue:
Largest w;;

HDFS:

w; j Streamed to disk
Priority Queue:
Smallest w;
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

vy

(x, null) close() (x, vl(x)) Streaming
Compute w;

(X null) M close() (x, va(x ) Streaming
aPPer Compute w;

(x. nul) close() (x, v3 X) Streaming
Compute w;
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

vy

(o mul) close() (x, V1(x)) Streaming
Compute w;
g NS L
split — pp Compute w;
split 3 (x, null)
Compute w;
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

(i, (split 1, w;1))

(i, spllt 3,wi3))
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

(x, null)
o
(x, null) n
ﬁ
(x, null)
*

Jeffrey Jestes, Ke Yi i i Wavelet Histograms on Large Data in MapReduce



Exact Top-k Wavelet Coefficients:

JobTracker

(x, null)
o
(x, null) n
ﬁ
(x, null)
*

Jeffrey Jestes, Ke Yi

Hadoop Phase 1

R

(split) j

wj

3

10

-30

20

12

-20

[RIENIEN] P

-10
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

i 7 (w) [7(w)

1 40 | 0

o 3 60 | 8
i, (split 3, wi3)) 5 2 | 2
6]-30/011] -10 | -60 | 10
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

R
i | (split) j | wi
10
-30
20
12
-20
-10

Reduce Phase

R

7 (w) [ (W) [r(w)
10 |001| 42 -40 0

100| -8 -60 8

32110 42 22 22

-30(011| -10 -60 10

%Iit 3,w3))

ofafw[=[<]
@
=]
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

%Iit 3,w3))

Jeffrey Jestes, Ke Yi, Feifei Li

R

i | (split) j | wi

10

-30

20

12

-20

-10

Close Phase

R

T (W) [T (W) [7(w)

10 |001| 42 -40 0

-30/100 -8 -60 8

32 |110| 42 22 22

oo w[=]<]

-30|011] -10 -60 10
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

R
i | (split) j | wi
10
-30
20
12
-20
-10

Close Phase

R

7 (w) [ (W) [r(w)
10|001| 42 -40 0

100 -8 -60 8

32(110| 42 22 22

-30[011| -10 -60 10

%Iit 3,w3))

of o w[ =[]
@
=]
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

%Iit 3,w3))
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R

i | (split) j | wi

3 10

-30

20

12

-20

-10

Close Phase

R

T (wi) [ (wi) [7(w)

10|001| 42 -40 0

-30/100| -8 -60 8

210 42 | 2 | 22 |11 =22, Ty/m=22/3]

of o w[ =[]

-30[011] -10 -60 10
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Exact Top-k Wavelet Coefficients:

Hadoop Phase 1

JobTracker

%Iit 3,w3))
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R

i | (split) j | wi

10

-30

20

12

-20

-10

Close Phase

‘ _ R _ Coordinator
i W) W) [rw)| - State
1[10]o01] 42 | 40 [ 0 |—

3[-30[100] 8 | 60 | 8

5[32]110] 42 2 [ 22 |—{Ty =22 Ty/m=22/3]
6[-30[011] -10 | -60 | 10
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

/A R
Co i ] (split) j | wij
E (i, (split 1, w;1)) 3 0
/ 30 1 |30
5 1 20
(x, null) 51 2 2
6 3 -10

(x, nul) (i, (split 2, wi2))

HDFS or Local

(e s
(x, null)

Mapper Close Phase

R oordinator
IMIAGOEOIEC S

10 [001| 42 -40 0

-8 -60 8
32[110] 42 | 22 | 20 | [T, =2, Ty/m=22/3]
-30[011] -10 -60 10

%Iit 3, w;3))

ofafw[=[~
@ )
=]
=
=)
S
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker
s R
Co i ] (split) j | wij
E (i, (split 1, wi1)) T3 10
3 1 -30
7 5 1 |20
(x, null) 5] 2 12
/—v Mapper 6 2 -20
- 6 3 -10
(x, null) (i, (split 2, w;)) T/
o apper m
PP ! HDFS
(x, null)
Mapper Close Phase
R .
- Coordinator
il wi [ B ] (w) [T~ (wi) [ 7(w) ///8 State
1/10|001) 42 -40 0
3]-30|100f -8 -60 8
%Iit 3wis) [5]32[110] 42 | 22 | 20 | [T, =22, Ts/m=22/3]
6(-30(011) -10 -60 10
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

To/m=22/3
Job Configuration
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Exact Top-k Wavelet Coefficients: Hadoop Phase 1

JobTracker

S\

bypass
VP split 1:
saved w;

bypass split 2:
saved w;;
E5N
bypass split 3:
8 saved w;

Job Configuration
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

iTwia Mapper

7
3 Mapper

Mapper

Job Configuration

=
=]

3

1 Il
I
N
N
3

m

=
Lis|&

PIC [w B|=
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

Mapper

Mapper

Mapper

Job Configuration

g

8

3

1 Il

N

I

B

.
A SRk
o$E[E] [#l5]e~
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

[7] (6(split 1,-15))
I3
(4]
[2] (3,(split 2.-14))
To/m=122/3
l [split 3
! i|wis
Job Configuration EWEETY

(3] 6 |
(415 |
[2] -3 |
5| -6
T
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

(6(split 1,-15))

Job Configuration

Jeffrey Jestes, Ke Yi, Feifei Li

Mapper

Reducer

Coordinator
State

(3,(split 2,-14))

Mapper
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

] (6(split 1,-15))
3
[4] Mapper Red Coordinator
i educer State
5 (3,(split 2,-14
B date
-EE ; update
To/m=22/3 il wi | F
l [split 3 1] 10001
| iTwis 3]-30[100
Job Configuration EWEETY 5(32]110
EIG 6]-30]011
415 |
123 |
5| -6
610

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

]

(6(split 1,-15))
bypass .
8 Mapper Reducer 8 goordlnator
tate
(3.(split 2,-14))
AN bypass " update
apper
R
To/m=22/3 Twi [ B [m W) [r ) [rw) [7(w)
l split 3 1[10[001] 246 | 46 | 0 | 246
v [ [wis 3[-44[110] -36.6 | -51.3 | 36,6 | 51.3
Job Configuration ENET 5[32[110] 393 | 246 | 246 393
[3] 6 6[-45[111| -45 | -45 | 45 | 45
45
12| 3]
5| -
T
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

]

(6(split 1,-15))
bypass .
8 Mapper Reducer 8 g:)aotredlnator
(3.(split 2,-14))
AN bypass Mapper update ——reduce phase
R

il wi | Bl (wi) [ 7 (wi) [ 7(wi) [ 7'(wi)

l [split 3 1/10]001 24.6 | -46 0 246

L _ i|wis 3|-44|110| -36.6 | -51.3 | 36.6 | 51.3

ENET 5|32 |110f 393 | 246 | 24.6 | 39.3

[3] 6 6|-45111 -45 -45 45 45
[4] 5 |
[2] 3]
[5]-6 |
610
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

]

(6(split 1,-15))
bypass .
8 Mapper Reducer 8 g:)aotredlnator
(3.(split 2,-14))
AN bypass " update ——close phase
apper
R
i wi | F 7T w) [ (wi) [ r(wi) [7'(wi)
l [split 3 110|001 246 | -46 0 246
L _ i|wis 3|-44|110| -36.6 | -51.3 | 36.6 | 51.3
ENET 5(32]110| 393 | 246 | 24.6 | 39.3
[3] 6 6|-45|111| -45 -45 45 45
[4] 5 |
[2] 3]
[5]-6 |
610
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

]

(6(split 1,-15))
bypass X
8 Mapper Reducer 8 g:)aotredlnator
(3.(split 2,-14))
~__bypass Mapper close phase
R
il wi | B 7 (wi) [ 7 (wi) [ 7(wi) [ 7'(wi)
l [split 3 1/10]001| 246 | -46 0 246
Y - i|wis 3|-44|110| -36.6 | -51.3 | 36.6 | 51.3
ENET 5(32]110| 393 | 246 | 24.6 | 39.3
[3] 6 6[-45[111| 45 | 45 | 45 | 45
[4] 5 |
[2] 3]
[5]-6 |
610
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

]

(6(split 1,-15))
bypass X
8 Mapper Reducer 8 g:)aotredlnator
(3.(split 2,-14))
~__bypass Mapper close phase
R
il wi | B 7 (wi) [ 7 (wi) [ 7(wi) [ 7'(wi)
l [split 3 1/10]001| 246 | -46 0 246
Y - i|wis 3|-44|110| -36.6 | -51.3 | 36.6 | 51.3
ENET 5(32]110| 393 | 246 | 24.6 | 39.3
[3] 6 6[-45[111| 45 | 45 | 45 | 45
[4] 5 |
[2] 3]
[5]-6 |
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

/7
E

bypass Q

Mapper

J
AN bypass

|

Job Configuration

Mapper

Mapper

y Jestes, Ke Yi, F

(6(split

1-15))

Reducer

Coordinator
State

(3.(split 2,-14))
close phase
R
ilwi | B | (w) [ 7 (w) [ r(wi) | 7'(wi)
3|-44|110] -36.6 | -51.3 | 36.6 | 51.3
6(-45|111| -45 -45 45 45
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

]

Mapper

(6(split 1,-15))

bypass Q

\\_J Mapper Reducer 8 g:)aotredlnator
(3.(split 2,14
AN bypass close phase
Mapper
R
T./m =223 i wi | Fe [ (wi) [ 7 (w) | 7(wi) [ 7'(wi)
l split 3 2] 24 - - Coordinator
; Wi 3[-44|110] -36.6 | 51.3 | 366 | 513 || State
Job Configuration 10 S 3230+39- 24 46139
6|-45|111] 45 | 45 | 45 | 45
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

]

Mapper

(6(split 1,-15))

bypass Q

\\_J Mapper Reducer 8 g:)aotredlnator
) (3.(split 2,14
AN ass
i Mapper close phase HDFS or Local
R
T./m =223 i wi | Fe [ (wi) [ 7 (w) | 7(wi) [ 7'(wi)
l split 3 2] 24 - - Coordinator
; Wi 3[-44|110] -36.6 | 51.3 | 366 | 513 || State
Job Configuration 10 S 3230+39- 24 46139
6|-45(111| -45 -45 45 45
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

]

Mapper

(6(split 1,-15))

bypass Q

\\_J Mapper Reducer 8 g:)aotredlnator
(3.(split 2,14
~__bypass close phase
Mapper
R

T./m =223 i wi | Fe [ (wi) [ 7 (w) | 7(wi) [ 7'(wi)
l split 3 HH H—24- 4 4

- - w3 3(-44]110| -36.6 | -51.3 | 36.6 | 51.3
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

]

bypass Q

Mapper

J
AN bypass

l [split 3

L i|wiz

Job Configuration EWEETY
(3] 6 |
(415 |
[2] -3 |
5] -
T

Mapper

Mapper

(6(split 1,-15))

Reducer

(3.(split 2,-14)
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Coordinator
State

close phase
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

Mapper (6(split 1,-15))

bypass Q
J

AN bypass

Mapper Reducer

Coordinator
State

close phase

(3.(split 2,-14)

(4]
1
2] )

s . HDFS
il wi | B 7 (wi) [ 7 (wi) [ 7(wi) [ 7'(wi)
] [split 3 6 00H—4-6——4- = 8%@?
v iTwis 3]-44[110| -36.6 | -513 | 36.6 | 513 |— missing a w;;
= e
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

|

split 1
split 2
split 3

Ti/m=22/3
l
Job Configurati
[Lob Configuration] | | ipteq Cache
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Exact Top-k Wavelet Coefficients: Hadoop Phase

JobTracker

£/
split 1:

saved w;;

bypass split 2:
saved w;;
ol 31
bypass 8 split 3:

saved w;

bypass

v |
Job Confi
[Lob Configuration] 5 gpteq Cache
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

vy

bypass

[split 2
i|wio Mapper
ray

bypass E;
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GEx
bypass 314 |
j
L l ! [split 3
: - | || wis
s
3] 6
[4] 5]
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FARET:Y

Jeffrey Jestes, Ke Yi i i Wavelet Histograms on Large Data in MapReduce



Exact Top-k Wavelet Coefficients: Hadoop Phase 3

JobTracker

vy

bypass [split 2
i
A
[4] 7
i
3 2] 5
bypass 3114
e g
Ti/m=22/3
l [split 3
Job Confi [l i|wis
Ew
w Distributed Cache e
(31 6 |
1415 |
[2]-3 |
5]-6
el 10
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Exact Top-k Wavelet Coefficients: Hadoop Phase 3

[split 1

i|wit

5120

JobTracker 207
vz 16 |

7 2

6115

31 25
bypass 7E|“t 5

i|wia

T

[4] 7
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

JobTracker nj= records in split j
’ sj= split j sample frequency vector
In-Memory
Map
‘ Centralized Wavelet Top-k ‘
[RandomizedRecordReader | E (x \I(x))
(x, null) T
: (x.5(x) G <(x))
split 1 (x, null) (x,si(x)) (x,sj(x))
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
© RR; randomly selects n;/c°n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

@ Reducer uses V(x) = s(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

JobTracker nj= records in split j
’ sj= split j sample frequency vector
In-Memory
Map
‘ Centralized Wavelet Top-k ‘
[RandomizedRecordReader | E T
(x, null)
: (x.5()
Sp|!t 1 (x, null) (x,si(x))
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
© RR; randomly selects n;/c°n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

@ Reducer uses V(x) = s(x)/p, our unbiased estimator for v(x).

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

JobTracker nj= records in split j
’ sj= split j sample frequency vector
In-Memory
Map
‘ Centralized Wavelet Top-k ‘
[RandomizedRecordReader | E (x \I(x))
(x, null) T top-k |w;|
X, s(x
: (x,5(x) (xos)
Sp|!t 1 (x, null) (x,si(x)) (x,sj(x))
split 2 MapRunner Mapper @ Reducer
split 3 close()
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
© RR; randomly selects n;/c°n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

@ Reducer uses V(x) = s(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Basic Random

Sampling

JobTracker nj= records in split j
’ sj= split j sample frequency vector
In-Memory
Map
‘ Centralized Wavelet Top-k ‘
[RandomizedRecordReader | E (x \I(x))
(x, null) T top-k |w;|
X, s(x
_ (x,51(x) (e 5t))
splt 1 (x. ) () (us)) L
split 2 MapRunner Mapper [p1] Reducer )——— o
split 3 close() top-k |w;|
split 4

© RandomizedRecordReader j (RR;) samples nj/e%n records.
© RR; randomly selects n;/c°n offsets in split j.

@ RR; sorts the offsets in ascending order then seeks the record at each
sampled offset.

@ Reducer uses V(x) = s(x)/p, our unbiased estimator for v(x).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

Jeffrey Jestes, Ke Yi, Feifei Li Building Wavelet Histograms on Large Data in MapReduce



Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q E[Xj] = evm-si(x).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).

o Let X; =1 if x is sampled in split j and O otherwise.
Q E[Xj] = evm-si(x).

o Let M=XT, X,
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).

o Let X; =1 if x is sampled in split j and O otherwise.
Q E[Xj] = evm-si(x).

o Let M=XT, X,

Q E[M] =X ey/m-si(x)
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).

o Let X; =1 if x is sampled in split j and O otherwise.
Q E[Xj] = evm-si(x).

o Let M=XT, X,

Q E[M] = X7, evm - si(x) = ev/m(s(x) — p(x)).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).

o Let X; =1 if x is sampled in split j and O otherwise.
Q E[Xj] = evm-si(x).

o Let M=XT, X,

Q E[M] = X7, evm - si(x) = ev/m(s(x) — p(x)).
Q E[s(x)] = E[p(x) + M/ey/m]
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).

o Let X; =1 if x is sampled in split j and O otherwise.
Q E[Xj] = evm-si(x).

o Let M=XT, X,

Q E[M] = 37, ev/m-5(x) = ev/m(s(x) - p(x)).
Q E[s(x)] = E[po(x) + M/ey/m] = p(x) + (s(x) — p(x))
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an unbiased estimator of s(x).

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).

o Let X; =1 if x is sampled in split j and O otherwise.
Q E[Xj] = evm-si(x).

o Let M=XT, X,

Q E[M] = 37, ev/m-5(x) = ev/m(s(x) - p(x)).
Q E[s(x)] = E[p(x) + M/ev/m] = p(x) + (s(x) — p(x)) = s(x).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

@ Var[X] = ey/m - 5;(x)(1 — ev/m - 5;(x))
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj] = ev/m - 5;(x)(1 — ev/m - 5j(x)) < ev/m - s;(x).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q@ Var[Xj] = ev/m-sj(x)(1 — ev/m - sj(x)) < e/m - sj(x).
o Let M=XT X,
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q Var[Xj] = ey/m - 5;(x)(1 — ey/m - sj(x)) < ev/m - 5j().
o Let M=XT X,

© Var[M] < 27, Var[X]]
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q@ Var[Xj] = ev/m-sj(x)(1 — ev/m - sj(x)) < e/m - sj(x).
o Let M=XT X,

© Var[M] < 37, Var[Xj] < 37, ey/m - 5;(x)
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q@ Var[Xj] = ev/m-sj(x)(1 — ev/m - sj(x)) < e/m - sj(x).
o Let M=XT X,

© Var[M] < 37, Var[Xj] < 37 ev/m - si(x) < m' - ey/m - 1/(e/m)
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.
Q Var[Xj] = ey/m - 5;(x)(1 — ey/m - sj(x)) < ev/m - 5j().
o Let M=XT X,
© Var[M] < 37 Var[Xj] < 327 ev/m - si(x) < m' - ey/m - 1/(e/m)

=m.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.
Q Var[Xj] = ey/m - 5;(x)(1 — ey/m - sj(x)) < ev/m - 5j().
o Let M=XT X,
© Var[M] < 37 Var[Xj] < 327 ev/m - si(x) < m' - ey/m - 1/(e/m)

=m.

Q Var[s(x)] = Var[M/e\/m]
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q@ Var[Xj] = ev/m-sj(x)(1 — ev/m - sj(x)) < e/m - sj(x).
o Let M=XT X,

© Var[M] < 37 Var[Xj] < 327 ev/m - si(x) < m' - ey/m - 1/(e/m)

Q Var[s(x)] = Var[M/ey/m] = Var[M]/e*m
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q@ Var[Xj] = ev/m-sj(x)(1 — ev/m - sj(x)) < e/m - sj(x).
o Let M=XT X,

© Var[M] < 37 Var[Xj] < 327 ev/m - si(x) < m' - ey/m - 1/(e/m)

Q Var[s(x)] = Var[M/e\/m] = Var[M]/e?m < m' /e?m
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q@ Var[Xj] = ev/m-sj(x)(1 — ev/m - sj(x)) < e/m - sj(x).
o Let M=XT X,

© Var[M] < 37 Var[Xj] < 327 ev/m - si(x) < m' - ey/m - 1/(e/m)

Q Var[s(x)] = Var[M/ey/m] = Var[M]/e*m < m'/e*m < 1/
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

S(x) is an estimator of s(x) with standard deviation at most 1/e.

@ Our estimator is §(x) = p(x) + M/ey/m.

@ Assume in the first m’ splits s;(x) < 1/(sy/m).
o Let X; =1 if x is sampled in split j and O otherwise.

Q@ Var[Xj] = ev/m-sj(x)(1 — ev/m - sj(x)) < e/m - sj(x).
o Let M=XT X,

© Var[M] < 37 Var[Xj] < 327 ev/m - si(x) < m' - ey/m - 1/(e/m)

Q Var[s(x)] = Var[M/ey/m] = Var[M]/e*m < m'/e?m < 1/e? < 1/e.
OJ
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is §(x) = p(x) + M/e/m.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is §(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/&2.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is §(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/&2.
o If sj(x) > 1/(e/m) we emit (x, s;(x)).
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is §(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/&2.

o If sj(x) > 1/(e/m) we emit (x, s;(x)).
@ There are < (1/?)/(1/e\/m) = v/m/e such keys.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is §(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/&2.
o If sj(x) > 1/(e/m) we emit (x, s;(x)).

@ There are < (1/?)/(1/e\/m) = v/m/e such keys.
o If si(x) < 1/(ey/m),

we emit (x, null) with probability ey/m - s;x.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is §(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/&2.
o If sj(x) > 1/(e/m) we emit (x, s;(x)).
@ There are < (1/€%)/(1/ey/m) = \/m/e such keys.
o If si(x) < 1/(ey/m),
we emit (x, null) with probability ey/m - s;x.
© On expectation there are,

5 5, eV si(x) < ey/m - 1/€?
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is §(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/&2.
o If sj(x) > 1/(e/m) we emit (x, s;(x)).
@ There are < (1/€%)/(1/ey/m) = \/m/e such keys.
o If si(x) < 1/(ey/m),
we emit (x, null) with probability ey/m - s;x.
© On expectation there are,

S eV si(x) < ev/m- 1/ = /m/e.
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Approximate Top-k Wavelet Coefficients: Two-Level
Sampling

The expected total communication cost of our two-level sampling
algorithm is O(y/m/e).

@ Our estimator is §(x) = p(x) + M/e/m.

@ The first-level sample size is pn = 1/&2.
o If sj(x) > 1/(e/m) we emit (x, s;(x)).
@ There are < (1/?)/(1/e\/m) = v/m/e such keys.
o If si(x) < 1/(ey/m),
we emit (x, null) with probability ey/m - s;x.
© On expectation there are,
DIIDIN ev/m-sj(x) <ey/m-1/e* = /m/e.
@ By (2) and (3), the total number of emitted keys is O(v/m/g).
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

split 1
split 2 MapRunner
split 3
split 4
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = nj/52n records.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = nj/52n records.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

E In-Memory

Map
‘ RandomizedRecordReader ‘
(x, null)

(x1)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = nj/52n records.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
close()
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = nj/52n records.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
(X7 Sj(x))
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = nj/52n records.
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Approximate Top-k Wavelet Coefficients: Improved

Sampling

JobTracker nj= records in split j

’ sj= split j sample frequency vector

In-Memory
Map

‘ RandomizedRecordReader ‘

(x, null)
split 1 (x, null)
split 2 MapRunner
split 3
split 4

© RandomizedRecordReader j samples t; = nj/52n records.
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