
Cquirrel: ContinuousQuery Processing over Acyclic Relational
Schemas

Qichen Wang†, Chaoqi Zhang†, Danish Alsayed†, Ke Yi†
Bin Wu‡, Feifei Li‡, Chaoqun Zhan‡

Hong Kong University of Science and Technology† Alibaba Group‡
qwangbp@cse.ust.hk,{czhangci,dimialsayed}@connect.ust.hk,yike@cse.ust.hk

{binwu.wb,lifeifei,lizhe.zcq}@alibaba-inc.com

ABSTRACT
We will demonstrate Cquirrel, a continuous query processing en-
gine built on top of Flink. Cquirrel assumes a relational schema
where the foreign-key constraints form a directed acyclic graph, and
supports any selection-projection-join-aggregation query where
all join conditions are between a primary key and a foreign key.
It allows arbitrary updates to any of the relations, and outputs
the deltas in the query answers in real-time. It provides much bet-
ter support for multi-way joins than the native join operator in
Flink. Meanwhile, it offers better performance, scalability, and fault
tolerance than other continuous query processing engines.

PVLDB Reference Format:
Qichen Wang, Chaoqi Zhang, Danish Alsayed, Ke Yi, Bin Wu, Feifei Li and
Chaoqun Zhan. Cquirrel: Continuous Query Processing over Acyclic
Relational Schemas. PVLDB, 14(12): 2667 - 2670, 2021.
doi:10.14778/3476311.3476315

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hkustDB/Cquirrel-release.

1 INTRODUCTION
Query evaluation on a static database is a well studied problem. In
many emerging applications, queries are evaluated on a database
that is being continuously updated. Examples include online data
analytics, stock price prediction, sensor monitoring, network traf-
fic analytic, etc. During Singles’ Day Global Shopping Festival of
Alibaba [12], huge volumes of sales data are being collected, and it
is very important to monitor various statistics (often in the form of
SPJA queries) in real time, in order to make informed decisions. In
these applications, updates to the database are being made at high
speeds and the query processing system must maintain the query
answer with high throughput and low latency. Another important
application of continuous query processing is materialized view
maintenance [5, 8]. A materialized view is nothing but the results of
a predefined query, which can significantly reduce the cost of query
evaluation, when the view is part of a bigger query. Materialized
views are supported by most modern database systems. There is

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476315

an extensive body of work on query answering using views [3, 11],
while it is obvious that the view has to be up-to-date.

Problem definition. Let 𝑑𝑏 be the contents of the current database
and 𝑄 (𝑑𝑏) denote the results of evaluating query 𝑄 on 𝑑𝑏. For an
update 𝑢 to 𝑑𝑏, where 𝑢 can be either the insertion or deletion of a
tuple, we write 𝑑𝑏 +𝑢 as the new database instance after applying 𝑢.
To facilitate the computation, some data structure on 𝑑𝑏, denoted
D(𝑑𝑏), can be maintained. Depending on the application, there are
two output modes. (1) Delta enumeration: Given D(𝑑𝑏) and 𝑢, the
system should output Δ𝑄 , i.e., all differences between 𝑄 (𝑑𝑏) and
𝑄 (𝑑𝑏 + 𝑢). (2) Full enumeration: Given D(𝑑𝑏), all query results in
𝑄 (𝑑𝑏) can be enumerated with constant delay [4].

Our demonstration system. We present Cquirrel (Continuous
query processing over acyclic relational schemas), a system for
continuous query processing built on top of Flink [6]. Cquirrel
specifically targets at queries with multi-way foreign-key joins
over an acyclic schema. The default output model of Cquirrel is
delta enumeration. The user first registers a query on an initially
empty database. An update sequence (containing insertions and
deletions) are then fed into Cquirrel in the form of a DataStream
of Flink. As updates are being processed, deltas of the query an-
swer are generated as an output DataStream in real time. In our
demo, we feed the output DataStream to a web-based user interface
for rendering; in other applications, the output DataStream can be
consumed by another Flink application, or any other consumer.

A schema is (foreign-key) acyclic if the graph formed by the
primary-foreign key relationships is a directed acyclic graph (DAG).
Acyclic schemas are very common in schema design [1]. For exam-
ple, the TPC-H scheme is such one. In fact, it is considered problem-
atic if the primary-foreign key relationships contain a cycle [13],
which would inevitably result in the foreign-key constraint being
violated when the underlying database is updated. Cquirrel sup-
ports any selection-projection-join-aggregation (SPJA) query over
an acyclic schema, provided that all join conditions are between a
primary key and one of the foreign keys referencing the primary
key. Note that all join conditions in the TPC-H queries satisfy this
requirement. The aggregation may optionally have a group-by and
an order-by. The updates can be made to any relation in an arbitrary
fashion, although the cost for handling the updates will depend on
𝜆, the enclosureness of the update sequence [14]. Although 𝜆 can
be high in the worst case, for most real-world update sequences, 𝜆
is a constant. In particular, if the updates are first-in-first-out (i.e.,
tuples are deleted in the order they are inserted), which includes
the sliding-window model as a special case, then 𝜆 = 1.

https://doi.org/10.14778/3476311.3476315
https://github.com/hkustDB/Cquirrel-release
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476315

Cquirrel uses the newly developed algorithms from [14] to achieve
the𝑂 (𝜆) update time. In addition, Cquirrel has the following distinc-
tive features compared with other continuous processing systems.

Holistic processing of multi-way joins. Cquirrel considers a multi-
way join as one operator. The system maintains index structures
based on the entire join structure. Given a query, Cquirrel will first
construct the foreign-key graph of the given query, which must
be a DAG. Then Cquirrel handles updates level by level following
the DAG. Compared with the traditional query processing tech-
nique that decomposes a multi-way join into multiple two-way
joins, our approach does not need to materialize the intermediate
join results, which significantly improves both time and memory
consumption. In particular, the native join operator provided by
Flink only supports two-way joins, so the user has to manually
decompose a multi-way join into many two-way joins, and main-
tain the intermediate join results as DataStreams. As a result, Flink
only supports continuous query processing in the sliding-window
model over two-way joins; queries involving multi-joins are only
supported in the tumbling-window model, or a sliding-window
with a large sliding step size, which is not truly “continuous”. In
contrast, Cquirrel processes the updates as they arrive in real time;
for the special case of the sliding-window model, this means that
deltas are generated as the window slides continuously.

Parallelism. In building Cquirrel, we have parallelized the al-
gorithm in [14] to achieve a high throughput. Parallelization is
done both vertically and horizontally. The index structure for each
relation are hash-partitioned by the join key, which can then be han-
dled by different workers in parallel. Tuples in different relations
do not need to be co-partitioned in our design , so Cquirrel does
not need to replicate any tuples nor index structures. The overall
load will remain consistent, regardless of the number of workers.
Furthermore, the index structures for different relations are also
handled by different workers following the structure of the join
DAG with no backward communication. This allows us to carry
out the maintenance processes on different relations in parallelized
pipelines. Thus, Cquirrel can easily scale to very high volumes of
updates. Figure 1 shows the performance of Cquirrel with different
levels of parallelism. Note that, however, due to different processing
speeds at different workers, the output DataStream (the deltas) may
not follow exactly the same order as the input DataStream (the up-
dates). Specifically, if there are two updates 𝑢1, 𝑢2 that have arrived
in this order, it is possible that we see the delta caused by 𝑢2 before
the delta of 𝑢1. However, even when this happens, Cquirrel ensures
eventual consistency, i.e., the sum of all deltas must be correct.

Integration with Flink. When the user registers a query, Cquirrel
compiles the query plan into Flink code, which is then run by the
Flink engine. In some sense, Cquirrel can be considered as “just”
a query compiler. However, this modular design allows us to in-
herit all the benefits of Flink, which includes ultra-low latency,
fault tolerance, and elasticity. In particular, the Flink engine en-
sures exactly-once semantics, so the query processing results are
guaranteed to be correct eventually, although we may observe occa-
sional inconsistencies while the update stream is being processed,
as noted earlier. Finally, it is also easy to integrate Cquirrel into the

	0.1

	1

	10

	100

	1000

0.05 0.1 0.5 1 2 5

Pr
oc
es
si
ng
	T
im
e	
(S
ec
)

Scale	Factor

Single	Worker
4	workers

8	Workers
12	Workers

Figure 1: Running time on TPC-H Query 5 with different
Parallelism and Scale Factor

broader Flink ecosystem, e.g., to train a machine learning model
over changing data.

Comparison with other systems. The above features give Cquir-
rel a distinctive position compared with other continuous query
processing systems. Existing systems like DBToaster [2], Dynamic
Yannakakis[10], and Trill [7] are centralized, thus do not scale well
with high volumes of updates. In fact, Cquirrel can offer 2x to 80x
improvements even when running with one worker, due to the op-
timized algorithm and index structure design. None of the existing
systems offers any fault tolerance, either. However, some of them
support a broader class of queries, where the join conditions may
not be between a primary key and a foreign key.

2 CQUIRREL BY EXAMPLE
Our demo system will allow the user to provide SQL queries (for
ease of demonstration, the schema will be fixed to be the TPC-H
schema) through a web-based user interface, which also visualizes
the query results in real time as updates are being processed.

Below, we use the following query (TPC-H query 3) to walk
through the query processing stages in Cquirrel:
SELECT l_orderkey, o_orderdate, o_shippriority,
SUM(l_extendedprice * (1- l_discount)) AS revenue
FROM Lineitem, Customer, Orders
WHERE c_mktsegment = 'AUTOMOBILE'
AND c_custkey = o_custkey AND l_orderkey = o_orderkey
AND o_orderdate < date '1995-03-13'
AND l_shipdate > date '1995-03-13'
GROUP BY l_orderkey, o_orderdate, o_shippriority

The query includes a three-way join between relation Lineitem,
Orders and Customer relation. Figure 2 gives a dummy database
consisting of these three relations. We next demonstrate how to
maintain the index structure to handle continuous updates for the
query 𝑄 .

Query Plan. In Cquirrel, the relations are joined as depicted by
the foreign-key DAG, which is akin to a query plan. Figure 2 shows
the foreign-key DAG of TPC-H query 3 and Figure 3 shows the
query plan of query 3 in Flink. For the foreign-key DAG, a vertex
represents a relation, and there is a directed edge from 𝑅𝑖 to 𝑅 𝑗 if 𝑅𝑖
has a foreign key referencing the primary key of 𝑅 𝑗 . The directed
edge is annotated with the join key. In addition to the joins, the
query plan also includes two additional parts, I/O, and aggregation.

L_ORDERKEY L_EP L_DIS L_SHIPDATE
1 21168.23 0.04 1995-03-13
1 45983.16 0.09 1995-04-12
2 13309.60 0.1 1995-01-29
2 28955.64 0.09 1995-04-21
3 22824.48 0.1 1995-03-30
3 49620.16 0.07 1995-01-30

O_ORDERKEY O_CUSTKEY O_ORDERDATE O_SP
1 1 1995-01-02 1
2 2 1995-12-01 2
3 3 1995-10-14 1
4 1 1995-07-30 3
5 2 1995-02-21 4
6 3 1995-01-10 5

L_ORDERKEY
1
2
3

L_EP L_DIS L_SHIPDATE
21168.23 0.04 1995-03-14
45983.16 0.09 1995-04-12

13309.60 0.1 1995-01-29
28955.64 0.09 1995-04-21

22824.48 0.1 1995-03-30
49620.16 0.07 1995-01-30

L_ORDERKEY
1
2
3
4
5
6

S(t)
1
0

0->1
0
1

0->1

O_CUSTKEY
1
2
3

O_ORDERKEY O_ORDERDATE O_SP
1 1995-01-02 1
4 1995-07-30 3

2 1995-12-01 2
5 1995-02-21 4

3 1995-01-14 1
6 1995-01-10 5

O_CUSTKEY
1
2
3
4
5
6

S(t)
1
1

0->1
0
0
1

C_CUSTKEY C_MKTSEGMENT
1 AUTOMOBILE
2 AUTOMOBILE
4 BUILDING
5 MACHINEY
6 AUTOMOBILE

3 AUTOMOBILE

C_CUSTKEY C_MKTSEGMENT
1 AUTOMOBILE
2 AUTOMOBILE
4 BUILDING
5 MACHINEY
6 AUTOMOBILE

3 AUTOMOBILE

L_ORDERKEY O_ORDERDATE O_SP
1 1995-01-02 1
3 1995-01-14 1

Revenue
62166.18

Revenue
20542.03

Ic(Lineitem)

Ic(Orders)

I(Lineitem)

I(Orders)

I(Aggregation)
I(Customer)Customer

Orders

Lineitem

Lineitem

Orders

Customer

ORDERKEY

CUSTKEY

Figure 2: Maintaining TPC-H Query 3 in Cquirrel. Left: Dummy database instance; Middle: Foreign-key Graph; Right: Index
for each relation and aggregation. Tuple in red color: alive tuples. Tuple in white color: non-live tuples. Tuple in green color:
the insert tuple. Tuple in pink color: the update tuples. All unrelated attributes are omitted from the figure.

Data Source /
Input Stream

Spliter Reader

Customer
Process
Function

Orders
Process
Function

Lineitem
Process
Function

Aggregation
Process
Function

Data Sink

HASH HASH HASH

REBALANCE
HASH

HASH

HA
SH

Figure 3: Query Plan in Flink

Live Tuples. For each relation, Cquirrel divides all inserted tuples
into two parts, alive and non-live. For any relation 𝑅, a tuple is alive
if it can join with one tuple in every relation in D(𝑅), where D(𝑅)
represents all 𝑅’s descendant relations. All tuples in the leaf relation,
i.e., has no descendant relation, are alive (subject to the applicable
selection condition). In Figure 2, all alive tuples are marked in red
and non-live tuples in white.

Another important observation is that if a tuple 𝑡 is alive on
𝑅, then there exists an alive tuple in each child relation of 𝑅 that
can join with 𝑡 . For each 𝑅𝑐 ∈ C(𝑅), if such tuple exists, we said
that 𝑡 is alive on 𝑅𝑐 . By using this property, Cquirrel is able to
maintain all live state in a bottom-up fashion. For example, if a
tuple (3,AUTOMOBILE) is inserted into relation Customer, then
the tuple (3, 3, 1995-01-14, 1) and (6, 3, 1995-01-10, 5) become alive.
The changing of state also triggers a bottom-up update, which
makes tuple (3, 22824.48, 0.1, 1995-03-30) becomes alive. In figure 2,
the tuple in green is the newly inserted tuple, and all tuples that
changes state during the bottom-up updates are marked in pink.

However, being alive on all 𝑅𝑐 ∈ C(𝑅) is only a necessary condi-
tion for a tuple being alive. The condition is only sufficient if the
foreign-key graph is a directed tree. Otherwise, the mismatching
problem might arise. To solve the problem, Cquirrel introduces the
concept of assertion keys as well as auxiliary attributes. By append-
ing assertion keys and auxiliary attributes to the index, Cquirrel
can detect the mismatching and mark those tuples as non-alive.
Due to space constraints, we omit the details of assertion keys. The
details can be found in the paper [14].

Data Structure. In Cquirrel, the system needs to maintain an
index structure (see Figure 2 right) to keep track of all live tuples.
The index should be able to: (1) enumerate all tuples in relation 𝑅

in constant time per tuple; (2) given any key value 𝑣 , enumerate all
tuples whose value on key 𝑥𝑘 is 𝑣 with a constant delay, or report
that there is none; (3) insert or delete a tuple in constant time; and
(4) use𝑂 (|𝑅 |) memory. A standard implementation of such an index
is a hash table on all the distinct key values of 𝑥𝑘 . Each slot of the
hash table stores a pointer to the list of all tuples whose value on
𝑥𝑘 is the given value. Using universal hash functions, all the above
operations can be done in expected 𝑂 (1) time [9].

In the actual implementation, Cquirrel takes advantage of the
Flink keyed streams. In Flink, a keyed stream will be partitioned by
a given key. In the implementation, Cquirrel partitions a relation 𝑅

by its foreign key. If a tuple 𝑡 ∈ 𝑅 is alive with respect to one of its
foreign key 𝑘𝑓 , then all tuples 𝑡 ′ ∈ 𝑅 that has same foreign key 𝑘𝑓
as 𝑡 are alive with respect to 𝑘𝑓 . Thus, for each relation, we only
need to maintain a hash set 𝐼 for each foreign key 𝑘𝑓 to store all
tuples with respect to 𝑘𝑓 , which satisfies all the requirements.

In addition, the system also maintains a counter 𝐼𝑐 for each
foreign key 𝑘𝑓 . If the counter equals the number of child relations
of 𝑅, then the foreign key 𝑘𝑓 is alive.

Aggregation. In Cquirrel, the system plugs the multi-way joins
into the delta propagation framework to handle more complex
queries. For example on TPC-H query 3, Cquirrel will store a state of
the aggregation value ‘revenue‘ on the current instance. As shown
in [14], we can enumerate the deltas of the multi-way joins with
a constant delay. When the tuple (3,AUTOMOBILE) is inserted,
Cquirrel first updates all index for all relations, and produces a delta
(3, 22824.48, 0.1, 1995-01-14, 1). The aggregation state will receive
all deltas and calculate the new aggregation value, which is 20542.03
for group (3, 1995-01-14, 1).

HKUST & Alibaba

Input SQL:

TPC-H Query Templates:

Submit SQLSubmit SQL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

select
····l_orderkey,·
····sum(l_extendedprice*(1-l_discount))·as·revenue,
····o_orderdate,·
····o_shippriority
from·
····customer,·
····orders,·
····lineitem
where·
····c_mktsegment·=·'BUILDING'
····and·c_custkey·=·o_custkey
····and·l_orderkey·=·o_orderkey
····and·o_orderdate·<·date·'1995-03-15'
····and·l_shipdate·>·date·'1995-03-15'
group·by·
····l_orderkey,·
····o_orderdate,·
····o_shippriorityselect

Q1 Q3 Q4

Q5 Q6 Q7 Q9 Q10

Q12 Q14 Q16 Q18 Q19

Clear

Relations Graph:

Base Relations:

Binary Predicates:

Unary Predicates:

lineitem orders customer

c_custkey = o_custkey

l_orderkey = o_orderkey

l_shipdate > DATE '1995-03-15'

o_orderdate < DATE '1995-03-15'

c_mktsegment = 'BUILDING'

Or you can upload the json file:

Click to Upload Json File

Flow Diagram: Download Flow Diagram

Data Source /
Input Stream

Splitter Reader

Customer
Process
Function

Orders
Process
Function

Lineitem
Process
Function

Aggregation
Process
Function

Data Sink

HASH HASH

HASH

HASH REBALANCE

HASH

HASH

Codegen Log: Download Codegen Log Download Generated Jar

Cquirrel -- CodeGen

 select
 l_orderkey,
 sum(l_extendedprice*(1-l_discount)) as revenue,
 o_orderdate,
 o_shippriority
from
 customer,
 orders,
 lineitem
where

TPC-H Query Result Table:

1 2 3 4 5 6 7

timestamp ORDERKEY O_ORDERDATE O_SHIPPRIORITY revenue

343525 269376 Sat Feb 25 00:00:00 HKT 1995 0 175127.2545

343524 269376 Sat Feb 25 00:00:00 HKT 1995 0 113629.2105

343522 269376 Sat Feb 25 00:00:00 HKT 1995 0 71547.2433

343520 269376 Sat Feb 25 00:00:00 HKT 1995 0 51966.8145

338987 265671 Mon Jan 23 00:00:00 HKT 1995 0 36305.0424

302994 50275 Tue Dec 06 00:00:00 HKT 1994 0 66593.44260000001

302994 50275 Tue Dec 06 00:00:00 HKT 1994 0 38471.893800000005

302994 50275 Tue Dec 06 00:00:00 HKT 1994 0 21892.8138

325763 255297 Sun Jan 22 00:00:00 HKT 1995 0 120885.67379999999

325762 255297 Sun Jan 22 00:00:00 HKT 1995 0 77886.0054

10 / page

Query Result Figure: Aggregate Name: TopN: 10

Cquirrel SettingsAbout

(a) Table View
HKUST & Alibaba

Input SQL:

TPC-H Query Templates:

Submit SQLSubmit SQL

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

select
····l_orderkey,·
····sum(l_extendedprice*(1-l_discount))·as·revenue,
····o_orderdate,·
····o_shippriority
from·
····customer,·
····orders,·
····lineitem
where·
····c_mktsegment·=·'BUILDING'
····and·c_custkey·=·o_custkey
····and·l_orderkey·=·o_orderkey
····and·o_orderdate·<·date·'1995-03-15'
····and·l_shipdate·>·date·'1995-03-15'
group·by·
····l_orderkey,·
····o_orderdate,·
····o_shippriorityselect

Q1 Q3 Q4

Q5 Q6 Q7 Q9 Q10

Q12 Q14 Q16 Q18 Q19

Clear

Relations Graph:

Base Relations:

Binary Predicates:

Unary Predicates:

lineitem orders customer

c_custkey = o_custkey

l_orderkey = o_orderkey

l_shipdate > DATE '1995-03-15'

o_orderdate < DATE '1995-03-15'

c_mktsegment = 'BUILDING'

Or you can upload the json file:

Click to Upload Json File

Flow Diagram: Download Flow Diagram

Data Source /
Input Stream

Splitter Reader

Customer
Process
Function

Orders
Process
Function

Lineitem
Process
Function

Aggregation
Process
Function

Data Sink

HASH HASH

HASH

HASH REBALANCE

HASH

HASH

Codegen Log: Download Codegen Log Download Generated Jar

Cquirrel -- CodeGen

 select
 l_orderkey,
 sum(l_extendedprice*(1-l_discount)) as revenue,
 o_orderdate,
 o_shippriority
from
 customer,
 orders,
 lineitem
where

TPC-H Query Result Table:

1 2 3 4 5 6 7

timestamp ORDERKEY O_ORDERDATE O_SHIPPRIORITY revenue

343525 269376 Sat Feb 25 00:00:00 HKT 1995 0 175127.2545

343524 269376 Sat Feb 25 00:00:00 HKT 1995 0 113629.2105

343522 269376 Sat Feb 25 00:00:00 HKT 1995 0 71547.2433

343520 269376 Sat Feb 25 00:00:00 HKT 1995 0 51966.8145

338987 265671 Mon Jan 23 00:00:00 HKT 1995 0 36305.0424

302994 50275 Tue Dec 06 00:00:00 HKT 1994 0 66593.44260000001

302994 50275 Tue Dec 06 00:00:00 HKT 1994 0 38471.893800000005

302994 50275 Tue Dec 06 00:00:00 HKT 1994 0 21892.8138

325763 255297 Sun Jan 22 00:00:00 HKT 1995 0 120885.67379999999

325762 255297 Sun Jan 22 00:00:00 HKT 1995 0 77886.0054

10 / page

Query Result Figure: Aggregate Name: TopN: 10

Cquirrel SettingsAbout

(b) Query result visualization

Figure 4: Result Visualization Component

General SQL Queries. Cquirrel can support selection, projection,
and ring aggregations (for example, SUM aggregation and COUNT
aggregation) in constant delay based on the delta propagation frame-
work. By adjusting the index structure, Cquirrel can also evaluate
operators like union (∪) and difference (−) between two acyclic
multi-way join queries 𝑄 and 𝑄 ′, and semiring aggregations like
MIN/MAX. More details can be found in the paper [14].

3 USER INTERFACE
The user interface contains three main components: Query input,
Code generation, and Result display. Users can specify parameters
in the setting tab before starting the demonstration, for example,
the server address, the update sequences, or the input source.

The demonstration has four steps. First, the user will submit a
SQL query or a JSON file on the Query input component. If the
user submit a SQL query, the query will be sent to the SQL parser
and generate the corresponding JSON file. The JSON file contains
the information about the query plan. Experience users can also
write the JSON file and submit the file directly to the Web UI. By
manually writing the JSON file, users can submit a better query
plan than the parser provided.

For the second step, the JSON file will be sent to the code gener-
ator, which is running in the background of the server. The Web UI
will capture the generation log and the query plan from the code
generator, and display them on the web page. The code generator
will analyze the JSON and generate a corresponding Flink program.
After this, the code generator will compile the generated code and
generate a Jar package. TheWeb UI will then receive the Jar package
and submit it as a job to the Flink server as the third step.

While the Flink job is running, theWeb UI will receive the output
records and display the result in the Result display component (see
Figure 4) as the final step. In this demonstration, we integrate two
different views to visualize the update stream. The first one is the
table view (see Figure 4a), which contains all tuples from the output
streams generated by Cquirrel; the second one is a dynamic figure
(see Figure 4b). The dynamic figure will show the change of the
aggregate value. It can support the TOP operator for group-by
aggregation, i.e., the dynamic figure will only show the groups that
have the largest (or smallest) aggregation values. For queries with

multiple aggregations, the user can specify an aggregation that s/he
wants to be monitored.

ACKNOWLEDGMENTS
This work has been supported by HKRGC under grants 16202317,
16201318, 16201819, and 16205420, and by Alibaba Group through
the Alibaba Innovative Research Program.

REFERENCES
[1] SwarupAcharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.

1999. Join Synopses for Approximate Query Answering. In Proceedings of the
1999 ACM SIGMOD International Conference on Management of Data (SIGMOD
’99). 275–286.

[2] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.
DBToaster: Higher-order delta processing for dynamic, frequently fresh views.
Proceedings of the VLDB Endowment 5, 10 (2012), 968–979.

[3] Rafi Ahmed, Randall Bello, Andrew Witkowski, and Praveen Kumar. 2020. Au-
tomated generation of materialized views in Oracle. Proceedings of the VLDB
Endowment 13, 12 (2020), 3046–3058.

[4] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On acyclic
conjunctive queries and constant delay enumeration. In International Workshop
on Computer Science Logic. Springer, 208–222.

[5] Randall G Bello, Karl Dias, Alan Downing, James Feenan, Jim Finnerty, William D
Norcott, Harry Sun, Andrew Witkowski, and Mohamed Ziauddin. 1998. Materi-
alized views in Oracle. In VLDB, Vol. 98. 24–27.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Engineering Bulletin 38, 4 (2015), 28–38.

[7] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C Platt, James F Terwilliger, and John Wernsing. 2014. Trill: A high-
performance incremental query processor for diverse analytics. Proceedings of
the VLDB Endowment 8, 4 (2014), 401–412.

[8] Rada Chirkova and Jun Yang. 2012. Materialized views. Foundations and Trends®
in Databases 4, 4 (2012), 295–405.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to
Algorithms (3rd ed.). The MIT Press.

[10] Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. 2017. The Dynamic
Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates.
In Proceedings of the 2017 ACM International Conference on Management of Data
(SIGMOD ’17). 1259–1274.

[11] Alekh Jindal, Shi Qiao, Hiren Patel, Zhicheng Yin, Jieming Di, Malay Bag, Marc
Friedman, Yifung Lin, Konstantinos Karanasos, and Sriram Rao. 2018. Compu-
tation Reuse in Analytics Job Service at Microsoft. In Proceedings of the 2018
International Conference on Management of Data (SIGMOD ’18). 191–203.

[12] Feifei Li. 2019. Cloud-native database systems at Alibaba: Opportunities and
challenges. Proceedings of the VLDB Endowment 12, 12 (2019), 2263–2272.

[13] Stackexchange. 2021. . https://dba.stackexchange.com/questions/102903/is-it-
acceptable-to-have-circular-foreign-key-references-how-to-avoid-them

[14] Qichen Wang and Ke Yi. 2020. Maintaining Acyclic Foreign-Key Joins under
Updates. In Proceedings of the 2020 International Conference on Management of
Data (SIGMOD ’20). 1225–1239.

https://dba.stackexchange.com/questions/102903/is-it-acceptable-to-have-circular-foreign-key-references-how-to-avoid-them
https://dba.stackexchange.com/questions/102903/is-it-acceptable-to-have-circular-foreign-key-references-how-to-avoid-them

	Abstract
	1 Introduction
	2 Cquirrel by Example
	3 User Interface
	Acknowledgments
	References

