Cquirrel: Continuous Query Processing over Acyclic

Relational Schemas o

THE HONG KONG
UNIVERSITY OF SCIENCE

a
Qichen Wang', Chaoqi Zhang', Danish Alsayed', Ke Yi' kWJ AND TECHNOLOGY

Bin Wu', Feifei Li*, Chaoqun Zhan'
Hong Kong University of Science and Technology, Hong Kong, China!

gz/ﬁlibaha Group
- EERES

Alibaba Group, Hangzhou, China®

Lineitem
L_ORDERKEY L_EP L_DIS L_SHIPDATE
1 21168.23 0.04 1995-03-13
1 45983.16 0.09 1995-04-12 — — m
2 13309.60 0.1 1995-01-29 LIIIEIte
2 28955.64 0.09 1995-04-21
3 22824.48 0.1 1995-03-30
3 49620.16 0.07 1995-01-30
Orders
O_ORDERKEY O_CUSTKEY O_ORDERDATE Oo_sP
1 1 1995-01-02 1
2 2 1995-12-01 2
3 3 1995-10-14 1
4 1 1995-07-30 3
5 2 1995-02-21 4
6 3 1995-01-10 5
Customer
C_CUSTKEY C_MKTSEGMENT
1 AUTOMOBILE
2 AUTOMOBILE
. SUILDING Customer
5 MACHINEY
6 AUTOMOBILE
3 AUTOMOBILE

O_CUSTKEY

I(Lineitem) I.(Lineitem)
' PDf
1 — 1
2 — 0
3 T e
13309.60 0.1 1995-01-29 4 —> 0
28955.64 0.09 1995-04-21 5 —> 1
6 /> et
49620.16 0.07 1995-01-30
I(Orders) I.(Orders)
O_ORDERKEY ~ O_ORDERDATE sy |
1 > 1
1995-07-30 2 —D 1
1995-12-01 4 _>_0
5 —> 0
6 —> 1
I(Customer) - R
[(Aggregation)

Revenue
62166.18

L_ORDERKEY
1

O_ORDERDATE
1995-01-02

O_SP
1

4 BUILDING

5 MACHINEY

Revenue

3 AUTOMOBILE

Figure 1: Maintaining TPC-H Query 3 in Cquirrel. Left: Dummy database instance; Middle: Foreign-key Graph; Right: Index for each relation and aggregation. Tuple in red
color: alive tuples. Tuple in white color: non-live tuples. Tuple 1in green color: the insert tuple. Tuple 1in pink color: the update tuples. All unrelated attributes are omitted from

the figure.

1 Motivation & Goal

Motivation: In many emerging applications, queries are evaluated on a database that is being con-
tinuously updated. However, existing solutions do not have good support for multi-way join operators.

Calculating
D(DB+u)

Update u

Figure 2: Problem definition for continuous query processing

Goal: In this paper, we demonstrate Cquirrel, a continuous query processing engine built on top of
Flink. It provides much better support for multi-way joins than the native join operator in Flink.
Meanwhile, it offers better performance, scalability, and fault tolerance than other continuous query
processing engines.

2 System Architecture

Cquirrel contains the following main components:
e Core: including execution and maintenance logic of Cquirrel, built on top of Flink DataStream
API;
e Code generator: generating execution codes for a given SQL query.

e GUI: for query input, result display, and debug information display.

Frontend Backend
Generated Code

GUI I
G

Cquirrel Core
Flink DataStream API
Flink Environment

SQL Parser JSON Parser Result
Visualizatio
Code Generator N

Delta Enumeration

1

Data
Source

Built in Cquirrel
Provided by Flink

Figure 3: System Architecture

3 Maintenance Procedure

Basic Idea: Maintaining live state of each tuple in the database based on whether the tuple exists in
subquery results.

Data Structures: The system needs to maintain an index structure (see Figure 1 right) to keep track
of all live tuples. The index should be able to:

1. enumerate all tuples in relation R in constant time per tuple;

2. given any key value v, enumerate all tuples whose value on key x;. 1s v with a constant delay, or
report that there is none;

3. 1nsert or delete a tuple 1n constant time; and

4.use O(|R|) memory.

4 User Interface

The GUI includes the following components:
e SQL query input;
e Code Generator execution log;
e Execution plan visualization;
e Query result visualization;

e Query result in Table View.

Customer Orders Lineitem Aggregation
» Process + Process *> Process -+ Process
&Q\ Function HASH Function HASH Function HASH Function
Data Source / /
Input Stream TASH REBALANCE
Spliter Reader v

Data Sink
HASH

Figure 4: Execution plan visualization

Query Result Figure: Aggregate Name: TopN:

Result Chart - TPC-H Query -- Top 10
aggregate

180,000

< O ORDERKEY:269376,0_ORDERDATE:Sat Feb 25 @
r 0:00:00 HKT 1995,0_SHIPPRIORITY:Q

r v e _()_ ORDERKEY:221921,0_ORDERDATE:Tue Feb 14 @
0:00:00 HKT 1995,0_SHIPPRIORITY:0Q

O ORDERKEY:175140,0_ORDERDATE :Mon Jan 09 @
0:00:00 HKT 1995,0_SHIPPRIORITY:Q

C) ORDERKEY:255297,0_ORDERDATE : Sun Jan 22 @
0:00:00 HKT 1995,0_SHIPPRIORITY:0Q

O ORDERKEY:59809,0_ORDERDATE : Thu Mar @9 00
:00:00 HKT 1995,0_SHIPPRIORITY:Q

...... o ORDERKEY: 78499, 0_ORDERDATE :Wed Feb 22 00

150,000

120,000 [:00:00 HKT 1995,0_SHIPPRIORITY:O
o ~()- ORDERKEY:190368,0_ORDERDATE :Mon Feb 06 0
0:00:00 HKT 1995,0_SHIPPRIORITY:0
ORDERKEY : 113475 ,0_ORDERDATE : Sat Mar 04 0
- 6:00:00 HKT 1935 ,0_SHIPPRIORTTY: 0
90,000 R ORDERKEY : 207361 ,0_ORDERDATE : Tue Jan 10 0
~O- 0:00:00 HKT 1995.0_SHIPPRIORITY:0
= D=0 —=0—0
ORDERKEY : 213952, 0_ORDERDATE : Wed Jan 11 @
)—0—0—0 (O~ 0:00:00 HKT 1995.0_SHIPPRIORITY: 0
60,000 <
‘ ‘
30,000
0—0—0—0T0—0—0—0-T0 »—o-ofo-o-o-oq-lb—.—] timestamp

100276 145350 190353 214050 243302 255054 273324 283513 283519 263061 275250 308322 325763 338987 343525

Figure 5: Query result visualization

