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Figure 1: Maintaining TPC-H Query 3 in Cquirrel. Left: Dummy database instance; Middle: Foreign-key Graph; Right: Index for each relation and aggregation. Tuple in red
color: alive tuples. Tuple in white color: non-live tuples. Tuple 1in green color: the insert tuple. Tuple 1in pink color: the update tuples. All unrelated attributes are omitted from

the figure.

1 Motivation & Goal

Motivation: In many emerging applications, queries are evaluated on a database that is being con-
tinuously updated. However, existing solutions do not have good support for multi-way join operators.
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Figure 2: Problem definition for continuous query processing

Goal: In this paper, we demonstrate Cquirrel, a continuous query processing engine built on top of
Flink. It provides much better support for multi-way joins than the native join operator in Flink.
Meanwhile, it offers better performance, scalability, and fault tolerance than other continuous query
processing engines.

2 System Architecture

Cquirrel contains the following main components:
e Core: including execution and maintenance logic of Cquirrel, built on top of Flink DataStream
API;
e Code generator: generating execution codes for a given SQL query.

e GUI: for query input, result display, and debug information display.
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Figure 3: System Architecture

3 Maintenance Procedure

Basic Idea: Maintaining live state of each tuple in the database based on whether the tuple exists in
subquery results.

Data Structures: The system needs to maintain an index structure (see Figure 1 right) to keep track
of all live tuples. The index should be able to:

1. enumerate all tuples in relation R in constant time per tuple;

2. given any key value v, enumerate all tuples whose value on key x;. 1s v with a constant delay, or
report that there is none;

3. 1nsert or delete a tuple 1n constant time; and

4.use O(|R|) memory.

4 User Interface

The GUI includes the following components:
e SQL query input;
e Code Generator execution log;
e Execution plan visualization;
e Query result visualization;

e Query result in Table View.

Customer Orders Lineitem Aggregation
»  Process +  Process *>  Process -+  Process
&Q\ Function HASH Function HASH Function HASH Function
Data Source / /
Input Stream TASH REBALANCE
Spliter Reader v

Data Sink
HASH

Figure 4: Execution plan visualization
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Figure 5: Query result visualization



