
7/19/18

Solar: Towards a Shared-Everything Database
on Distributed Log-Structured Storage

Tao Zhu, Zhuoyue Zhao, Feifei Li, Weining Qian,
Aoying Zhou, Dong Xie, Ryan Stutsman, Haining Li, Huiqi Hu

1

Background

2

¨ Single-Node	In-Memory	DBMS
ü High	xact processing	performance
û Limited	scalability

¨ Shared-everything	DBMS
ü Scalable	storage	and	xact via	fast	inter-node	

communication
û Expensive	network	infrastructure

¨ Shared-nothing	DBMS
ü Scale	out	via	horizontal	partitioning
û Poor	performance	w/	distributed	xact

Data

D1 D2 D3 D4

D1 D2

D3 D4

Architecture

¨ Design	considerations
¤ General	workloads	w/	distributed	transactions
¤ Storage	scalability
¤ Commodity	machines

Goal:	high	performance	OLTP	DBMS
w/o	assumption	on	workloads or	hardware

3

Architecture

¨ Overview
¤ Several	S-nodes (storage	&	snapshot	read)
¤ A	T-node (transaction	validation/commit	&	delta	read)
¤ Several	P-units (business	logic	processing)

Storage	Layer Transaction	Layer

Processing	Layer

T-node

S-nodeS-node S-node

P-unit P-unit P-unit

4

Architecture

¨ S-nodes
¤ Distributed	storage	engine
¤ Role:	storing	a	consistent	database	snapshot	(SSTable)
¤ Feature:	supporting	scalable	data	storage

Tablet 1
id price quantity
1 1.0 10
2 2.0 20
3 3.0 30

Tablet	2
id price quantity
4 4.0 40
5 5.0 50
6 6.0 60

T-node

S-nodeS-node S-node

P-unit P-unit P-unit

5

Architecture

¨ T-node
¤ In-memory	transaction	engine	
¤ Role:	managing	newly	committed	data	since	the	last	snapshot	(Memtable)
¤ Feature: servicing	performant	transaction	writes

1 quantity=5 NULL

3 quantity=15 NULLT-node

S-nodeS-node S-node

P-unit P-unit P-unit

Tablet 1
id price quantity
1 1.0 10
2 2.0 20
3 3.0 30

Tablet	2
id price quantity
4 4.0 40
5 5.0 50
6 6.0 60

6

Architecture

¨ P-units
¤ Distributed	query	processing	engine
¤ Role:	SQL,	stored	procedure,	query	processing,	remote	data	access
¤ Feature:	scalable	computation	power

T-node

S-nodeS-node S-node

P-unit P-unit P-unit

1 quantity=5 NULL

3 quantity=15 NULL

Tablet 1
id price quantity
1 1.0 10
2 2.0 20
3 3.0 30

Tablet	2
id price quantity
4 4.0 40
5 5.0 50
6 6.0 60

7

LSM-Tree	style	storage

¨ SSTable
¤ A	consistent	snapshot
¤ Data	partitioned	into	tablets	
(ranges	over	tables)

¤ Tablets	replicated	over	S-nodes

¨ Memtable
¤ Newly	committed	data
¤ Stored	in	memory	on	T-node
¤Multi-version	storage
¤ Replicated	to	backup	T-nodes

Tablet 1
id price quantity
1 1.0 10
2 2.0 20
3 3.0 30

Tablet	2
id price quantity
4 4.0 40
5 5.0 50
6 6.0 60

1 quantity=5 NULL

3 quantity=15 NULL
S-node

Item Table
id price quantity
1 1.0 5
2 2.0 20
3 3.0 15
4 4.0 40
5 5.0 50
6 6.0 60

S-node

T-node

8

Transaction	Processing

¨ Start	a	transaction
¨ Read	a	record
¨ Process	the	SQL
¨ Write	a	record
¨ Commit

P-unit

T-nodeS-node

UPDATE	Item
SET		quantity	=	quantity	- 15	
WHERE	id	=	3;

Tablet 1
id price quantity
1 1.0 10
2 2.0 20
3 3.0 30

1 quantity=5 NULL

3 quantity=15 NULL

Buffer
id quantity
3 15

Item(id=1,	quantity=30)
NULL

request response

startcommit

9

Data	Compaction

T-node

S-nodeS-node S-node

P-unit P-unit P-unit

¨ All	data	are	firstly	written	into	the	T-node
¨ Data	compaction	moves	committed	data	into	S-nodes

¤ Does	not	block	on-going	and	future	transactions

10

Concurrency	Control

¨ Use	MVOCC	to	support	Snapshot	Isolation	(SI)
¤ Prevent	lost	update	anomaly

¨ Data	structures	on	the	T-node
¤ A	timestamp	counter(MVCC)
¤ Row-level	latch	(OCC)

¨ Snapshot	Acquisition
¨ Transaction Validation

11

key=1 wts=4
col1=5

key=2 wts=3
col2=5

wts=2
col1=2

Counter:5 Txn	tx
read-timestamp:		𝑟𝑡𝑠 = 5

Write(key=1,	col1 =	3)

Recovery

¨ Write	ahead	log
¤ Generate	redo	log	entries
¤ Group	commit

¨ T-node	recovery
¤ Replay	redo	log	entries
¤ The	replay	position	is	
determined	by	the	last	finished	
data	compaction

¨ S-nodes	do	not	lose	data
¨ P-units	do	not	store	data

Memtable

S-nodes

T-node
SSTable Tablet1

Tablet2 Tablet3

Redo	log replay
position

12

Data	Compaction

¨ Data	compaction	(DC)	starts	when	the	T-node	runs	out	of	memory
¤ New	Memtable𝑚' to	accept	transactions	after	DC	initiation
¤Memtable𝑚(is	frozen	and	merged	into	SSTable

13

timeline

initiate

Memtable𝑚(Memtable𝑚'

SSTable	𝑠'SSTable	𝑠(

start endget	𝑡)*

Transaction	and	CC	during	Data	Compaction

14

¨ Goal:	minimize	blocking	of	transaction	processing

timeline

initiate

Memtable𝑚(Memtable𝑚'

SSTable	𝑠'SSTable	𝑠(

start end

𝑡+

get	𝑡)*

rw/validate

𝑡,

ro/validate rw/validate

𝑡-

Wait	for

rw/validate

Remote	Data	Access	Optimization

¨ Shared-Everything	architecture
¤ Latency	bounded	by	remote	data	access	between

n P-unit	and	T-node
n P-unit	and	S-node

¤ Reducing	remote	data	access	cost
n =>	more	concurrent	transactions	
n =>	higher	throughput

15

Local	SSTable Cache

¨ Build	SSTable	Cache	on	P-unit
¤ SSTable	is	immutable
¤ P-unit	examines	its	local	cache	before	communicating	with	S-nodes

P-unit

Thread1 Thread2 Threadn…

LRU	Row	Cache

S-nodes

16

Asynchronous	Bit	Array

¨ Empty	reads	on	the	T-node
¤ The	T-node	stores	a	small	part	of	data
¤ Reading	non-existing	data	items	results	in	useless	empty	reads

Tablet 1
id price quantity
1 1.0 10
2 2.0 20
3 3.0 30

Tablet	2
id price quantity
4 4.0 40
5 5.0 50
6 6.0 60

1 quantity=5 NULL

3 quantity=15 NULL

Read	(id	=	1,	price	=	?)

S-node

S-node

T-node

NULL

price	=	1.0
price	=	1.0

Empty	read

17

Any data	in	the	T-node
price quantity

Tablet	1
Tablet	2

Asynchronous	Bit	Array

¨ Asynchronous	Bit	Array
¤ Encode	whether	any	row	in	Tablet	𝑥 has	its	column	𝑦modified
¤ Periodically	synchronized	to	P-units

n False	positive	=>	empty	read	(corrected	after	the	first	access)
n False	negative	=>	validating	empty	reads	and	retry

0 1
0 0

Tablet 1
id price quantity
1 1.0 10
2 2.0 20
3 3.0 30

Tablet	2
id price quantity
4 4.0 40
5 5.0 50
6 6.0 60

S-node

S-node

1 quantity=5 NULL

3 quantity=15 NULLT-node

18

Transaction	Compilation

¨ Model	a	transaction	as	a	directed	acyclic	graph	
¨ Move	reads	to	start	if	possible

Memtable		Read	(Item,	r1) Memtable		Read	(Cust,	r2)

Buffer	Write	(Cust,	r2,	balance =	v_balance)

v_balance -=		v_price

v_price =		r1.pricev_balance =		r2.balance

SSTable		Read	(Item,	r1) SSTable		Read	(Cust,	r2)

Memtable		Read	(Item,	r1)

Memtable		Read	(Cust,	r2)

SSTable		Read	(Item,	r1)

SSTable		Read	(Cust,	r2)

v_balance =		r2.balance

v_price =		r1.price

v_balance -=		v_price

Buffer	Write	(Cust,	r2,	
balance =	v_balance)

Commit

Start

19

Transaction	Compilation

¨ Group	T-node	access

Memtable		Read	(Item,	r1) Memtable		Read	(Cust,	r2)

Buffer	Write	(Cust,	r2,	balance =	v_balance)

v_balance -=		v_price

v_price =		r1.pricev_balance =		r2.balance

SSTable		Read	(Item,	r1) SSTable		Read	(Cust,	r2)

Memtable		Read	(Item,	r1)

Memtable		Read	(Cust,	r2)

SSTable		Read	(Item,	r1)

SSTable		Read	(Cust,	r2)

v_balance =		r2.balance

v_price =		r1.price

v_balance -=		v_price

Buffer	Write	(Cust,	r2,	
balance =	v_balance)

Memtable		Read	(Item,	r1)
Memtable		Read	(Cust,	r2)

Start

Commit 20

Transaction	Compilation

¨ Pre-execute	S-node	access

Memtable		Read	(Item,	r1) Memtable		Read	(Cust,	r2)

Buffer	Write	(Cust,	r2,	balance =	v_balance)

v_balance -=		v_price

v_price =		r1.pricev_balance =		r2.balance

SSTable		Read	(Item,	r1) SSTable		Read	(Cust,	r2) SSTable		Read	(Item,	r1)

SSTable		Read	(Cust,	r2)

v_balance =		r2.balance

v_price =		r1.price

v_balance -=		v_price

Buffer	Write	(Cust,	r2,	
balance =	v_balance)

Memtable		Read	(Item,	r1)
Memtable		Read	(Cust,	r2)

Start

Commit 21

Experiment

¨ Setting
¤ CPU:	2.4G Hz 16-Core
¤Memory:	64GB
¤10	servers
¤Connected	by	1	Gigabits	Network

¨ Benchmark:	TPC-C	
¨ Systems

¤Workload:	TPC-C
¤MySQL	Cluster
¤ VoltDB
¤ Tell

Scalability Cross-Partition	Transactions 22

Experiment

¨ Data	compaction

¨ Remote	data	access	
optimization

¨ System	recovery

23

Summary

¨ Solar
¤ A	shared-everything	OLTP	DBMS	on	Commodity	hardware

n High	performance	transaction	processing
n Scalable	data	storage	capacity

¤ Several	novel	optimization	to	improve	performance
¤ Empirical	evaluation	shows	great	performance	and	scalability

24

Transaction	Compilation

¨ Group	T-node	access
¤ Normal	execution	issues	T-node	access	one-by-one
¤ Try	to	batch	multiple	T-node	communications	together

S-nodes P-unit T-node

local	process

start
read(r1.delta)

read(r1.static)

commit

read(r2.delta)

read(r2.static)

local	process

S-nodes P-unit T-node

local	process

read(r1.static)

commit

read(r2.static)

local	process

start
read(r1.delta)
read(r2.delta)

25

Transaction	Compilation

¨ Pre-execute	S-node	access
¤ Normal	execution	issues	S-node	access	after	transaction	is	started
¤ Try	to	pre-execute	S-node	reads

S-nodes P-unit T-node

local	process

read(r1.static)

commit

read(r2.static)

local	process

start
read(r1.delta)
read(r2.delta)

S-nodes P-unit T-node

local	process

read(r1.static)

commit

read(r2.static)

local	process

start
read(r1.delta)
read(r2.delta)

26

Architecture

¨ Design	considerations
¤ A	shared-everything	architecture

n 2-Layer	LSM-Tree	style	storage
n Decouple	computation	from	storage

¤ High	performance	in-memory	transaction	processing
nMVOCC,	combining	the	OCC	and	the	MVCC
n A	non-blocking	data	compaction	algorithm

¤ Fine-grained	remote	data	access	
n Data	cache
n Asynchronous	bit	array
n Transaction	compilation

Goal:	high	performance	OLTP	DBMS
without	assuming	a	partitionable workload	or	advanced	hardwares

27

Architecture

T-node

S-node

S-node

S-node

P-unit

P-unit

P-unit

¨ Overview

28

Architecture

T-node

S-node

S-node

S-node

P-unit

P-unit

P-unit

Write	
Request

Write	
Request

Write	
Request

¨ Log-Structured	write

29

Architecture

T-node

S-node

S-node

S-node

P-unit

P-unit

P-unit

Data	
Compaction

¨ Log-Structured	write

30

Architecture

¨ S-nodes
¤ Distributed	storage	engine
¤ Role:		storing	a	consistent	database	snapshot	(SSTable)
¤ Feature:	supporting	scalable	data	storage

S-node
S-node

S-node

TabletTabletTablet TabletTabletTabletTabletTabletTablet

Disk-based	storage 31

Architecture

¨ T-node
¤ In-memory	transaction	engine	
¤ Role:	managing	the	rest	recently	committed	data	(Memtable)
¤ Feature: providing	performant	transactional	writes

S-node
S-node

S-node

TabletTabletTablet TabletTabletTabletTabletTabletTablet

Disk-based	storage

compaction

T-node	(Replica)
T-node	(Replica)

T-node

Indexes Txn	LogBit	Array
1 0 0 0 1
0 0 1 1 0

...

In-memory	storage 32

Architecture

¨ P-units
¤ Distributed	query	processing	engine
¤ Role:	SQL,	stored	procedure,	query	processing,	remote	data	access
¤ Feature:	providing	scalable	computation	power

S-node
S-node

S-node

TabletTabletTablet TabletTabletTabletTabletTabletTablet

Disk-based	storage

compaction

T-node	(Replica)
T-node	(Replica)

T-node

Indexes Txn	LogBit	Array
1 0 0 0 1
0 0 1 1 0

...

In-memory	storage

records recordsmutations

P-node
Application	Logic

Storage	Interface

Bit	Array Cache

Compiler Executor

P-node
Application	Logic

Storage	Interface

Bit	Array Cache

Compiler Executor

P-node
Application	Logic

Storage	Interface

Bit	Array Cache

Compiler Executor

33

LSM-Tree	style	storage

¨ SSTable
¤ A	consistent	snapshot
¤ Partitioned	into	tablets
¤ Replicated	over	S-nodes

¨ Memtable
¤ Newly	committed	data
¤ In-memory	stored	in	the	T-node
¤Multiple	version	storage
¤ Replicated	to	backup	T-nodes

Tablet 1
id price quantity
1 1.0 10
2 2.0 20
3 3.0 30

Tablet	2
id price quantity
4 4.0 40
5 5.0 50
6 6.0 60

1 quantity=5 NULL

3 quantity=15 NULL
S-node

Item Table
id price quantity
1 1.0 5
2 2.0 20
3 3.0 15
4 4.0 40
5 5.0 50
6 6.0 60

S-node

T-node

34

Read	&	Writes

¨ Read
¤ read	and	merge	versions	from	
both	T-node	and	one	of	S-node

¨ Write
¤ directly	write	into	the	T-node

S-node T-node

P-unit

Static	
version

Delta
version

S-node T-node

P-unit

Delta
version

35

Transaction	Processing

¨ P-unit	execute	transactions
¤ Start	a	transaction
¤ Fetch	records	from	remote
¤ Execute	user-defined	logics
¤ Buffer	data	writes
¤ Commit	the	transaction

S-nodes P-unit T-node

merge(r)

process	other	SQLs

start
read(r.delta)

read(r.static)

r.new =	expr(r)
buffer(r.new)

commit

36

Background

¨ Single-Node	In-Memory	DBMS
¤ Hekaton,	HyPer
¤ Features

n No	disk	I/O	during	transaction	processing	(In-memory	storage)
n Transaction	compilation
n Lightweight	concurrency	control	(OCC,	MVCC,	determinism)
n Simplified	write-ahead	logging
n Very	high	performance	transaction	processing

¤ Limitations
n Database	size	should	be	smaller	than	memory	capacity

37

Background

¨ Shared-Nothing	DBMS
¤ VoltDB/HStore,	Spanner
¤ Features

n Use	horizontal	partition
n Reply	on	two	phase	commit
n Scalable	transaction	processing	and	storage

¤ Limitations
n Partitionable workload
n Low	percentage	of	distributed	transactions

38

Background

¨ Shared-Everything	DBMS
¤ Oracle RAC,	Tell
¤ Features

n Share	data/cache	among	nodes
n Rely	on	fast	inter-node	communication
n Scalable	transaction	processing	and	storage

¤ Limitations
n Require	advanced	network	infrastructure

n InfiniBand switch	with	43TB/s,	216 ports costs	about	$60,000

39

Transaction	Compilation

Memtable		Read	(Item,	r1)

Memtable		Read	(Cust,	r2)

Buffer	Write	(Cust,	r2,	balance =	v_balance)

v_balance -=		v_price

v_price =		r1.price

v_balance =		r2.balance

SSTable		Read	(Item,	r1)

SSTable		Read	(Cust,	r2)

Start

Commit

¨ Many	remote	data	access	between	start and	commit
¨ Group	reads	to	reduce	read	latency

v_price =	Read	(Item,	id	=	1,		price);

v_balance =	Read	(Cust,		id	=	5,		balance);

40

Transaction	Compilation

¨ Reorder	ops	w/o	data	dependency	does	not	change	semantics

Memtable		Read	(Item,	r1)

v_price =		r1.price

SSTable		Read	(Item,	r1)

Read	Item	Price

Memtable		Read	(Cust,	r2)

v_balance =		r2.balance

SSTable		Read	(Cust,	r2)

Read	Customer	Balance

Memtable		Read	(Item,	r1)

v_price =		r1.price

SSTable		Read	(Item,	r1)

Read	Item	Price

Memtable		Read	(Cust,	r2)

v_balance =		r2.balance

SSTable		Read	(Cust,	r2)

Read	Customer	Balance

41

Transaction	Compilation

¨ Only	ops	w/	data	dependencies	cannot	be	reordered
¤ Use	the	same	variable,	and	one	is	write	(identify	by	variable	name)
¤ Use	the	same	record,	and	one	is	write	(identify	by	table	name)

Memtable		Read	(Item,	r1)

v_price =		r1.price

SSTable		Read	(Item,	r1)

Read	Item	Price

Calculate	the	New	Balance

v_balance -=		v_price

Memtable		Read	(Cust,	r2)

v_balance =		r2.balance

SSTable		Read	(Cust,	r2)

Read	Customer	Balance

Update	Customer	Balance

Buffer	Write	(Cust,	r2,	
balance =	v_balance)

42

Data	Access	During	Compaction

¨ MemTable Read:	always	read	the	new	MemTable𝑚'

¨ SSTable Read
¤Merged	data	(𝑇𝑎𝑏𝑙𝑒𝑡	1):		read	from	𝑠'
¤Merging	data	(𝑇𝑎𝑏𝑙𝑒𝑡	2):	read	from	𝑠(and	the	frozen	Memtable	𝑚(

Read	s1 Read	m1

Frozen	Memtable	(m0) Active	Memtable	(m1)

Tablet	2	(s0)

Tablet	1	(s0) Tablet	1’	(s1)

Tablet	2’	(s1)

Merged

Merging

43

Snapshot	Isolation	During	Data	Compaction

¨ Classify	transactions	into	three	types:
¤ Type	1:	start	validation	before	the	compaction	is	initialized

n validate	on	𝑚(,	write	on	𝑚(

¤ Type	2:	start	validation	after	the	compaction	is	initialized
n validate	on	𝑚(and	𝑚',	write	on	𝑚'

¤ Type	3:	starts	processing	after	the	compaction	is	started
n validate	on	𝑚',	write	on	𝑚'

Memtable𝑚(Memtable𝑚'

initiate

timeline

𝑡' starts	
validation

start

𝑡8 starts	
validation

𝑡9 starts	
processing

end 44

Recovery	during	Data	Compaction	(DC)

¨ Compaction	start	log	entry	(CSLE)
¤ Persist	when	the	DC	is	started
¤ Acts	as	a	border	of	redo	log	entries

¨ Compaction	end	log	entry	(CELE)
¤ Persist	when	the	DC	is	ended
¤ Save	the	position	of	the	CSLE	of	the	DC

¨ Recovery	procedure
¤ Read	CELE	to	find	the	position	of	CSLE
¤ Replay	the	redo	log	from	CSLE
¤ At	first,	replay	data	into	𝑚(
¤ Once	CSLE	is	encountered,	repay	data	into	𝑚'

45

Any data	in	the	T-node
price quantity

Tablet	1
Tablet	2

Asynchronous	Bit	Array

¨ Synchronization	&	usage
¤ Periodically	synchronized	to	P-units
¤ A	P-unit	check	its	local	copy	to	filter	useless	T-node	access

0 1
0 0

1 quantity=5 NULL

3 quantity=15 NULLT-node

P-unit

0 1
0 0

A	copy	of	bit	array

synchronization

Read	(id	=	1,	price	=	?)

46

Any data	in	the	T-node
price quantity

Tablet	1
Tablet	2

Asynchronous	Bit	Array

¨ Synchronization	&	usage
¤ Periodically	synchronized	to	P-units
¤ A	P-unit	check	its	local	copy	to	filter	useless	T-node	access

0 1
0 0

1 quantity=5 NULL

3 quantity=15 NULLT-node

P-unit

0 1
0 0

A	copy	of	bit	array

Read	(id	=	3,	quantity	=	?)

47

Any data	in	the	T-node
price quantity

Tablet	1
Tablet	2

Asynchronous	Bit	Array

¨ False	positive
¤ (𝑟𝑜𝑤+, 𝑐𝑜𝑙,) does	not	exist	on	the	T-node,	but	the	bit	array	says	yes

n An	empty	read
¤ Reason:	bit	array	maintained	at	tablet	granularity

0 1
0 0

1 quantity=5 NULL

3 quantity=15 NULLT-node

P-unit

0 1
0 0

A	copy	of	bit	array

Read	(id	=	2,	quantity	=	?)

NULL

Tablet	1
id quantity
1 10
2 20
3 30 48

Any data	in	the	T-node
price quantity

Tablet	1
Tablet	2

Asynchronous	Bit	Array

¨ False	negative
¤ A	bit	array	copy	may	fall	behind	the	latest	version
¤ (𝑟𝑜𝑤+, 𝑐𝑜𝑙,)	 exists	on	the	T-node,	but	the	bit	array	says	no
¤ Transaction	re-check	all	potential	empty	reads	in	the	validation	phase

0 1
0 0

1 quantity=5 NULL

3 quantity=15 NULLT-node

P-unit

0 1
0 0

A	copy	of	bit	array

Read	(id	=	2,	quantity	=	?)					

5 Quantity=25 NULL

1

Validation

Aborted	&
Retry

49

Data	Compaction

¨ Initiate
¤ Create	a	new	Memtable
¤ Freeze	the	current	Memtable
¤ Handling	ongoing	transactions

n Case	1:	validation	starts	before	the	compaction	is	initiated
n 𝑡+ and	𝑡, are	allowed	to	write	data	into	𝑚(

n Case	2:	validation	starts	after	the	compaction	is	initiated	
n 𝑡- will	write	data	into	𝑚' after	the	data	compaction	is	started

Memtable𝑚(Memtable𝑚'

initiate

𝑡+ starts	
validation

timeline

𝑡, starts	
validation

𝑡- starts	
validation

50

Data	Compaction

¨ Start
¤ Get	compaction	timestamp	𝑡)* after	𝑡+ and	𝑡, abort	or	obtain	commit	TS

n 𝑡- starts	validation	only	after	𝑡)* is	obtained
¤ Start	data	compaction	after	𝑡+ and	𝑡, finish	abort/commit

n Create	a	new	SSTable	by	merging	the	old	one	and	the	frozen	Memtable

Memtable𝑚(Memtable𝑚'

initiate

𝑡+ starts	
validation

timeline

𝑡, starts	
validation

SSTable	𝑠'SSTable	𝑠(

𝑡+,	𝑡, abort	or	
obtain	commit	TS

startobtain	𝑡)*

𝑡+,	𝑡, finish	
abort/commit

𝑡- starts	
validation

51

Data	Compaction

¨ End
¤Wait	until	the	𝑠' is	fully	created
¤ Release	the	old	Memtable	and	SSTable

Memtable𝑚(Memtable𝑚'

initiate

timeline

SSTable	𝑠'SSTable	𝑠(

endstart 52

Concurrency	Control

¨ Data	structures	on	the	T-node
¤ A	timestamp	counter(MVCC)
¤ Row-level	latch	(OCC)

¨ Start	
¤ Acquire	read-timestamp	𝑟𝑡𝑠

¨ Process
¤ Read	latest	version	specified	by	𝑟𝑡𝑠

key=1 wts=4
col1=5

key=2 wts=3
col2=5

wts=2
col1=2

Counter:5 Txn	tx
read-timestamp:		𝑟𝑡𝑠 = 5

53

Concurrency	Control

¨ Commit
¤ Acquire	latches	for	records	in	the	write	set
¤ Verify	there	is	no	newer	version
¤ Acquire	write	timestamp	𝑤𝑡𝑠
¤Write	and	release	latches

key=1 wts=4
col1=5

key=2 wts=3
col2=5

wts=2
col1=2

Counter:5
Txn	tx

read-timestamp:		𝑟𝑡𝑠 = 5

Counter:6

write-timestamp:	𝑤𝑡𝑠 = 6key=1 wts=6
col1=2

key=2 wts=6
col2=2

wts=3
col1=5

wts=4
col1=5

wts=2
col1=2

54

