Solar: Towards a Shared-Everything Database
on Distributed Log-Structured Storage

Tao Zhu, Zhuoyue Zhao, Feife1 Li, Weining Qian,
Aoying Zhou, Dong Xie, Ryan Stutsman, Haining L1, Huiqi Hu

Background

-1 Single-Node In-Memory DBMS

+High xact processing performance

< Limited scalability

-1 Shared-nothing DBMS

gg gg ~ Scale out via horizontal partitioning
« Poor performance w/ distributed xact
d o1 Shared-everything DBMS
~Scalable storage and xact via fast inter-node

communication
g « Expensive network infrastructure

Architecture

Design considerations
General workloads w/ distributed transactions
Storage scalability
Commodity machines

Goal: high performance OLTP DBMS
w/o assumption on workloads or hardware

Architecture

o Overview
11 Several S-nodes (storage & snapshot read)
o1 A T-node (transaction validation/commit & delta read)
©1 Several P-units (business logic processing)

Processing Layer

KStorage Layer Transaction Layer

]
%

S-node

Architecture

o S-nodes
o1 Distributed storage engine
11 Role: storing a consistent database snapshot (SSTable)
o1 Feature: supporting scalable data storage

T-node

Tablet 1 Tablet 2

1 1.0 10
S N Snode s-node s-node
3 3.0 30

4.0 40

Architecture

o T-node

o1 In-memory transaction engine
11 Role: managing newly committed data since the last snapshot (Memtable)

11 Feature: servicing performant transaction writes

T-node

‘/\> quantity=5 | NULL
[\> quantity=15 | NULL

Tablet 2

Tablet 1

id price quantity - id price quantity
1 1.0 10 4 4.0 40
2 2.0 20 S-node 5 5.0 50
3 3.0 30 6 6.0 60

Wl |-

Architecture

o P-units
o1 Distributed query processing engine
o1 Role: SQL, stored procedure, query processing, remote data access

11 Feature: scalable computation power

P-unit

quantity=5 | NULL

T-node 3 quantity=15 | NULL
Tablet 1 Tablet 2
id price quantity id price quantity
1 1.0 10 4 4.0 40
2 2.0 20 S-node 5 5.0 50
6 6.0 60

ddad
P

3 3.0 30

LSM-Tree style storage

SSTable Memtable
A consistent snapshot Newly committed data
Data partitioned into tablets Stored in memory on T-node
(ranges over tables) Multi-version storage
Tablets replicated over S-nodes Replicated to backup T-nodes
Tablet 1 1 d/\ quantity=5 | NULL
id price quantity I:Il]:l /\
1 1.0 10 3 | @ quantity=15 | NULL
2 2.0 20
3 3.0 30 00
: Tab!et 2 : Item Table
id price quantity id price quantity
4 4.0 40 1 1.0 c
> 5.0 >0 2 2.0 20
6 6.0 60 3 3.0 15
4 4.0 40
5 5.0 50
6 6.0 60

Transaction Processing

— Start a transaction UPDATE /tem
SET quantity = quantity - 15
- Read a record WHERE id = 3;

-1 Process the SQL
- Write a record

request response

Buffer
id guantity
3 15

1 Commit

ltem(id=1, quantity=30)

Tablet 1 1 6/\» quantity=5 | NULL

id price quantity

1 1.0 10 /\

2 2.0 20 3 | @ quantity=15 | NULL
3 3.0 30 9

Data Compaction
N

- All data are firstly written into the T-node

- Data compaction moves committed data into S-nodes
1 Does not block on-going and future transactions

10

Concurrency Control

Use MVOCC to support Snapshot Isolation (SI)
Prevent lost update anomaly

Data structures on the T-node

A timestamp counter(MVCC)

Row-level latch (OCC)
Snapshot Acquisition
Transaction Validation

@ Counter:5

—
@ key=1 -*| r(/;(lj:g |

—
wits=3
@l key=2 - col,=5

=2 —

wits=2

col,=2

Txn t,

read-timestamp: rts =5

Write(key=1, col, =

3)

11

Recovery

Write ahead log
Generate redo log entries
Group commit

T-node recovery
Replay redo log entries
The replay position is

determined by the last finished

data compaction

S-nodes do not lose data
P-units do not store data

Ve
Ve

S-nodes

-

SSTable | Taplet1

T-node

Tablet2 || Tablet3
4

P

N
N
N

Redo log

position

12

Data Compaction

-1 Data compaction (DC) starts when the T-node runs out of memory
1 New Memtable m4 to accept transactions after DC initiation
1 Memtable my is frozen and merged into SSTable

SSTable s, SSTable sy

Memtable m, Memtable m,

A

» timeline

A 4 v v
initiate get t . start end 13

Transaction and CC during Data Compaction
]

- Goal: minimize blocking of transaction processing

SSTable s, SSTable s
rw/validate ..~ L Loinelin

/ ‘\[o/validate rw/validate -7

- -

~
~ -

/rw/validate

A 4

initiate get t . start end

» timeline

14

Remote Data Access Optimization

Shared-Everything architecture

Latency bounded by remote data access between
P-unit and T-node
P-unit and S-node

Reducing remote data access cost
=> more concurrent transactions
=> higher throughput

15

Local SSTable Cache
S =

-1 Build SSTable Cache on P-unit
r1 SSTable is immutable
o1 P-unit examines its local cache before communicating with S-nodes

/b

-unit

Thread, Thread,

LRU Row Cache

[S-nodes J

16

Asynchronous Bit Array

- Empty reads on the T-node

The T-node stores a small part of data
Reading non-existing data items results in useless empty reads

price = 1.0
%[Read (id = 1, price = ?)]—>

/' <——3 Empty read

price =1.0

Tablet 1

id price quantity
1 1.0 10
2 2.0 20 /’*
3 3.0 30 d/ quantity=5 | NULL
[} \ quantity=15 | NULL
Tablet 2
id price quantity
4 4.0 40
5 5.0 50
6 6.0 60
17

Asynchronous Bit Array

Asynchronous Bit Array
Encode whether any row in Tablet x has its column y modified

Periodically synchronized to P-units
False positive => empty read (corrected after the first access)

False negative => validating empty reads and retry

Tablet 1 ‘/\> :
id price quantity 1 2 \ quantity=5 | NULL
1 1.0 10 3 | @ quantity=15 | NULL
2 2.0 20
3 3.0 30
—hiet3 Any data in the T-node
id price quantity price quantity
4 4.0 40
5 50 50 Tablet 1 ()
6 6.0 60 Tablet 2 0] 0

Transaction Compilation
-1
-1 Model a transaction as a directed acyclic graph

-1 Move reads to start if possible Start

Memtable Read (Item, r1)

Memtable Read (ltem, r1)

Memtable Read (Cust, r2)

Memtable Read (Cust, r2)

SSTable Read (Item, r1)

SSTable Read (Cust, r2)

SSTable Read (Item, r1)

. .] SSTable Read (Cust, r2)
v_price = rl.price

[v_balance = r2.balance]

T T V v_balance = r2.balance]
* \

[v_balance -= v_price] ~V_price = rl.price]

v {

[Buffer Write (Cust, r2, balance = v_balance)

V v_balance -= v_price
o |

" Buffer Write (Cust, r2,
_balance = v_balance)

Commit

Transaction Compilation
N

-1 Group T-node access

Start

Memtable Read (Item, r1) | Memtable Read (Cust, r2) Memtable Read (Item, r1)

Memtable Read (Cust, r2)

SSTable Read (Item, r1) SSTable Read (Cust, r2)

SSTable Read (Item, r1)

SSTable Read (Cust, r2)

[v_balance = r2.balance] [v_price = rl.price]

T T r v_balance = r2.balance]
* \

[v_ba/ance -= v_price] iv_price = rl.price]
v ' !]

v_balance -= v_price
[Buffer Write (Cust, r2, balance = v_balance)])

" Buffer Write (Cust, r2,
_balance = v_balance)

Commit 20

Transaction Compilation
N

-1 Pre-execute S-node access

Start

Memtable Read (Item, r1) | Memtable Read (Cust, r2) Memtable Read (Item, r1)
Memtable Read (Cust, r2)

S>pbe feac hem.) g Sstabe Read (Cust) SSTable Read (Item, r1)
[ice = r1.ori] SSTable Read (Cust, r2)
[v_balance = r2.balance] v_price = rl.price

T T r v_balance = r2.balance]
* \

[v_ba/ance -= v_price] iv_price = rl.price]
v ' !]

v_balance -= v_price
[Buffer Write (Cust, r2, balance = v_balance)])

" Buffer Write (Cust, r2,
_balance = v_balance)

Commit 21

Experiment

1
o Setting - Benchmark: TPC-C
CPU: 2.4G Hz 16-Core 01 Systems
Memory: 64GB Workload: TPC-C
10 servers MySQL Cluster
Connected by 1 Gigabits Network = VoltDB
Tell
—©—Solar =9~ TelF1G ¢~ MySQL-Cluster —©— Solar -9~ TelF1G —)é~ MySQL-Cluster
_—H-VoltDB —A—Tel-10G ——Oceanbase —E&—-VoltbB =& Tel-10G —f— Oceanbase
2 80k - N

'
N
O
=

o

o

=
i

—r—r—r—T—r——r——
0 4 8 12 16
Number of Servers (#) Cross-Warehouse Transaction Ratio (%)

(o]
[

Throughput (tps)
I
%

Scalability Cross-Partition Transactions

Experiment

o Data compaction

—©— Normal —&— Compaction

o System recovery

—H— Kill Shode —@— Restart Snode
—A— Kill Tnode —&— Restart Thode

Number of Servers (#)

-1 Remote data access
optimization

_—

Timeline (s)

—©—cache —E— bit array
—A— compilation —>é&—all

3D
24 EVEVE S AVEVEVEVE "3l
2:5
I N) *) o 1 .) e
2 4 6 8 10

Number of Servers (#)

§50k

a 25k ||

o

(@] -

2y

2 o

I-E | AL A D D D B B
0 20 40 60 80 100 120 140

23

Summary

Solar

A shared-everything OLTP DBMS on Commodity hardware
High performance transaction processing
Scalable data storage capacity

Several novel optimization to improve performance
Empirical evaluation shows great performance and scalability

24

Transaction Compilation

Group T-node access
Normal execution issues T-node access one-by-one

S-nodes

Try to batch multiple T-node communications together

A

P-unit T-node
start . @
read(r,.delta)) ®
read(r,.static)
local process
read(r,.delta) J @

read(r,.static)

A

local process

commit

S-nodes

read(r,.static)

P-unit

start
read(r,.delta)
read(r,.delta)

A

read(r,.static)

A

local process

local process

commit

T-node

25

Transaction Compilation

Pre-execute S-node access

Normal execution issues S-node access after transaction is started

Try to pre-execute S-node reads

T-node

S-nodes P-unit
start
read(r,.delta)
read(r,.delta)
read(r,.static
. < (1)
read(r,.static
. < (2)

local process

local process

commit

A 4

S-nodes

.A

read(r,.static)

P-unit

<«

read(r,.static)

A

start
read(r,.delta)
read(r,.delta)

local process

local process

}_mmmﬂ_.

T-node

26

Architecture

Design considerations

A shared-everything architecture
2-Layer LSM-Tree style storage
Decouple computation from storage
High performance in-memory transaction processing
MVOCC, combining the OCC and the MVCC
A non-blocking data compaction algorithm
Fine-grained remote data access
Data cache
Asynchronous bit array
Transaction compilation

Goal: high performance OLTP DBMS
without assuming a partitionable workload or advanced hardwares

27

Architecture

1 Overview

28

Architecture

Write

- Log-Structured write Request

-
-
-

Write
Request

Write
Request

29

Architecture

o1 Log-Structured write

Data
Compaction

30

Architecture
I e

1 S-nodes

o1 Distributed storage engine
11 Role: storing a consistent database snapshot (SSTable)

o1 Feature: supporting scalable data storage

S-node
S-n;)de \ ~
S-node

u Tablet u Tablet u Tablet
31

Disk-based storage)

.

Architecture
1

o T-node
In-memory transaction engine
Role: managing the rest recently committed data (Memtable)
Feature: providing performant transactional writes

S-node \ T-node (Replica) \
S-node \ T-node (Replica) \
(¢ A ; T-node)
S-node compaction
3 > . Bit Array || Indexes || Txn Log

Tablet | ||| Tablet | ||| Tablet T3 [
0.0 1 1.0

Disk-based storage . In-memory storage y

_

Architecture

o P-units
Distributed query processing engine

Role: SQL, stored procedure, query processing, remote data access
Feature: providing scalable computation power

~ N a N e N
P-node P-node P-node
Application Logic		Application Logic		Application Logic						
Compiler		Executor		Compiler		Executor		Compiler		Executor
Bit Array		Cache		Bit Array		Cache		Bit Array		Cache
J Storage Interface L J Storage Interface L J Storage Interface L
records mutations records
S-node \ T-node (Replica) \ \
S-node \ T-node (Replica) N
(") a
S-node compaction T-node
2 2 2 Bit Array || Indexes || Txn Log
Tablet Tablet Tablet 190 [01
0.0.1 1.0
L Disk-based storage y G In-memory storage y,

33

LSM-Tree style storage

SSTable
A consistent snapshot

o=
=

Partitioned into tablets
Replicated over S-nodes

Tablet 1
id price quantity
1 1.0 10
2 2.0 20
3 3.0 30
Tablet 2
id price quantity
4 4.0 40
5 5.0 50
6 6.0 60

v

Memtable

Newly committed data

In-memory stored in the T-node

Multiple version storage

Replicated to backup T-nodes

16/\

quantity=5 | NULL
/
3 | @ quantity=15 | NULL
a0
Item Table
id price quantity
1 1.0 5
2 2.0 20
3 3.0 15
4 4.0 40
5 5.0 50
6 6.0 60

34

Read & Writes
1

1 Read 1 Write

o read and merge versions from o directly write into the T-node
both T-node and one of S-node

Static
versiop

35

Transaction Processing

P-unit execute transactions

. S-nodes P-unit T-node
Start a transaction
Fetch records from remote start i
)) d(r.delt R
Execute user-defined logics | read(rdelta) ,
. ~read(r.static)
Buffer data writes)

_) merge(r)
Commit the transaction '
r.new = expr(r)

bufferl(r.new)

process other SQLs

}_mmcml_

36

Background

Single-Node In-Memory DBMS

Hekaton, HyPer

Features
No disk I/O during transaction processing (In-memory storage)
Transaction compilation
Lightweight concurrency control (OCC, MVCC, determinism)
Simplified write-ahead logging
Very high performance transaction processing

Limitations
Database size should be smaller than memory capacity

37

Background

Shared-Nothing DBMS
VoltDB/HStore, Spanner
Features

Use horizontal partition

Reply on two phase commit
Scalable transaction processing and storage

Limitations
Partitionable workload
Low percentage of distributed transactions

38

Background

Shared-Everything DBMS
Oracle RAC, Tell
Features
Share data/cache among nodes

Rely on fast inter-node communication
Scalable transaction processing and storage

Limitations

Require advanced network infrastructure
InfiniBand switch with 43TB/s, 216 ports costs about $60,000

39

Transaction Compilation
-1

- Many remote data access between start and commit

=1 Group reads to reduce read latency

Start

Memtable Read (ltem, r1)

v_price =Read (Item, id = 1, price);
SSTable Read (Item, r1)

[v_price = rl.price]

Memtable Read (Cust, r2)
id =5, balance);
SSTable Read (Cust, r2)

[v_balance = r2.balance]

v_balance = Read (Cust,

[v_balance -= v_price]

[Buffer Write (Cust, r2, balance = v_ba/ance)]

Commit 40

Transaction Compilation
N

-1 Reorder ops w/o data dependency does not change semantics

Read Item Price

Memtable Read (Item, r1)

SSTable Read (ltem, r1)

—

v_price = rl.price]

U U

Read Customer Balance

Memtable Read (Cust, r2)

SSTable Read (Cust, r2)

—

v_balance = r2.balance]

41

Transaction Compilation

= Only ops w/ data dependencies cannot be reordered
11 Use the same variable, and one is write (identify by variable name)
11 Use the same record, and one is write (identify by table name)

Read Customer Balance

Memtable Read (Cust, r2) ’

Read Item Price

Memtable Read (ltem, r1)

SSTable Read (Item, r1)

@a= r1.price |
4 4

Calculate the New Balance Update Customer Balance

e
[v_balance -(/_price Buffer Write (Cust, r2,
- balance =v_bad

SSTable Read (Cust, r2)

v_balance = r2.balance]

r——

42

Data Access During Compaction

7 MemTable Read: always read the new MemTable m4

-1 SSTable Read
11 Merged data (Tablet 1): read from sy
11 Merging data (Tablet 2): read from s, and the frozen Memtable m,

Read s1 Read m1
N A A

Merged
Tablet 1 (s0)
Merging

Frozen Memtable (mO0) Active Memtable (m1)

43

Snapshot Isolation During Data Compaction

Classify transactions into three types:
Type 1: start validation before the compaction is initialized
validate on m,, write on m,,
Type 2: start validation after the compaction is initialized
validate on my and m, write on my
Type 3: starts processing after the compaction is started

validate on m4, write on my

» timeline

t, starts t, starts t3 starts
validation \ validation v processing
initiate start end a4

<

Recovery during Data Compaction (DC)

Compaction start log entry (CSLE) _ Smodes §
Persist when the DC is started SSTable | Tablet1 T-node
Acts as a border of redo log entries
8 Tablet2 || Tablet3 Crozen [Memtable
Memtable
{‘ -

Compaction end log entry (CELE) T T

Persist when the DC is ended Redo log
Save the position of the CSLE of the DC

Recovery procedure
Read CELE to find the position of CSLE
Replay the redo log from CSLE
At first, replay data into m,
Once CSLE is encountered, repay data into m4

45

Asynchronous Bit Array

o Synchronization & usage
o1 Periodically synchronized to P-units
o1 A P-unit check its local copy to filter useless T-node access

[Read (id = 1, price = ?)]

1 ‘/\r quantity=5 | NULL

7
3 | @ quantity=15 | NULL

®

Any data in the T-node

price quantity
n n Tablet 1 n
A copy of bit array Tablet 2 n n

_/

synchronization 46

Asynchronous Bit Array
S =

o Synchronization & usage
o1 Periodically synchronized to P-units
o1 A P-unit check its local copy to filter useless T-node access

[Read (id = 3, quantity = ?)]

1 ‘/\r quantity=5 | NULL

3 | @ quantity=15 | NULL

Any data in the T-node
n 1 price quantity
n n Tablet 1 n

A copy of bit array Tablet 2 n n

47

Asynchronous Bit Array
S =

- False positive
o (rowy, coly,) does not exist on the T-node, but the bit array says yes

m An empty read
©1 Reason: bit array maintained at tablet granularity

1 ‘/\r quantity=5 | NULL

3 | @ quantity=15 | NULL

[Read (id = 2, quantity = ?)]

Any data in the T-node

a n Tablet 1 a

A copy of bit array Tablet 1 Tablet 2 n n

i quantity

d

1 10
2 20
3 30

n 1 ﬂ price quantity

48

Asynchronous Bit Array
_

- False negative
A bit array copy may fall behind the latest version
(rowy, coly) exists on the T-node, but the bit array says no

Transaction re-check all potential empty reads in the validation phase

[Read (id = 2, quantity = ?)] <>

1 0/\ quantity=5 | NULL
/\
[

quantity=15 | NULL

C] x 5 d/\r Quantity=25 | NULL

Any data in the T-node
price | quantity [Validation]
_ Tablet 1
A copy of bit array
Tablet 2

[Aborted & J
Retry

49

Data Compaction

o Initiate
©1 Create a new Memtable
o1 Freeze the current Memtable
1 Handling ongoing transactions
m Case 1: validation starts before the compaction is initiated
= ty and t, are allowed to write data into m,
m Case 2: validation starts after the compaction is initiated
m t, will write data into m, after the data compaction is started
Memtable m, Memtable m,
> timeline
t, starts ‘ t, starts
validation

validation ty starts
validation

initiate -

Data Compaction

]
o Start
o Get compaction timestamp t; after t, and t,, abort or obtain commit TS
m t, starts validation only after t,. is obtained
o1 Start data compaction after t,, and t,, finish abort/commit
m Create a new SSTable by merging the old one and the frozen Memtable
SSTable s, SSTable sy
Memtable m, Memtable m,
i > timeline
t, starts ty starts ty, ty abort or t, starts ty, ty finish
validation validation obtain commit TS validation abort/commit

\

initiate obtain t,, start o1

Data Compaction

o End

o Wait until the sy is fully created
1 Release the old Memtable and SSTable

SSTable s, SSTable sy

Memtable m, Memtable m,

A

» timeline

initiate start end 52

Concurrency Control

Data structures on the T-node
A timestamp counter(MVCC)
Row-level latch (OCC)
Start
Acquire read-timestamp rts
Process
Read latest version specified by rts

“Wts=4

/A W

~col;=5 |

wts=2
col,=2

\ 4

=~
()
<
I
RN
y 2
N}

= A
@ key=2 < wits=3

L.coly=5

Txn t,
read-timestamp: rts =5

53

Concurrency Control

O]

Commit
Acquire latches for records in the write set
Verify there is no newer version

Acquire write timestamp wts

Write and release latches

@ Counter:6 @

kev=1 b wts=6 [[wts=4

L col,=2 col,=5
ﬁ key=2 wts=6 | [wts=3 | | wts=2
L col,=2 col,=5 col,=2

Txn t,
read-timestamp: rts =5
write-timestamp: wts = 6

54

