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A Robust Ensemble Data Method for Identification
of Human Joint Mechanical Properties
During Movement

Yangming Xu,Member, IEEE,and John M. Hollerbach,¥ellow, IEEE

Abstract—This paper describes a perturbation method for the To overcome the motion limitations of past apparatuses,
identification of linear time-varying systems with an unknown we have developed nonrestrictive one-dimensional (1-D) and
Input (VO'“rgary Jlf'm input) ushd ﬁ”semb'eb data. Jhe rﬁehth‘l)qd two-dimensional airjet systems capable of applying random
separates the unknown input and the perturbation through high- ) UC . )
pass filtering and recasts the multi-input single—output system force pgrturbatlons to the human joints without any mechanical
identification into single-input single—output system identification. constraints [15], [16], [21]. The force perturbations can be
The method is robust to intertrial variation, and can track continuously applied to the human joints without impairing
changes of system dynamics up to 5 Hz. Analysis and simulation the natural movement. This significant advance in apparatuses
are given for the conditions similar to those for the human arm g5 the possibility of identifying the time-varying human
experiments. Experiments show that mechanical properties of the ‘oint mechanical properties under natural movement. Eurther-
human elbow joint change with voluntary movement speed and J . p p ) : )
that the mean stiffness with voluntary movement is in the range More, unlike position perturbation, small force perturbation
of the posture and is higher than reported before. does not alter the voluntary action (desired movement).

Index Terms—Arm movements, ensemble data processing, hu- One of the central ISS.U.ES n S"%dy'“g the mechanical PfoPer'
man joint dynamics, perturbation analysis, system identification. ties of the human arm joints during natural movements using

noninvasive methods is to separate the voluntary inputs and
l. INTRODUCTION movements from the perturbation inputs and perturbed joint
] ) movements. Even though EMG’s are related to the voluntary
I DENTIFYING the mechanical properties of the humagciions, they are too noisy to provide reliable information of
neuromusculoskeleton system under normal conditions g, yoluntary movement. In essence, the voluntary movement
challenging because of the time-varying nature of the systef@.,ot measurable.
nonlinearities, unsensed voluntary inputs and adaptatiqn ohwe have developed two methods to separate the voluntary
the central nervous system. Past approaches have reliedipfis and movements from the perturbation inputs and per-
apparatuses using electrical or hydraulic actuators that cQfhed joint movements. The first method [17], [19] based on
strain natural human joint movements and limit the resulife single trial data applies high-pass filtering to achieve the
under these conditions. However, the constraint also allowgparation and exponentially weighted least squares estimation
time invariant methods to be used because the human join{8hod to extract time varying joint mechanical parameters.
forced to operate under some fixed operating condition. Thg,e 15 the limited power in the high-frequency region of the
time invariant methods include frequency methods (transf§gryrhation and the error introduced by high-pass filtering,
function), pulse response function and a sinusoidal meth method works reasonably well for slow time-varying
[5]-[7], [10]. The time invariant results obtained are vali¢,,ovements.
only for a fixed operating point. The transient properties of the The second method described here uses an ensemble
human joint cannot be obtained with these methods directly,athod. The ensemble methods are promising [3], [12]

More recently, a static nonlinear, time-invariant method hg3,cause the results at any instance are supported by more
been applied to identifying the different contributions to th@aia points. The existing methods compute either the impulse
total joint mechanical properties of the reflex versus i”trinsi%sponse [9], [11]-[13] or the parameters in a model [3].
components [8], [22] by using random position perturbations,yiy impulse response approaches [9], [11], [13] required
with hydraulic or electric apparatuses. Again, the approaghyninylating the perturbation input to achieve a strict timing
takes advantage of the constraints of the apparatus on een input and output so that the correlation functions
human joint to obtain tonic contractions. could be computed across the ensemble data. There was a
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directly, and therefore, giving more direct insight into theand K (¢) based on the following input—output measurements:
motor behavior. The approach presented in this paper belongsand 6(t).
to this last category.

All of the previous ensemble data approaches align mapy IdentifyingI(t), B(t), and K(t) from Ensemble Data

trials with similar movement profile based on a feature in Th bl thod ires th llecti f b
the movement profile to calculate an average movement. The. € ensemble method requires the coflection of a number
input—output realizations, each realization representing the

perturbed movement is obtained by subtracting the avera en mi fih tem as it under milar variation with
movement from the movement measurement. Theoreticafly 2 'cS O the SysStem as It undergoes a simrar vanatio

they can track an instant change of the system dynamics. C% e. Based on the model (2) and assuming 8fabé, ands?
s

of the major problems with the existing ensemble method vet been (t)btal(r;:fd, gnl_ensemblel\f_)freahzatlﬂns IWtI'” give i
intertrial variation; since the perturbation amplitude is smalrfsﬁ o?s%sfem (? )I meta_r quutahlons, eacblre ating inpu
the error due to the intertrial variation is often on the sanfg'¢ OUtPut for a particular trial in the ensemble
order as the perturbation. Furthermore, the intertrial variation . oy S ,
may neither pbe white nor Gaussian, and may even have (i 8) = 1()060i,8) + B(£)66(i, 1) + K(£)66(0,7)  (4)

nonzero mean. In order to have a stereotyped motion, Mos{Gfe e, is the realization index. This system of equations may

the movements _have_ to b_e fast. These methO(_js fail for timgs expressed in matrix form and solved &) using standard
varying posture identification because there exists no featu[gast squares

at all across different trials, therefore the alignment cannot be

done. Y (1) = 2(1)0(1) )
In this paper, we propose a robust ensemble data method for

time-varying identification of the linearized human arm joinjyhere

mechanical properties, which is robust to intertrial variation. It

has been shown experimentally that under small perturbations, Y(t) = (1,

the human joint mechanical properties around a fixed operating 08(

point are linear [7]. The time varying approach proposed here d(t) = :

allow_s varying the operatmg pomt in real t_|me while th_e me- 69(N, 9, 69(N, £), 86(N, )

chanical properties are being identified. It is one experimental

step forward toward understanding the movement control. In Ot) = I(t), B(t), K(t)|"

the following sections, we will first describe the theory for . . I

different measurement conditions, then analyze the error andn the experimental F:ondltlons_, the angular Qer|yat|ve mea-

limitations, and finally demonstrate the results by applying surements are not typically available. We avoid direct differ-

to data from simulated and experimental data sets. entiation by applying a low-pass filter to (4)

L(3)[rp (i, )] = L) (£)68(i, 1) + B(£)66(3, 1)

Il. THEORY
+ K(t)60(i,1)] (6)
A. Human Forearm Model where
In this paper, we will consider the human forearm dynamics.
The equation for the human elbow joint under perturbation Lis)y=a"/(s+a)" (7)

can be written as
. . . a determines the filter cutoff frequency,is the order of the
19 = (9’9) T Tm (9’9’“) +7p +74(6) @) filter, and s is the Laplace operator. In (6), we have mixed

wherel! is the moment of inertia of the forearihjs the actual the time and frequency representations for simplifying the

joint angle,Tt(é,e) is the total torque from the joint passiVeexplanatlon. We will occasionally do so when it simplifies

tissues,r,,(6,8,u) is the total torque from the muscles,is the descriptio_n an_d the_ meaning is easily de_rived from the
the muscle inputy,, is the perturbation torque ang is the context. The filter in (7) is well damped to avoid a resonance

gravity torque. If the two inputa andr, are independent, i.e effect. The operation on the left-hand side is straight forward.
. p 1 . "y

7, is random, the following linear time-varying model can b&/e need further manipulation of the right-hand side so that
derived the derivative terms are eliminated. We first examine the first
term in the right-hand side of (6)

I(£)66(t) + B()80(t) + K (£)66(t) = 7,(t) 2)

t
where I(t), B(t), and K (t) are inertia, damping, and stiff- L(s)I(t)60(i, t) :/ Wt — e)I(e)60(i,e) de  (8)
ness parameters, which reflect the linearized joint mechanical 0
properties at an unperturbed operating point wherel(t — ¢) is the impulse response function bfs). Since
560(t) = 6(t) — 6,(1) 3) L(s) is a low-pass filtgrl_(o) =0 andl_(t) ~ 0 whent > 1/w,
we can choose a sufficiently large filter cutoff frequencgo
is the perturbed joint movement, afid(¢) is the joint angle thatl(t) is approximately constant in the range(éf1/w) to
without the perturbation. The goal is to estimdtg), B(t), t. ThereforeI(¢) can be taken out of the integration. Assume
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n = 2 in (7), we have dynamics across the trials in a time slice. The low-
t pass filter cutoff frequency is equal to the movement
L(s)I(t)86(i,t) ~ I(t) / I(t — €)66(i, ¢) de frequency.

0 ) 2) Align all trials based on a feature in the low-pass filtered

—I() a $256(4, s) data#;;(i,t), such as peak velocity, midpoint between

(s+a)? ’ two target points, or minimum area. For our simulation
»  a?(2as +a?) , and experiments, we used the minimum area of the

=1(t) {a T (sta? 86(i, 5) difference between the average position record from

all of the low-pass filtered position records and each
individual position record.

Compute the ensemble averagéy and7(¢) of all trials
and standard deviations(¢) at each time step

Again, here we have mixed the time and frequency repre-
sentations. The second term in the last expression is the propeor)
low-pass filtering on the perturbed angular measurements.

The manipulation on the second term in (6) is simpler,

and the third term does not need any manipulation. These — 1L
manipulations translate (6) into 0(t) = Z 0(i, t) (11)
2 T
a 2 . 1 N
Gray "0 OB DI 12
2 2 2 i
— 10 o = 2 gt
s+a 1 . -, 12
s 2 co(t) =\ 71 > 0GH-0@®)]. (13)
+ B(t) 86(i,s) + K(t) 66(i, s) T

(s +a)? (s +a)?
(9) 4) Reject trials whose low-pass filtered records deviate

from the ensemble average by more than one standard

where the unknowns atEt), B(t), and K (¢). Now, all of the deviation, i.e., for any, if
operations on théd(i,s) are proper low-pass filters. _ )
In the experiment, the frequency of the parameter variation |0(t) — 015 (2, 1)| > |oa (D) (14)

is unknown. We may choose an initial filter cutoff frequency the trial is thrown out.
based on the joint movement speed and vary it to ensure thaty compute the responses due to perturbation for the iden-
the parameter estimates are not significantly affected by the * iification by
low-pass filter cutoff frequency. Section II-E shows a way to _
choose the cutoff frequency. 66(i,t) =0(i,t) — 6(t)
6r(i,t) =7, t) — 7(¢). (15)

~_ 6) Use the method outlined in Section II-B to identify the
The accuracy of the above method depends on estimation  parameters.

of the perturbed movemen@?(i,t),ée(i,t), 66(:, ¢) from the Step 4 implies that the error due to intertrial variation can
angular measurement that includes the voluntary movemerbtg.UIO to one standard deviation, which can be on the same

In the experiments, subjects are typically instructed o exeCiffye; 45 the perturbation amplitude. This amount of intertrial
a task in stereotypical fashion and a zero mean rand%riation makes the stiffness artificially low

perturbation is applied to the human joint. Some previous
methods for estimatingd(¢,t), which we call the ensemble
mean removal ensemble data (EMRED) method, follow the
steps [3], [12].

C. Perturbed Movement and Intertrial Variation

D. High-Pass Mean Removal Ensemble
Hata (HMRED) Method

1) Lowpass filter each trial: We sgggest to solve the problem of intertrial variation, by
separating the voluntary movement and perturbed movement
617(i,t) ="L(s)0(4, t) (10) in frequency, and extracting the perturbed movements from

each experimental trial by high-pass filtering. The procedure
where“L(s) is an acausal low-pass filter with no phasg, o folﬁ)OWS' y hignp g P

shift; it can be implemented by using a causal filter, Steps 1-4 are the same as those in EMRED

such as: . 5) High-pass filter each trial
S’n/_ a’n/ PN aj .
Grar 5?(%&) = H(8)9(tf t) (16)
] 67(i,t) =H(s)7(i,t) a7
and by passing data forward and then backward once.
The purpose to obtain the low-pass filtered positiowhere
record is to align all of the trials based on common () = 1 —OL(s) (18)

features in the low-pass filtered position record that
represent the voluntary movement. This step facilitatés an acausal high-pass filtef(¢, ¢) is the joint angle mea-
the following steps to minimize the variation of thesurement given by (3).
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filter to remove the voluntary movement in the measurements

5
‘5’ M ontifiont implies applying the bandpass filter to the measurements.
Highpass 0 o204 0608 1 lMentfealen gk hass filter (18) translates a high-pass operation into low-
5 . . . .
o M‘WW pass operation. An acausal low-pass filter is preferred to avoid
a0 5 0 phase shift. The same type of the low-pass filter but different
o ‘I cutoff frequency for the low-pass and high-pass filters is used
0 5 oz 04 06 0, in the simulation and experiments. It is apparent that the low-
40 Line Up pass filter cutoff frequency in Section II-B must be higher
o m__‘ than the high-pass filter cutoff frequency or the low-pass filter
0 ozos0608 1 cutoff frequency in (18) in order to have sufficient signal
s m power left over in the processed data. Furthermore, if the
Lowpass 0 02 04 06 08 1 low-pass filter cutoff frequency in (19) is sufficiently high
Filtering 40 to have the approximate equality valid (19), the low-pass
w0 filter cutoff frequency in Section II-B would be sufficient.
0 02 04 06 08 1

For the simulation and experiments, the low-pass filter cutoff
Fig. 1. Block diagram of the identification procedure of the HMREOrequency is 10 Hz higher than the high-pass filter cutoff
method. frequency even though simulation tests show that sometimes
5 Hz is sufficient to give the same result in terms of the
6) Align high-pass filtered position and torque data accorg¢ariation of the parameter estimates versus the frequency. The
ing to the recorded amount of shift in time in Step 2 usingigher the low-pass filter cutoff frequency the stronger the
the low-pass filtered data. Fig. 1 shows the above procedéfect of the high-frequency noise. The 10-Hz low-pass filter

graphically. cutoff frequency is determined based on the simulation results
7) Use the method outlined in Section II-B to identify thesing the similar conditions in our experiments. The high-pass
parameters. filter cutoff frequency is determined experimentally in both
simulation and experiments.
E. Effect of High-Pass Filtering The analysis does not indicate any requirement on the filter

The effect of high-pass filtering is analyzed by examininfyPe. We have tried different filter types (Butterworth and
if the following expression is approximately equal to zero arfdhebyshev) to both simulation and experimental data, and

using (3) and (16)—(18) for the derivations found that the filter type does not affect the parameter estimates
. . . as long as the filter is well or critically dampened. If the filter
S[L(8)60(i,t) + B(1)60(i,t) + K (1)66(i, )] — 7(i, ) is under-dampened, the parameter estimates become noisy. In
= I(t)[én(i,t) + 5é(i,t) _aL(s)én(i,t) our simulation and experiments, the Butterworth filter is used.

—L(s)66(i, )] + B(t)[0,(i, 1) + 66(i, 1)
_aL(S)én(iv t) _aL(S)éé(iv t)]
+ K (8)[6,(4, 1) + 66(i,t) —°L(s)0, (4, 1)

I1l. SIMULATION

In this section, we examine the performance of the EMRED,
HMRED, and exponentially weighted least squares (EWLS)

_aL(f)ée(i’t)]_ [T(fi’t) _aL(S)T(i’?)] methods [20] in a set of simulated conditions similar to
= I()[0n(1,t) ="L(5)0,(4,1)] + B(t)[0n (i, 1) those in the experiments. EWLS is a single trial method and
—L(8)0 (4, )] + K (£)[0 (4, 1) therefore has no intertrial variation problem. We will compare

its performance and experimental results in the next section to

)
—9L(8)0, (i, )] + [[(£)86(i,t : '
()6 (2, )] + [1(£)805, ) those of EMRED and HMRED. We would also like to find the

+ B(t)86(4, t)ﬁ+ K(1)86(i,t) — T@ t)] application boundary for the HMRED method for experimental

— (@) L(s)60(i,t) + B(t)L(s)66(i, 1) design.

+ K(H)L(s)66(i, t) —L(s)7 (i, )] For the EMRED and HMRED methods, each uses about 400
~0 trials. Under noise free condition, three trials are sufficient to
~04+0+0+0 . : o o

N . . identify the parameters. More trials improve the sensitivity of

—“L(s)[L(t)66(:, t) + B()86(s, 1) both methods to the high-frequency noise. However, over 200

+ K(t)60(i,t) — 7(i,t)] trials, the rate of the improvement becomes slow for the given

(19) maximum noise level used in the simulation.

] . .The simulation model is similar to (2) with addition of the
In the second step, the first three terms are equal to zero 'r\%mntary inputr, (t)

vidually because the voluntary movements are low-frequency. N .

The fourth term is equal to zero because of (2). The last stepl (1)66(t) + B(2)66(¢) + K ()60(t) = 7,(t) + 7p(t).  (20)
uses the same assumption as Section 1I-B that the paramefﬁ

I(t), B(z) and K(t) are approximately constant in the rangek(t) are assumed to be sinusoidally time-varying with the

of the filter response time.
Using the low-pass filter to facilitate the identification with>2Me frequency. For example, féf(?)

out the derivative variables in Section II-B and the high-pass K(t) = Ky + Koo sin(2r ft) (21)

"the simulation,/(¢) is assumed to be constar8(¢) and
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Fig. 2. Block diagram of the simulation procedure for identification of the & gg | - OO LT \
time-varying elbow joint dynamics in posture and movement. <>‘ a0 b O S U
20 ------ ,,,,,,,,,,,, Ll ,,,,,,,,
0 | 1 { | | |
TABLE | 0 1 2 3 4 5 6 7
NOMINAL MODEL PARAMETERS USED IN THE SIMULATION )
Variable Mean Value | Variation Amplitude
e S S 10 & U O @ @ @ @ @ @ @ o - . e -
I (Nms™?/rad) 0.06 0 80 E"". A A 4 ’ ' Yy Vv vy
> ‘ : : ‘ ‘ :
B (Nms™/rad) 1.8 | ‘é 60 - ----- e X
o >40 R R TRREREE R
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whereK,,,, is the mean valuek,,, is the variation amplitude, Frequency Hz
and f is the frequency. The damping ratio is kept constant [® HMRED ¥ EMRED O EWLS
at 0.6. The mean and variation of the parameters are given ©
in Table I. The voluntary movement is assumed t0 havey 3 simylation: VAFV of HMRED, EMRED, and EWLS versus the
sinusoidal equilibrium trajectory frequency of the parameter variation with no intertrial variation.
T,(t) = K(t) sin(2n ft). (22)

suggest that when the denominator is less than one, we set it to

The simulation procedure is shown in Fig. 2. Pseudorandqfe \when a signal is zero mean, (24) is the same as the VAF
binary perturbation prefiltered by a low-pass filter with a cutofiafinition in [12]. We require both VAFM and VAFV over

frequency at 150 Hz, which mimics the D/A converter, ig5o, [3], [12], for which the relative prediction error variance
used for7,. The root-mean-square value of the perturbation |ass than one third.
?5_4 Nm, which is less than 10% of _the voluntary input. The Fig. 3 compares the frequency responses of VAFV of the
joint angle measurement &¢) given in (3). We assume 5% egtimated stiffness versus parameter variation frequency with-
noise on the torque measurement and 1% noise on the angy|d’any intertrial variations for HMRED, EMRED and EWLS.
position measurement in terms of the standard deviation ‘F’rf]e high-pass filter cutoff frequency in HMRED is equal to
the amplitude. These values are consistent with the accuragy¥ movement frequency plus two. The VAFV of the stiffness
of our airjet system described in Section IV-A. estimate for HMRED decreases below 75% after 5 Hz, while
For the HMRED method, the high-pass filter cutoff fréyh 4t for EMRED is below 70% after 7 Hz. Compared to EWLS
quency for (16) and (17) is 5 Hz, determined from Fig. 5; thGse VAFV is below 70% after 0.5 Hz, HMRED improves
low-pass filter cutoff frequency for (6) is 15 Hz; and the loWgne frequency of the parameter tracking performance by ten
pass filter cutoff frequency for the step one in Section ll-Gyeq The VAFV's of the inertia and damping estimates and
is equal to the voluntary movement frequency (22). The filtghe \AFM's of all three parameters (not shown) also vary with

type is Butterworth. the frequency of the parameter variation, but much less than

We evaluate the estimation by using variance-accounted-{an; of the stiffness estimate. In the tested frequency range the
of the mean (VAFM) and of the variance (VAFV) of outputyary of the output prediction is always above 95% for all
prediction and parameter estimates, which are defined as

methods.
(@ _ @)2] Fig. 4 shows the effect of intertrial variation to the stiffness
VAFM = |1 - ~—————| - 100% (23) estimation and output prediction for HMRED and EMRED.
y(t) The other parameters are affected less, and are not shown
t (g(t) _zj(t))Q . here. In the simulation the voluntary movement frequency
VAFV =11 _/0 R dt| -100%  (24) s perturbed by a zero mean, normal distribution intertrial

variation. The standard deviation is the measure of the strength
whereﬁ is the mean ofy(t) overt, §(t) is (y(t) — @), of intertrial variation. The voluntary movement frequency is 2
and @(t) is (i(t) — 4(t)). Hz and the cutoff frequency of the high-pass filter for HMRED
Both VAFM and VAFV will be meaningless if their de-is 5 Hz.
nominators are close to zero. For example, the inertia in thee The VAFM of the stiffness estimate of EMRED decreases
following simulation is assumed to be constaj(t;) = 0. We below 70% after the standard deviation of the intertrial
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Fig. 4. Simulation: VAFM and VAFV of the stiffness estimates, and VAFV
of the output prediction of EMRED and HMRED versus standard deviation
of intertrial variation.

Highpass filter Cutoff frequency Hz

@® VAFM V¥ VAFV

(d)
variation (SDITV) is over 0.013 while that of HMRED Fig. 5. Simulation: VAFM and VAFV of HMRED versus the high-pass filter
stays at 100%. Even at 0.02 of the SDITV, the VAFMutoff frequency.
of the stiffness estimate from HMRED is still close to

100%, which indicates the robustness of HMRED to thgy .o perturbation, less than 10% of the voluntary input, the

intertrial variation. , 'HMRED method can track the parameter variation up to 5 Hz.
* The VAFV's of the stiffness estimates and output prediG; i5 |ess sensitive to intertrial variation than EMRED.
tion of both EMRED and HMRED decrease with intertrial

variation. However the VAFV of the HMRED stiffness
decreases slower than that of EMRED.

« Even though not shown here, the VAFM of the damping The results of the simulation guide the experimental de-
estimate of EMRED also decreases with the SDIT®ign for study of the human elbow joint dynamics during
while that of HMRED stays close to 100%. The VAFMmMovement.
and VAFV of the inertia estimate for both EMRED and
HMRED do not vary with the SDITV, and are close toA. Apparatus

100%. The airjet system [21] consists of three parts: an airjet
Fig. 5 shows the VAFM and VAFV of the parameter esactuator, a motion tracking device (Optotrak, Northern Digital
timates from the HMRED versus the high-pass filter cutofhc., Waterloo, Ont, Canada), and a VME Bus-based data
frequency. In the simulation the parameter variation frequenagquisition system. Fig. 6 shows how the airjet actuator is
is 2 Hz and the standard deviation of intertrial variation is 0.0%httached to a subject’s wrist. The airjet force is sensed by
The VAFM and VAFV of the damping and stiffness estimatea strain gauge force sensor which has noise less than 5%
as well as the output prediction show that between 4 and 6 H21]. The airjet actuator is currently a 1-D perturbation device,

the VAFM and VAFV are above 95%. Over 6 Hz, both VAFMcapable of producing=4N forces from the reaction force of

of the damping estimate and VAFV of the stiffness estimatmmpressed air and of switching the force up to 80 Hz, based

start decreasing. The inertia is not affected. on the Coanda effect. In the experiment the airjet actuator
From the simulation we can conclude that under the cowas controlled to produce a pseudorandom binary sequence

ditions: 1) no derivative measurements, 2) the output noi§@RBS) through a digital-to-analog converter (DAC) channel

is less than 5% and input noise less than 1%, and 3) smatlla 100-Hz sampling frequency. The force signal was col-

IV. EXPERIMENTAL METHODS



XU AND HOLLERBACH: IDENTIFICATION OF HUMAN JOINT MECHANICAL PROPERTIES DURING MOVEMENT 415

)

Angle Mov. (rad

Torque (Nm)
R N Q N B

Fig. 6. The airjet actuator attached to a subject’s wrist. 0.08
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lected at 1 kHz. The Optotrak uses three LCD cameras to tragks

infrared light-emitting diodes (IRED) and produces threeg =
dimensional position data of the IRED’s with an accuracy of £ ; J : : ‘ J: i
0.1 mm. One IRED was used in the experiments and gluéd °%¢ 5 10 15 20 25 30 s a0
to the subject’s wrist area. The Optotrak was sampled at 0.5 ©

kHz and resampled digitally to 1 kHz later to match the force

sampling frequency.

oI
-0.04

B. Subjects

Four right-handed subjects (one of them is female) with ng 1 : : : ;
history of neuromuscular disease, ranging in age from 22 to ™, 5 10 15 20 25 30 85 a0
32 yr, were examined. The subject sat in a chair and rested Time (s)
the left elbow on a piece of clay on the bench. The elbow )
length was gstlmated by usmg_ b_0th fa“ber measurement igc.i 7. Experiment: (a) joint angle, (b) perturbation torque, (c) high-pass
the Optotrak; results agreed within 2%. The forearm was fr@red joint angle, and (d) high-pass filtered perturbation torque records from
to move in a vertical plane passing through the upper arm. Ta@.5-Hz experiment (Subject PZ).
subject’s palm was turned 9Gway from his shoulder. The
wrist was immobilized through a custom fitted plastic cuff OBy less than 5%

which the airjet actuator is strapped. _ step one in Section 1I-C is equal to the voluntary movement
A physical moving target is presented to the subject at t quency.

wrist area. The target moves around a center point aligned with:ig_ 7(2) and (b) shows typical force and position records
the elbow joint center. The trajectory of the target is sinusoid@}, m, one experiment (0.5-Hz voluntary movement). We define
+28> about the vertical line. Three different frequencies werg, o trial in one experiment as a complete cyclic movement.
used: 0.25, 0.5, and 1 Hz. The target does not touch the gig 7 there are 45 trials (only 20 trials are shown for

subject’s wrist. The task was not difficult for the SUbJeC}Bresentation clarity). Fig. 7(c) and (d) shows the high-pass
when the cyclic movement is less than 2 Hz. When the tar red data from the same experiment. The cutoff frequency

motion is 2 Hz or more, some subjects could not follow thg, g 5z The low-frequency voluntary movement is clearly

target. Subjects were instructed to use the effort that they f?é%oved from the position record. The perturbed joint move-
comfortable with throughout the experiments that typically, .t is about 5% of the voluntary movements. Fig. 8 shows
took about 1.5 h. _ ) _ the ensemble-aligned joint angle data, based on the method
Each frequency is repeated 15 times. There is 1-2 Mifiyined in Section II-D. The variation across trials is due to
rest period between each repetition. Between two differengg, perturbation and intertrial variation, but the aligned trials

frequencies, there is 4-min rest period. are very similar. To reduce the noise effect we used at least
400 trials from several experiments for each case.

The cutoff frequency of the high-pass filter in HMRED

As in the simulation, for the HMRED method, the highmust be chosen properly in order to obtain accurate results.
pass filter cutoff frequency is determined by examining the the simulation, at certain values of the high-pass filter
parameter estimate versus the cutoff frequency (see beloa)toff frequency, there is a clear corner in the plot of the
The low-pass filter for (6) is 10 Hz higher than the highmean and standard deviation of the stiffness versus the cutoff
pass filter cutoff frequency. Varying the low-pass filter cutofirequency (Fig. 5). With the experimental data, we must
frequency by 50% (maximum) changed the parameter estimditermine a suitable high-pass cutoff frequency for each

hpass Filtered
Torque (Nm)

AN O N B

VAF. The low-pass filter cutoff frequency for

C. Data Analysis
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Fig. 10. Experiment: comparison of the EWLS and HMRED methods (Sub-
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- I/I/ D movement experiment. At such a low-frequency, EWLS works

& 00 1 2 3 ; . as well [19], and its results are shown to agree well with
Freqency Hz HMRED. Furthermore, both methods have the VAFV of the
() output prediction over 75%.

. . _ - . .. The mean value of the estimated inertia, damping, stiffness
Fig. 9. Experiment: mean and standard deviation of the estimated inertia . . .

and stiffness versus the high-pass filter cutoff frequency (Subject DHA). TR damping ratio are similar to those from the postural

standard deviation is calculated after the data has been high-pass filteregygberiments [19] (only the stiffness is shown in Fig. 10). The

the voluntary movement frequency. estimated inertia does not vary which is expected. The mean

) value of the damping ratio is low: 0.3, and the stiffness shows
voluntary movement frequency. Fig. 9 shows the mean aﬁqow-frequency variation with a mean of 25 Nm/rad which is

standard deviation of the inertia and stiffness versus thi,qe to or slightly higher than that from the minimum effort
high-pass filter cutoff frequency for the 0.5-Hz VOIunta%osture [19]. By visual inspection, there is no clear correlation

movements. Below 3 Hz, the mean values of the estimatgdy yeen the stiffness and movement variations. The computed
inertia and stiffness increase with the high-pass filter cutqff << correlation coefficient is below 0.4

frequency, which must be due to the effect of the intertrial
variation. The mean values have the corner frequency at 3 Hz.

From 3 to 4 Hz there is a large increase of the standdfd 0-5-Hz Voluntary Movement

deviation of the stiffness. Therefore, 3 Hz should be the high-Fig. 11 shows the results from the 0.5-Hz voluntary move-
pass filter cutoff frequency. We made one plot similar to Fig. ®ent experiments. The VAFV of the output prediction is

for each voluntary movement for each subject to determim@proximately 80%. Fig. 11 shows the data from two subjects.

the cutoff frequency accordingly. « The inertia for each is approximately constant with time,
but differs across subjects (not shown).
V. EXPERIMENTAL RESULTS e The stiffness and damping vary with time, do not vary
We tested three movement speeds: 0.25, 0.5 Hz, and 1 Hz. consistently across subjects, and show no correlgtlon with
. the voluntary movement (the computed correlation coef-
The results are summarized below. - :
ficients are below 0.5). The mean value of the stiffness
is similar to those from our previous experiments with
the minimum effort posture while the mean value of the
Fig. 10 shows typical results of the stiffness estimate, VAFV  damping is similar to those from our previous experiments
and voluntary movement trajectory from the 0.25 voluntary  with the medium effort posture [19].

A. 0.25-Hz Voluntary Movement
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Fig. 11. Experiment: results from two subjects for 0.5-Hz voluntary move=ig. 12. Experiment: results from 1-Hz voluntary movement: (a) inertia, (b)
ment. damping, and (c) stiffness.

¢ The mean values of the damping ratio for subjects PZ
and YXU are around 0.7. In general the mean values
for all subjects are higher than those from our previous ,
experiments [19]. However, the damping ratios have
considerable variation (Fig. 11).

C. 1-Hz Voluntary Movement

Fig. 12 shows the results from the 1-Hz voluntary move-
ment experiments. The VAFV of the output prediction is above

two-thirds of that from the 0.25-Hz voluntary movement

experiments.

The damping shows a pattern similar to the stiffness,
except that there is about a 0.1 s time lag. The mean
value of the damping is smaller than that in the previous
experiments with 0.25 and 0.5-Hz voluntary movement.
The damping ratio has a pattern similar to the damping,
and the mean value is around 0.3 which is similar to that
obtained in the postural experiments [19].

75%. Except for the mean value, the time-varying pattern of the
« Similar to the experiments with 0.5-Hz voluntary movestiffness and damping is consistent with that reported in [3].

ment (Fig. 11), the inertia is constant and differs across
subjects. The mean value for each subject and the amount
of the difference across subjects are similar to those from

VI. DISCUSSION

the experiments with 0.5-Hz voluntary movement. This paper demonstrates that the HMRED method is a

* The stiffness, dampmg and dampmg ratio vary with tim@UCCESSfLﬂ means to identify time-varying dynamics of the
and have a clear correlation with the voluntary movemertuman motor control system. This method has the following
The stiffness is higher at the two target points. ThEur major advantages:

mean value of the stiffness is doubled compared to thate
from the 0.5-Hz voluntary movement experiments, and is ¢

it is robust to intertrial variation;
it can handle reasonably fast time-varying dynamics;
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« few restrictions are placed on the input signal; TABLE I

e the error due to the method itself can be characterized. EXPERIMENT: LiST OF THE MOVEMENT SPEED AND THE MEAN STIFFNESS
Under our eXperimemaJ conditions (Sma“ force pefthbatiOﬂ, Voluntary Movement | Maximum Speed | Mean Stiffness
no derivative measurements, linear or linearized systems, and Frequency
existence of the unknown voluntary actions), the technique - ’ T \ |
estimates the time-varying parameters up to a frequency of ‘ deg/s (rad/s) Nimfrad
5 Hz. The method is robust to output noise, has been tested 0.2 22.0 (0.39) 25.0
extensively, and its limitations have been explored. 0.5 90.0 (1.57) 17.0

In identifying time-varying dynamics in movement, we have 1.0 180.0 (3.11) 39.0

shown that previous ensemble-based methods are sensitive to

intertrial variation. We showed the effect of intertrial variation

is worse than that of the measurement noise. The major effegt voluntary movements, the stiffness mean value is twice as

of intertrial variation is to lower the stiffness mean value. high as theirs. We think that their low stiffness mean value
The primary objective of the experimental study was tmay be due to intertrial variation. More recently, Bennett [2]

establish the viability of the HMRED method. Neverthelessised the imposed constant position errors on the human elbow

the results are of considerable physiological interest. joint during voluntary movement to extract the dynamics. He
« The time-invariant inertia estimate for each subject valfound that the stiffness increased with the speed in the range
dates our linearization assumption. of the maximum speed: 1-6 rad/s. However, the maximum

+ The mean values of stiffness, damping and damping ragéffness from his experiment is below 15 Nm/rad.
decrease from 0.25-0.5 Hz, then increase from 0.5-1 HzRegarding to the current movement theory, the stiffness
Considering the results from posture and slow movemengsrease with the speed in the speed range of 0.5- to 1-Hz
(0.125 Hz) in our previous study using the EWLS methodoluntary movement seems to support the speed scaling law
[19], the stiffness of the elbow joint seems to decreadd]. However, the speed scaling law requires the stiffness to be
from the posture to slow movement and then to increagdoportional to the squared ratio of the speeds. From the 0.5-
« With 1-Hz movement, there is a consistent pattern & 1-Hz movement, the speed is doubled, and the stiffness is
the stiffness and damping variation across subjects. Talso doubled, not four times. Therefore, our results here only
stiffness is higher at the target points, which is consistep@tially support the speed scaling law. Flash [4] showed in her
with [3]. At lower frequencies no patterns can be seenSimulation that in order to fit the hand trajectory well during
The stiffness mean values from our movement expefo'mal movements, the joint stiffnesses must be equal to or

ments are within the range of the stiffness mean valuBigher than those in posture. Our result from 1-Hz movement

from the minimum and maximum effort posture experiS€éms consistent with her simulation. o
ments [19]. The validity of our results is supported by the simulation
The damping ratio from 0.5-Hz movement is considerabffudy, good agreement between the HMRED and EWLS
higher than that reported before from posture and moV@_ethods, and the experimental control such that the conditions
ment under different conditions. This is the first time thtf the methods are met. The stiffness and damping variation

we observe that the damping ratio reaches the criticaﬁﬂpm our movement expenm_ents are not unexpe.c_ted. It should
damped point. be clear that no method will work for all conditions. What

is important is that the limitations or conditions of a method

. Except. for the mean values, our findings are largely cofl clearly identified and the experiment be controlled to meet
sistent with and extend those reported before. Lanman [Jt conditions

reported a (_:iecrea:'se in_the stiffness \_/vith speed of movemenkecemly, researchers [8], [14], [22] have showed exper-
bfase.d on fixed sinus oidal perturbation tests. Judging frqmentally that the random position perturbation decreased
his figures, the maximum speed was°/B0or 0.174 rad/s.%

L]

Th unt 0f i d. and e reflex response and the reflex gain in general is much
€ voluntary movement irequency, maximum speed, an aller than intrinsic gain. However, the pulse position inputs

mean stiffness from our movement experlmgnts (E|gs. 10-1a) elicit very large reflex responses which indicates the
with a movement "?‘mp_"‘“de of 0'5_ fa‘i‘ are listed in Table Il g position perturbation dependent. Our airjet actuator
Our lowest speed is h'g_hef than his highest one. We actugidduces random force perturbations. Compared to the position
demonstrate that the stiffness decreases further with spee erturbation, the force perturbation of abau¥ cannot cause

At the_ 1-Hz vqunta_ry movement, the time-varying patteinge myscle into the saturation state and has far less possibilities
of the stiffness, damping and damping ratio are consistent Wi gjter the intrinsic and reflex response of the joint [18]. The
those reported by Bennetal. [3]. The same airjet was used iNgrect of the perturbation on the identification of the joint

their experiments, and the voluntary movements were Cyclic @k chanical properties needs to be further researched on.
0.5 and 0.67 Hz. They found that 1) the stiffness was higher at

the target limit points and 2) the mean of the stiffness increases
with the movement speed. In our experiments we observe that REFERENCES
the stiffness is higher at the target points only at the 1-Hz s .
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