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A Robust Ensemble Data Method for Identification
of Human Joint Mechanical Properties

During Movement
Yangming Xu,Member, IEEE,and John M. Hollerbach,*Fellow, IEEE

Abstract—This paper describes a perturbation method for the
identification of linear time-varying systems with an unknown
input (voluntary joint input) using ensemble data. The method
separates the unknown input and the perturbation through high-
pass filtering and recasts the multi-input single–output system
identification into single-input single–output system identification.
The method is robust to intertrial variation, and can track
changes of system dynamics up to 5 Hz. Analysis and simulation
are given for the conditions similar to those for the human arm
experiments. Experiments show that mechanical properties of the
human elbow joint change with voluntary movement speed and
that the mean stiffness with voluntary movement is in the range
of the posture and is higher than reported before.

Index Terms—Arm movements, ensemble data processing, hu-
man joint dynamics, perturbation analysis, system identification.

I. INTRODUCTION

I DENTIFYING the mechanical properties of the human
neuromusculoskeleton system under normal conditions is

challenging because of the time-varying nature of the system,
nonlinearities, unsensed voluntary inputs and adaptation of
the central nervous system. Past approaches have relied on
apparatuses using electrical or hydraulic actuators that con-
strain natural human joint movements and limit the results
under these conditions. However, the constraint also allows
time invariant methods to be used because the human joint is
forced to operate under some fixed operating condition. The
time invariant methods include frequency methods (transfer
function), pulse response function and a sinusoidal method
[5]–[7], [10]. The time invariant results obtained are valid
only for a fixed operating point. The transient properties of the
human joint cannot be obtained with these methods directly.

More recently, a static nonlinear, time-invariant method has
been applied to identifying the different contributions to the
total joint mechanical properties of the reflex versus intrinsic
components [8], [22] by using random position perturbations
with hydraulic or electric apparatuses. Again, the approach
takes advantage of the constraints of the apparatus on the
human joint to obtain tonic contractions.
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To overcome the motion limitations of past apparatuses,
we have developed nonrestrictive one-dimensional (1-D) and
two-dimensional airjet systems capable of applying random
force perturbations to the human joints without any mechanical
constraints [15], [16], [21]. The force perturbations can be
continuously applied to the human joints without impairing
the natural movement. This significant advance in apparatuses
brings the possibility of identifying the time-varying human
joint mechanical properties under natural movement. Further-
more, unlike position perturbation, small force perturbation
does not alter the voluntary action (desired movement).

One of the central issues in studying the mechanical proper-
ties of the human arm joints during natural movements using
noninvasive methods is to separate the voluntary inputs and
movements from the perturbation inputs and perturbed joint
movements. Even though EMG’s are related to the voluntary
actions, they are too noisy to provide reliable information of
the voluntary movement. In essence, the voluntary movement
is not measurable.

We have developed two methods to separate the voluntary
inputs and movements from the perturbation inputs and per-
turbed joint movements. The first method [17], [19] based on
the single trial data applies high-pass filtering to achieve the
separation and exponentially weighted least squares estimation
method to extract time varying joint mechanical parameters.
Due to the limited power in the high-frequency region of the
perturbation and the error introduced by high-pass filtering,
the method works reasonably well for slow time-varying
movements.

The second method described here uses an ensemble
method. The ensemble methods are promising [3], [12]
because the results at any instance are supported by more
data points. The existing methods compute either the impulse
response [9], [11]–[13] or the parameters in a model [3].
Early impulse response approaches [9], [11], [13] required
manipulating the perturbation input to achieve a strict timing
between input and output so that the correlation functions
could be computed across the ensemble data. There was a
potentially significant error in the final results due to the
missed timing. No quantitative error analysis was done. Later,
singular value decomposition (SVD) was applied to compute
the impulse response directly which relaxed the requirement
on the strict timing between input and output [12]. More
recently, a model-based approach has been applied [3] with
the advantage of producing the physical meaning parameters
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directly, and therefore, giving more direct insight into the
motor behavior. The approach presented in this paper belongs
to this last category.

All of the previous ensemble data approaches align many
trials with similar movement profile based on a feature in
the movement profile to calculate an average movement. The
perturbed movement is obtained by subtracting the average
movement from the movement measurement. Theoretically
they can track an instant change of the system dynamics. One
of the major problems with the existing ensemble methods is
intertrial variation; since the perturbation amplitude is small,
the error due to the intertrial variation is often on the same
order as the perturbation. Furthermore, the intertrial variation
may neither be white nor Gaussian, and may even have
nonzero mean. In order to have a stereotyped motion, most of
the movements have to be fast. These methods fail for time-
varying posture identification because there exists no features
at all across different trials, therefore the alignment cannot be
done.

In this paper, we propose a robust ensemble data method for
time-varying identification of the linearized human arm joint
mechanical properties, which is robust to intertrial variation. It
has been shown experimentally that under small perturbations,
the human joint mechanical properties around a fixed operating
point are linear [7]. The time varying approach proposed here
allows varying the operating point in real time while the me-
chanical properties are being identified. It is one experimental
step forward toward understanding the movement control. In
the following sections, we will first describe the theory for
different measurement conditions, then analyze the error and
limitations, and finally demonstrate the results by applying it
to data from simulated and experimental data sets.

II. THEORY

A. Human Forearm Model

In this paper, we will consider the human forearm dynamics.
The equation for the human elbow joint under perturbation
can be written as

(1)

where is the moment of inertia of the forearm,is the actual
joint angle, is the total torque from the joint passive
tissues, is the total torque from the muscles,is
the muscle input, is the perturbation torque and is the
gravity torque. If the two inputs and are independent, i.e.,

is random, the following linear time-varying model can be
derived

(2)

where and are inertia, damping, and stiff-
ness parameters, which reflect the linearized joint mechanical
properties at an unperturbed operating point

(3)

is the perturbed joint movement, and is the joint angle
without the perturbation. The goal is to estimate

and based on the following input–output measurements:
and .

B. Identifying and from Ensemble Data

The ensemble method requires the collection of a number
of input–output realizations, each realization representing the
dynamics of the system as it undergoes a similar variation with
time. Based on the model (2) and assuming that , and
have been obtained, an ensemble ofrealizations will give
rise to a system of linear equations, each relating input
and output for a particular trial in the ensemble

(4)

where is the realization index. This system of equations may
be expressed in matrix form and solved for using standard
least squares

(5)

where

...

In the experimental conditions, the angular derivative mea-
surements are not typically available. We avoid direct differ-
entiation by applying a low-pass filter to (4)

(6)

where

(7)

determines the filter cutoff frequency, is the order of the
filter, and is the Laplace operator. In (6), we have mixed
the time and frequency representations for simplifying the
explanation. We will occasionally do so when it simplifies
the description and the meaning is easily derived from the
context. The filter in (7) is well damped to avoid a resonance
effect. The operation on the left-hand side is straight forward.
We need further manipulation of the right-hand side so that
the derivative terms are eliminated. We first examine the first
term in the right-hand side of (6)

(8)

where is the impulse response function of . Since
is a low-pass filter, and when ,

we can choose a sufficiently large filter cutoff frequencyso
that is approximately constant in the range of to
. Therefore, can be taken out of the integration. Assume
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in (7), we have

Again, here we have mixed the time and frequency repre-
sentations. The second term in the last expression is the proper
low-pass filtering on the perturbed angular measurements.

The manipulation on the second term in (6) is simpler,
and the third term does not need any manipulation. These
manipulations translate (6) into

(9)

where the unknowns are and . Now, all of the
operations on the are proper low-pass filters.

In the experiment, the frequency of the parameter variation
is unknown. We may choose an initial filter cutoff frequency
based on the joint movement speed and vary it to ensure that
the parameter estimates are not significantly affected by the
low-pass filter cutoff frequency. Section II-E shows a way to
choose the cutoff frequency.

C. Perturbed Movement and Intertrial Variation

The accuracy of the above method depends on estimation
of the perturbed movements: from the
angular measurement that includes the voluntary movements.
In the experiments, subjects are typically instructed to execute
a task in stereotypical fashion and a zero mean random
perturbation is applied to the human joint. Some previous
methods for estimating which we call the ensemble
mean removal ensemble data (EMRED) method, follow these
steps [3], [12].

1) Lowpass filter each trial:

(10)

where is an acausal low-pass filter with no phase
shift; it can be implemented by using a causal filter,
such as:

and by passing data forward and then backward once.
The purpose to obtain the low-pass filtered position
record is to align all of the trials based on common
features in the low-pass filtered position record that
represent the voluntary movement. This step facilitates
the following steps to minimize the variation of the

dynamics across the trials in a time slice. The low-
pass filter cutoff frequency is equal to the movement
frequency.

2) Align all trials based on a feature in the low-pass filtered
data , such as peak velocity, midpoint between
two target points, or minimum area. For our simulation
and experiments, we used the minimum area of the
difference between the average position record from
all of the low-pass filtered position records and each
individual position record.

3) Compute the ensemble averages and of all trials
and standard deviations at each time step

(11)

(12)

(13)

4) Reject trials whose low-pass filtered records deviate
from the ensemble average by more than one standard
deviation, i.e., for any , if

(14)

the trial is thrown out.
5) Compute the responses due to perturbation for the iden-

tification by

(15)

6) Use the method outlined in Section II-B to identify the
parameters.

Step 4 implies that the error due to intertrial variation can
be up to one standard deviation, which can be on the same
order as the perturbation amplitude. This amount of intertrial
variation makes the stiffness artificially low.

D. High-Pass Mean Removal Ensemble
Data (HMRED) Method

We suggest to solve the problem of intertrial variation, by
separating the voluntary movement and perturbed movement
in frequency, and extracting the perturbed movements from
each experimental trial by high-pass filtering. The procedure
is as follows:

Steps 1–4 are the same as those in EMRED.
5) High-pass filter each trial

(16)

(17)

where

(18)

is an acausal high-pass filter, is the joint angle mea-
surement given by (3).
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Fig. 1. Block diagram of the identification procedure of the HMRED
method.

6) Align high-pass filtered position and torque data accord-
ing to the recorded amount of shift in time in Step 2 using
the low-pass filtered data. Fig. 1 shows the above procedure
graphically.

7) Use the method outlined in Section II-B to identify the
parameters.

E. Effect of High-Pass Filtering

The effect of high-pass filtering is analyzed by examining
if the following expression is approximately equal to zero and
using (3) and (16)–(18) for the derivations

(19)

In the second step, the first three terms are equal to zero indi-
vidually because the voluntary movements are low-frequency.
The fourth term is equal to zero because of (2). The last step
uses the same assumption as Section II-B that the parameters

and are approximately constant in the range
of the filter response time.

Using the low-pass filter to facilitate the identification with-
out the derivative variables in Section II-B and the high-pass

filter to remove the voluntary movement in the measurements
implies applying the bandpass filter to the measurements.
High-pass filter (18) translates a high-pass operation into low-
pass operation. An acausal low-pass filter is preferred to avoid
phase shift. The same type of the low-pass filter but different
cutoff frequency for the low-pass and high-pass filters is used
in the simulation and experiments. It is apparent that the low-
pass filter cutoff frequency in Section II-B must be higher
than the high-pass filter cutoff frequency or the low-pass filter
cutoff frequency in (18) in order to have sufficient signal
power left over in the processed data. Furthermore, if the
low-pass filter cutoff frequency in (19) is sufficiently high
to have the approximate equality valid (19), the low-pass
filter cutoff frequency in Section II-B would be sufficient.
For the simulation and experiments, the low-pass filter cutoff
frequency is 10 Hz higher than the high-pass filter cutoff
frequency even though simulation tests show that sometimes
5 Hz is sufficient to give the same result in terms of the
variation of the parameter estimates versus the frequency. The
higher the low-pass filter cutoff frequency the stronger the
effect of the high-frequency noise. The 10-Hz low-pass filter
cutoff frequency is determined based on the simulation results
using the similar conditions in our experiments. The high-pass
filter cutoff frequency is determined experimentally in both
simulation and experiments.

The analysis does not indicate any requirement on the filter
type. We have tried different filter types (Butterworth and
Chebyshev) to both simulation and experimental data, and
found that the filter type does not affect the parameter estimates
as long as the filter is well or critically dampened. If the filter
is under-dampened, the parameter estimates become noisy. In
our simulation and experiments, the Butterworth filter is used.

III. SIMULATION

In this section, we examine the performance of the EMRED,
HMRED, and exponentially weighted least squares (EWLS)
methods [20] in a set of simulated conditions similar to
those in the experiments. EWLS is a single trial method and
therefore has no intertrial variation problem. We will compare
its performance and experimental results in the next section to
those of EMRED and HMRED. We would also like to find the
application boundary for the HMRED method for experimental
design.

For the EMRED and HMRED methods, each uses about 400
trials. Under noise free condition, three trials are sufficient to
identify the parameters. More trials improve the sensitivity of
both methods to the high-frequency noise. However, over 200
trials, the rate of the improvement becomes slow for the given
maximum noise level used in the simulation.

The simulation model is similar to (2) with addition of the
voluntary input

(20)

In the simulation, is assumed to be constant; and
are assumed to be sinusoidally time-varying with the

same frequency. For example, for

(21)
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Fig. 2. Block diagram of the simulation procedure for identification of the
time-varying elbow joint dynamics in posture and movement.

TABLE I
NOMINAL MODEL PARAMETERS USED IN THE SIMULATION

where is the mean value, is the variation amplitude,
and is the frequency. The damping ratio is kept constant
at 0.6. The mean and variation of the parameters are given
in Table I. The voluntary movement is assumed to have a
sinusoidal equilibrium trajectory

(22)

The simulation procedure is shown in Fig. 2. Pseudorandom
binary perturbation prefiltered by a low-pass filter with a cutoff
frequency at 150 Hz, which mimics the D/A converter, is
used for . The root-mean-square value of the perturbation
is 4 Nm, which is less than 10% of the voluntary input. The
joint angle measurement is given in (3). We assume 5%
noise on the torque measurement and 1% noise on the angular
position measurement in terms of the standard deviation of
the amplitude. These values are consistent with the accuracy
of our airjet system described in Section IV-A.

For the HMRED method, the high-pass filter cutoff fre-
quency for (16) and (17) is 5 Hz, determined from Fig. 5; the
low-pass filter cutoff frequency for (6) is 15 Hz; and the low-
pass filter cutoff frequency for the step one in Section II-C
is equal to the voluntary movement frequency (22). The filter
type is Butterworth.

We evaluate the estimation by using variance-accounted-for
of the mean (VAFM) and of the variance (VAFV) of output
prediction and parameter estimates, which are defined as

(23)

(24)

where is the mean of over is ,
and is

Both VAFM and VAFV will be meaningless if their de-
nominators are close to zero. For example, the inertia in the
following simulation is assumed to be constant, . We

(a)

(b)

(c)

Fig. 3. Simulation: VAFV of HMRED, EMRED, and EWLS versus the
frequency of the parameter variation with no intertrial variation.

suggest that when the denominator is less than one, we set it to
one. When a signal is zero mean, (24) is the same as the VAF
definition in [12]. We require both VAFM and VAFV over
75% [3], [12], for which the relative prediction error variance
is less than one third.

Fig. 3 compares the frequency responses of VAFV of the
estimated stiffness versus parameter variation frequency with-
out any intertrial variations for HMRED, EMRED and EWLS.
The high-pass filter cutoff frequency in HMRED is equal to
the movement frequency plus two. The VAFV of the stiffness
estimate for HMRED decreases below 75% after 5 Hz, while
that for EMRED is below 70% after 7 Hz. Compared to EWLS
whose VAFV is below 70% after 0.5 Hz, HMRED improves
the frequency of the parameter tracking performance by ten
times. The VAFV’s of the inertia and damping estimates and
the VAFM’s of all three parameters (not shown) also vary with
the frequency of the parameter variation, but much less than
that of the stiffness estimate. In the tested frequency range the
VAFV of the output prediction is always above 95% for all
methods.

Fig. 4 shows the effect of intertrial variation to the stiffness
estimation and output prediction for HMRED and EMRED.
The other parameters are affected less, and are not shown
here. In the simulation the voluntary movement frequency
is perturbed by a zero mean, normal distribution intertrial
variation. The standard deviation is the measure of the strength
of intertrial variation. The voluntary movement frequency is 2
Hz and the cutoff frequency of the high-pass filter for HMRED
is 5 Hz.

• The VAFM of the stiffness estimate of EMRED decreases
below 70% after the standard deviation of the intertrial
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(a)

(b)

(c)

Fig. 4. Simulation: VAFM and VAFV of the stiffness estimates, and VAFV
of the output prediction of EMRED and HMRED versus standard deviation
of intertrial variation.

variation (SDITV) is over 0.013 while that of HMRED
stays at 100%. Even at 0.02 of the SDITV, the VAFM
of the stiffness estimate from HMRED is still close to
100%, which indicates the robustness of HMRED to the
intertrial variation.

• The VAFV’s of the stiffness estimates and output predic-
tion of both EMRED and HMRED decrease with intertrial
variation. However the VAFV of the HMRED stiffness
decreases slower than that of EMRED.

• Even though not shown here, the VAFM of the damping
estimate of EMRED also decreases with the SDITV
while that of HMRED stays close to 100%. The VAFM
and VAFV of the inertia estimate for both EMRED and
HMRED do not vary with the SDITV, and are close to
100%.

Fig. 5 shows the VAFM and VAFV of the parameter es-
timates from the HMRED versus the high-pass filter cutoff
frequency. In the simulation the parameter variation frequency
is 2 Hz and the standard deviation of intertrial variation is 0.01.
The VAFM and VAFV of the damping and stiffness estimates
as well as the output prediction show that between 4 and 6 Hz,
the VAFM and VAFV are above 95%. Over 6 Hz, both VAFM
of the damping estimate and VAFV of the stiffness estimate
start decreasing. The inertia is not affected.

From the simulation we can conclude that under the con-
ditions: 1) no derivative measurements, 2) the output noise
is less than 5% and input noise less than 1%, and 3) small

(a)

(b)

(c)

(d)

Fig. 5. Simulation: VAFM and VAFV of HMRED versus the high-pass filter
cutoff frequency.

force perturbation, less than 10% of the voluntary input, the
HMRED method can track the parameter variation up to 5 Hz.
It is less sensitive to intertrial variation than EMRED.

IV. EXPERIMENTAL METHODS

The results of the simulation guide the experimental de-
sign for study of the human elbow joint dynamics during
movement.

A. Apparatus

The airjet system [21] consists of three parts: an airjet
actuator, a motion tracking device (Optotrak, Northern Digital
Inc., Waterloo, Ont, Canada), and a VME Bus-based data
acquisition system. Fig. 6 shows how the airjet actuator is
attached to a subject’s wrist. The airjet force is sensed by
a strain gauge force sensor which has noise less than 5%
[21]. The airjet actuator is currently a 1-D perturbation device,
capable of producing forces from the reaction force of
compressed air and of switching the force up to 80 Hz, based
on the Coanda effect. In the experiment the airjet actuator
was controlled to produce a pseudorandom binary sequence
(PRBS) through a digital-to-analog converter (DAC) channel
at a 100-Hz sampling frequency. The force signal was col-
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Fig. 6. The airjet actuator attached to a subject’s wrist.

lected at 1 kHz. The Optotrak uses three LCD cameras to track
infrared light-emitting diodes (IRED) and produces three-
dimensional position data of the IRED’s with an accuracy of
0.1 mm. One IRED was used in the experiments and glued
to the subject’s wrist area. The Optotrak was sampled at 0.5
kHz and resampled digitally to 1 kHz later to match the force
sampling frequency.

B. Subjects

Four right-handed subjects (one of them is female) with no
history of neuromuscular disease, ranging in age from 22 to
32 yr, were examined. The subject sat in a chair and rested
the left elbow on a piece of clay on the bench. The elbow
length was estimated by using both caliber measurement and
the Optotrak; results agreed within 2%. The forearm was free
to move in a vertical plane passing through the upper arm. The
subject’s palm was turned 90away from his shoulder. The
wrist was immobilized through a custom fitted plastic cuff on
which the airjet actuator is strapped.

A physical moving target is presented to the subject at the
wrist area. The target moves around a center point aligned with
the elbow joint center. The trajectory of the target is sinusoidal,

28 about the vertical line. Three different frequencies were
used: 0.25, 0.5, and 1 Hz. The target does not touch the
subject’s wrist. The task was not difficult for the subject
when the cyclic movement is less than 2 Hz. When the target
motion is 2 Hz or more, some subjects could not follow the
target. Subjects were instructed to use the effort that they felt
comfortable with throughout the experiments that typically
took about 1.5 h.

Each frequency is repeated 15 times. There is 1–2 min
rest period between each repetition. Between two difference
frequencies, there is 4-min rest period.

C. Data Analysis

As in the simulation, for the HMRED method, the high-
pass filter cutoff frequency is determined by examining the
parameter estimate versus the cutoff frequency (see below).
The low-pass filter for (6) is 10 Hz higher than the high-
pass filter cutoff frequency. Varying the low-pass filter cutoff
frequency by 50% (maximum) changed the parameter estimate

(a)

(b)

(c)

(d)

Fig. 7. Experiment: (a) joint angle, (b) perturbation torque, (c) high-pass
filtered joint angle, and (d) high-pass filtered perturbation torque records from
a 0.5-Hz experiment (Subject PZ).

by less than 5% VAF. The low-pass filter cutoff frequency for
step one in Section II-C is equal to the voluntary movement
frequency.

Fig. 7(a) and (b) shows typical force and position records
from one experiment (0.5-Hz voluntary movement). We define
one trial in one experiment as a complete cyclic movement.
In Fig. 7 there are 45 trials (only 20 trials are shown for
presentation clarity). Fig. 7(c) and (d) shows the high-pass
filtered data from the same experiment. The cutoff frequency
was 2 Hz. The low-frequency voluntary movement is clearly
removed from the position record. The perturbed joint move-
ment is about 5% of the voluntary movements. Fig. 8 shows
the ensemble-aligned joint angle data, based on the method
outlined in Section II-D. The variation across trials is due to
the perturbation and intertrial variation, but the aligned trials
are very similar. To reduce the noise effect we used at least
400 trials from several experiments for each case.

The cutoff frequency of the high-pass filter in HMRED
must be chosen properly in order to obtain accurate results.
In the simulation, at certain values of the high-pass filter
cutoff frequency, there is a clear corner in the plot of the
mean and standard deviation of the stiffness versus the cutoff
frequency (Fig. 5). With the experimental data, we must
determine a suitable high-pass cutoff frequency for each
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Fig. 8. Experiment: waterfall plots of the aligned angle movements from a
0.5-Hz experiment (Subject PZ).

(a)

(b)

Fig. 9. Experiment: mean and standard deviation of the estimated inertia
and stiffness versus the high-pass filter cutoff frequency (Subject DHA). The
standard deviation is calculated after the data has been high-pass filtered at
the voluntary movement frequency.

voluntary movement frequency. Fig. 9 shows the mean and
standard deviation of the inertia and stiffness versus the
high-pass filter cutoff frequency for the 0.5-Hz voluntary
movements. Below 3 Hz, the mean values of the estimated
inertia and stiffness increase with the high-pass filter cutoff
frequency, which must be due to the effect of the intertrial
variation. The mean values have the corner frequency at 3 Hz.
From 3 to 4 Hz there is a large increase of the standard
deviation of the stiffness. Therefore, 3 Hz should be the high-
pass filter cutoff frequency. We made one plot similar to Fig. 9
for each voluntary movement for each subject to determine
the cutoff frequency accordingly.

V. EXPERIMENTAL RESULTS

We tested three movement speeds: 0.25, 0.5 Hz, and 1 Hz.
The results are summarized below.

A. 0.25-Hz Voluntary Movement

Fig. 10 shows typical results of the stiffness estimate, VAFV
and voluntary movement trajectory from the 0.25 voluntary

(a)

(b)

(c)

Fig. 10. Experiment: comparison of the EWLS and HMRED methods (Sub-
ject DHA).

movement experiment. At such a low-frequency, EWLS works
as well [19], and its results are shown to agree well with
HMRED. Furthermore, both methods have the VAFV of the
output prediction over 75%.

The mean value of the estimated inertia, damping, stiffness
and damping ratio are similar to those from the postural
experiments [19] (only the stiffness is shown in Fig. 10). The
estimated inertia does not vary which is expected. The mean
value of the damping ratio is low: 0.3, and the stiffness shows
a low-frequency variation with a mean of 25 Nm/rad which is
close to or slightly higher than that from the minimum effort
posture [19]. By visual inspection, there is no clear correlation
between the stiffness and movement variations. The computed
cross correlation coefficient is below 0.4.

B. 0.5-Hz Voluntary Movement

Fig. 11 shows the results from the 0.5-Hz voluntary move-
ment experiments. The VAFV of the output prediction is
approximately 80%. Fig. 11 shows the data from two subjects.

• The inertia for each is approximately constant with time,
but differs across subjects (not shown).

• The stiffness and damping vary with time, do not vary
consistently across subjects, and show no correlation with
the voluntary movement (the computed correlation coef-
ficients are below 0.5). The mean value of the stiffness
is similar to those from our previous experiments with
the minimum effort posture while the mean value of the
damping is similar to those from our previous experiments
with the medium effort posture [19].
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(a)

(b)

(c)

(d)

(e)

Fig. 11. Experiment: results from two subjects for 0.5-Hz voluntary move-
ment.

• The mean values of the damping ratio for subjects PZ
and YXU are around 0.7. In general the mean values
for all subjects are higher than those from our previous
experiments [19]. However, the damping ratios have
considerable variation (Fig. 11).

C. 1-Hz Voluntary Movement

Fig. 12 shows the results from the 1-Hz voluntary move-
ment experiments. The VAFV of the output prediction is above
75%.

• Similar to the experiments with 0.5-Hz voluntary move-
ment (Fig. 11), the inertia is constant and differs across
subjects. The mean value for each subject and the amount
of the difference across subjects are similar to those from
the experiments with 0.5-Hz voluntary movement.

• The stiffness, damping and damping ratio vary with time
and have a clear correlation with the voluntary movement.
The stiffness is higher at the two target points. The
mean value of the stiffness is doubled compared to that
from the 0.5-Hz voluntary movement experiments, and is

(a)

(b)

(c)

(d)

(e)

Fig. 12. Experiment: results from 1-Hz voluntary movement: (a) inertia, (b)
damping, and (c) stiffness.

two-thirds of that from the 0.25-Hz voluntary movement
experiments.

• The damping shows a pattern similar to the stiffness,
except that there is about a 0.1 s time lag. The mean
value of the damping is smaller than that in the previous
experiments with 0.25 and 0.5-Hz voluntary movement.
The damping ratio has a pattern similar to the damping,
and the mean value is around 0.3 which is similar to that
obtained in the postural experiments [19].

Except for the mean value, the time-varying pattern of the
stiffness and damping is consistent with that reported in [3].

VI. DISCUSSION

This paper demonstrates that the HMRED method is a
successful means to identify time-varying dynamics of the
human motor control system. This method has the following
four major advantages:

• it is robust to intertrial variation;
• it can handle reasonably fast time-varying dynamics;
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• few restrictions are placed on the input signal;
• the error due to the method itself can be characterized.

Under our experimental conditions (small force perturbation,
no derivative measurements, linear or linearized systems, and
existence of the unknown voluntary actions), the technique
estimates the time-varying parameters up to a frequency of
5 Hz. The method is robust to output noise, has been tested
extensively, and its limitations have been explored.

In identifying time-varying dynamics in movement, we have
shown that previous ensemble-based methods are sensitive to
intertrial variation. We showed the effect of intertrial variation
is worse than that of the measurement noise. The major effect
of intertrial variation is to lower the stiffness mean value.

The primary objective of the experimental study was to
establish the viability of the HMRED method. Nevertheless,
the results are of considerable physiological interest.

• The time-invariant inertia estimate for each subject vali-
dates our linearization assumption.

• The mean values of stiffness, damping and damping ratio
decrease from 0.25–0.5 Hz, then increase from 0.5–1 Hz.
Considering the results from posture and slow movements
(0.125 Hz) in our previous study using the EWLS method
[19], the stiffness of the elbow joint seems to decrease
from the posture to slow movement and then to increase.

• With 1-Hz movement, there is a consistent pattern of
the stiffness and damping variation across subjects. The
stiffness is higher at the target points, which is consistent
with [3]. At lower frequencies no patterns can be seen.

• The stiffness mean values from our movement experi-
ments are within the range of the stiffness mean values
from the minimum and maximum effort posture experi-
ments [19].

• The damping ratio from 0.5-Hz movement is considerably
higher than that reported before from posture and move-
ment under different conditions. This is the first time that
we observe that the damping ratio reaches the critically
damped point.

Except for the mean values, our findings are largely con-
sistent with and extend those reported before. Lanman [10]
reported a decrease in the stiffness with speed of movement
based on fixed sinusoidal perturbation tests. Judging from
his figures, the maximum speed was 10/s or 0.174 rad/s.
The voluntary movement frequency, maximum speed, and the
mean stiffness from our movement experiments (Figs. 10–12)
with a movement amplitude of 0.5 rad are listed in Table II.
Our lowest speed is higher than his highest one. We actually
demonstrate that the stiffness decreases further with speed.

At the 1-Hz voluntary movement, the time-varying patterns
of the stiffness, damping and damping ratio are consistent with
those reported by Bennettet al. [3]. The same airjet was used in
their experiments, and the voluntary movements were cyclic at
0.5 and 0.67 Hz. They found that 1) the stiffness was higher at
the target limit points and 2) the mean of the stiffness increases
with the movement speed. In our experiments we observe that
the stiffness is higher at the target points only at the 1-Hz
voluntary movements, not at the 0.5-Hz voluntary movements,
and the stiffness increases with the speed. However, at the 0.5-

TABLE II
EXPERIMENT: LIST OF THE MOVEMENT SPEED AND THE MEAN STIFFNESS

Hz voluntary movements, the stiffness mean value is twice as
high as theirs. We think that their low stiffness mean value
may be due to intertrial variation. More recently, Bennett [2]
used the imposed constant position errors on the human elbow
joint during voluntary movement to extract the dynamics. He
found that the stiffness increased with the speed in the range
of the maximum speed: 1–6 rad/s. However, the maximum
stiffness from his experiment is below 15 Nm/rad.

Regarding to the current movement theory, the stiffness
increase with the speed in the speed range of 0.5- to 1-Hz
voluntary movement seems to support the speed scaling law
[1]. However, the speed scaling law requires the stiffness to be
proportional to the squared ratio of the speeds. From the 0.5-
to 1-Hz movement, the speed is doubled, and the stiffness is
also doubled, not four times. Therefore, our results here only
partially support the speed scaling law. Flash [4] showed in her
simulation that in order to fit the hand trajectory well during
normal movements, the joint stiffnesses must be equal to or
higher than those in posture. Our result from 1-Hz movement
seems consistent with her simulation.

The validity of our results is supported by the simulation
study, good agreement between the HMRED and EWLS
methods, and the experimental control such that the conditions
of the methods are met. The stiffness and damping variation
from our movement experiments are not unexpected. It should
be clear that no method will work for all conditions. What
is important is that the limitations or conditions of a method
be clearly identified and the experiment be controlled to meet
the conditions.

Recently, researchers [8], [14], [22] have showed exper-
imentally that the random position perturbation decreased
the reflex response and the reflex gain in general is much
smaller than intrinsic gain. However, the pulse position inputs
can elicit very large reflex responses which indicates the
reflex is position perturbation dependent. Our airjet actuator
produces random force perturbations. Compared to the position
perturbation, the force perturbation of about cannot cause
the muscle into the saturation state and has far less possibilities
to alter the intrinsic and reflex response of the joint [18]. The
effect of the perturbation on the identification of the joint
mechanical properties needs to be further researched on.
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