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ABSTRACT

A network-based real-time control architecture has been de-
veloped which integrates a haptic interface (the Sarcos Dextrous
Arm Master) with an advanced CAD modeling system (Utah’s
Alpha_1). New algorithms have been developed and tested for
surface proximity testing, fast updates to local closest point on
a surface, and smooth transitions between surfaces. The com-
bination of these new algorithms with the haptic interface and
CAD modeling system permits a user to actively touch and ma-
nipulate virtual parts as well as passively view them on a CRT
screen.

INTRODUCTION

The goal of this project is to add a sense of contact
and manipulation to the design process of mechanical as-
semblies (Hollerbach et al., 1996). There are two challenges
to meeting this goal. First, mechanical CAD sytems are
not designed for real-time interaction with haptic interfaces
or for incorporating physics. Second, haptic interfaces have
not been used to operate on complex environments or on
curved surfaces, both of which are typical in virtual pro-
totyping of mechanical assemblies. Figure 1 shows the el-
ements of the system currently under construction to add
these capabilities.

The centerpiece of the virtual world is the Alpha_1 CAD
system (Riesenfeld, 1989) running on a SGI graphics work-
station (Figure 2). Alpha_1 is a research modeling package
for designing NURBS models of mechanical assemblies and
has extensive manufacturing capabilities. NURBS have the
advantage of compact representation, higher order conti-
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nuity, and exact computation of surface normals (Snyder,
1995).

The haptic interface is the Sarcos Dextrous Arm Mas-
ter, an advanced hydraulic force-reflecting exoskeleton (Ja-
cobsen et al., 1990). An operator wielding the master gener-
ates position commands that are passed to both the haptic
controller and the CAD system. The haptic controller uses
this data to generate restoring forces and contact responses.

A wvirtual arm within the CAD system shadows the
movements of the master arm. This virtual arm is used to
determine what surfaces are needed within the haptic envi-
ronment as well as aid in computation of collision detection
and assembly physics. The CAD system also handles the
display of the assembly and the virtual arm.

A key 1issue is the communication between the graphics

Copyright ©) 1997 by ASME



workstation on which the CAD model resides, and the mi-
croprocessors which control the master (Figure 2). Because
of delays due to operating system limitations and Ethernet
connection, it is not possible to servo directly off the CAD
model. A collection of surfaces deemed to be proximal to
the arm’s end-effector are cached within the controller. All
haptic rendering computations take place directly on the
surfaces within this local environment (Thompson et al.,
1997).

This paper presents how we have approached the issues
of surface proximity, tracking, contact, and tracing as well
as communications and haptic rendering. In this ongoing
project, to date we have developed and implemented haptic
surface tracing under point contact, for NURBS surfaces
derived from Alpha_1 geometric models.

SGl
workstation MC 68040
VxWorks

Ethernet VME bus

Figure 2. Real-time architecture.

BACKGROUND

In order to generate the forces necessary for realistic
force feedback, a surface representation must allow rapid
calculation of arm penetration depth and the correspond-
ing surface normal. The penetration depth of the end effec-
tor into the surface is used to calculate the strength of the
restoring force.

The normal of the surface above the end effector is used
to give the direction of the restoring force. The penetra-
tion depth and appropriate normal can be determined by
finding the closest point on the surface representation to
the end effector, although other approximations could be
used. In order to maintain the stiffness of the virtual sur-
face, the force servo loop must calculate this information
and response forces at several hundred Hz (Minksy et al.,
1990).

Current haptic rendering systems tend to use interme-
diate representations when trying to render sculptured sur-
faces in order to maintain force servo loop rates. Adachi et
al. (1995) and Mark et al. (1996) advocate the use of rel-
atively slowly moving planar approximations when trying
to represent sculptured surfaces, since contact and pene-

tration can be quickly computed with planes. Salisbury et
al. (1995) employed a polygonal representation with surface
normal interpolation. However, planar representations are
fundamentally limited when trying to approximate surfaces
with high curvature (Mark et al., 1996). In addition, any
intermediate representation must carefully deal with issues
of accuracy of representation of the original surface.

The closest point on a surface S to a point E can be
solved as in (Mortenson, 1985), by finding the roots of

(S—E)x(?—ixg—f):o. (1)

Tterative Newton methods (Plass and Stone, 1983) can be
used to solve for the roots of Eq. 1. The closest point 1s
the nearest root of Eq. 1. However, the system may involve
high degree polynomials, making the solution numerically
difficult.

The CAD community has methods of tracking points
on surfaces during intersection operations (Hoschek and
Lasser, 1993). Many of these methods find the Euclidean
closest point directly, requiring surface-plane intersections
to be computed. These methods are too slow for haptic en-
vironments. Barnhill and Kersey (1990) developed a para-
metric marching algorithm for closest point tracking that
minimizes error to a first order surface approximation. Sny-
der (1995) uses Newton iteration to improve an approxima-
tion to the closest point between two surfaces during col-
lision detection, as does Baraff (1990). Lin and Manocha
(1995) use a polyhedral first pass along with a global closest
point solver to initiate closest point tracking between two
surfaces and local methods for fast updates.

Current numerical methods may take several iterations,
and thus several surface evaluations to converge. In addi-
tion, they are sensitive to the parameterization of the sur-
face.

SURFACE INTERACTIONS

A key issue 1s that, because of network and workstation
latencies, it is not possible for the master to servo directly
off of the CAGD models on the workstation. Instead, we
need a surface representation which can be efficiently com-
municated to and stored on the micros, and for which the
micros can determine end effector penetration and restoring
force direction during a collision.

To avoid the difficulties associated with intermediate
representations, we servo off of the parametric representa-
tion directly, and use a novel tracing method (Thompson et
al., 1997) to find the approximate closest point on the sur-
face and its associated normal. As a basis for comparision,
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we also implement an intermediate representation that con-
sists of a set of surface points and their associated normals.
Both methods share a similar computation cycle as follows.

1. The workstation receives periodic updates about master
position from the micros over the network. The work-
station performs a general point-to-surface calculation
to isolate the closest surface portions. A surface patch is
extracted and sent over the network to be cached with
the micros as necessary (so the virtual slave position
doesn’t go off the edge of the local representation).

2. The micros perform collision detection on the surface
patches, and calculate forces for reflection back to the
master.

Next we provide details on surface proximity testing, patch
extraction, the local geometry representation, and collision
detection.

Surface Proximity Testing

For each method, representations of geometry near the
master’s location are periodically sent from the workstation
to the micro. The workstation must determine when sur-
faces are in near enough proximity to the master’s location
to be sent to the micro, and what portion of the model must
be sent.

As a rough check for surface proximity, we use bound-
ing boxes around each surface (Johnson and Cohen, 1997).
Distance from a point to a bounding box is a trivial com-
putation, and we can quickly discard the majority of the
surfaces in the environment.

For the remaining surfaces, we use a method we refer
to as “nodal mapping” (Snyder, 1995) to find a first order
approximation to the closest point on the surface. First, we
project the end effector point onto the control mesh of the
NURBS surface. Each vertex of the control polygon has an
associated (u,v) parametric value (Cohen and Schumaker,
1985), so by interpolating between vertex values using the
barycentric coordinates of the projection, we determine an
approximate (u, v) for the projected point.

Parametric Tracking

When a surface becomes active, the micros use the
parametric value of the approximate closest point, found
through nodal mapping, to initialize a local closest point
tracking method. This tracking method works directly on a
parametric surface and runs at several hundred HZ on the
68040 microprocessors, making it suitable for direct haptic
rendering of a surface (Thompson et al., 1997).

We present the local closest point tracking method on
a parametric curve, vy(u), for simplicity. The closest point
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Figure 3. (a) Initial state. (b) End-effector moves. (c) Projection of position

onto surface tangent plane. (d) New surface point and tangent plane found
via parametric projection.

method uses the previous point on the curve y(u), the tan-
gent vector at y(u), ¥'(u), and the current end-effector lo-
cation, F, to determine a new approximate closest point on
the curve (Figure 3).

The parametric velocity, ¥ (u), relates changes in posi-
tion along the curve in Euclidean space to changes in posi-
tion in parametric space (Eq. 2).

dy Ay
/ = ) c

We can approximate A~ as the projection of the move-
ment vector onto the curve tangent at v(u) (Figure 3c).
The curve parametric velocity over the range of movement
is found using a first order approximation, the value 4/ (u).
The value of Au can now be found.

The velocity can be efficiently found using only the val-
ues of the control mesh, the curve knot vector, and the curve
order. This efficient method applies for points on the curve
where there are £ — 1 knots at index ¢* with the value u*.
Since k—1 knots were inserted at u* to create an evaluation
point, this condition holds for closest point tracking. The
resulting equation for 4/ (u) is
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(k—1)

——— (P41 — Bi). 3
i — gy ) (3)

Y (u”) =

and the equation for Au reduces to

Au & (¥, (Pirg1— Piv) ) [ Uin gk — Uie 1 (4)
[Pier1 — P2 k—1 '

For surfaces, the method is essentially the same, al-
though the projection step now requires projection onto the
tangent plane, S’(u,v), of the surface. Barycentric coordi-
nates are used to derive Au and Av. Our implementation
of the tracking method, when used to trace a single sur-
face, runs at 1400Hz on the Motorola 68040 processor that
is used in the haptic process.

Contact and Tracing

The haptic loop determines surface contact and result-
ing arm forces. Contact is initiated when the penetration
depth becomes larger than zero. The penetration depth is
calculated by projecting the arm location onto the surface
normal. During contact, the local closest point is updated
as during the tracking phase.

Point Set Intermediate Representation

The point set representation uses the approximate clos-
est point as a center point in a mesh of surface points eval-
uated at fixed parametric intervals (Figure 4). This surface
evaluation is efficiently done through multiple knot inser-
tions at the desired parametric locations using the Oslo
algorithm (Cohen et al., 1980). The surface normals can
also be extracted from the refined surface (Riesenfeld et al,
1981). These points and normals are used to represent the
local geometry in the micro.

With the point set representation, we first find the clos-
est point in the point set to the end effector. Penetration
depth is determined by projecting the end effector onto the
closest point’s normal. The point normal is used to deter-
mine the direction of the restoring force.

NETWORKING

Because the real-time interaction of the arm with the
virtual surface is critical, networking design and throughput
are very important. The general guidelines followed in the
project are:

e UDP is faster than TCP, and the associated packet loss
is acceptable for state update that occurs continuously.

Figure 4. A 7x7 point set superimposed over a NURBS surface.

e TCP is needed for guaranteed update of surfaces or
state changes that are sent only once.

e Surface updates are not always necessary.

e Parallelism of multiple processors in our environment
helps by having dedicated “network” processors.

In our implementation, it was found necessary to utilize
two microprocessor boards. One is responsible for all com-
munications, while the other implements the force reflection
loop. The two boards exchange information through shared
memory.

Microprocessor Real-Time Architecture

We employ the ControlShell (Real Time Innovations,
Inc., Sunnyvale, CA) object-oriented real-time software
package for controlling the Master and for network com-
munication. ControlShell runs on top of the VxWorks real-
time kernel and development environment (Wind Rivers,
Inc.) for the microprocessor system. Network communica-
tion has been implemented as ControlShell objects.

Point Set Networking

The ControlShell force loop needs an updated mesh
whenever the operator has moved the end effector to a new
location. To minimize the amount of slower TCP commu-
nication overloading the ethernet, regular broadcasts via
UDP of the position is sent by the networking processor at
one-tenth the rate of the “force control” processor. The SGI
workstation responds to a large change in position (approx-
imately 1 cm) by responding with a new mesh.

This asynchronous style of communication saves net-
work bandwidth, and uses shared memory to send a new
mesh quickly to the force loop. Although meshes are sent
on demand, the system is capable of transmitting meshes
at a 100 Hz rate, which is quite sufficient in maintaining a
closest mesh to the arm user’s hand.
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Parametric Surface Networking

The requirements of this version of the surface represen-
tation are similar to that of the point set version. However,
in that version a dense point was sent at high rates to the
controller. This made for an abundance of network traffic.
Making matters worse, no truly effective caching is possible
for two reasons. First, the data has no connectivity, so the
cache cannot determine when to use or flush cached points.
Second, the number of points needed to cover a region with
sufficient fidelity is so high that little space is left to store
any meaningful number of cached points.

In the parametric network version these limitations are
turned into strengths. First, the data represents an en-
tire continous region, so there is no need to worry about
overlap and ordering. Second, and perhaps most impor-
tantly, the representation is much more compact. With less
data needed to represent a large area of the workspace, the
real-time system can cache several patches and significantly
reduce the network traffic.

The SGI workstation receives regular position updates
from the real-time system via UDP packets. When a sur-
face patch is deemed close for the first time, the workstation
sends this surface patch to the real-time system’s dedicated
networking board via TCP/IP. If a patch has already been
cached on the micro, the workstation sends a small TCP/IP
packet to the micro notifying that that surface is now ac-
tive. Correspondingly, a deactivation packet is sent if the
workstation determines that a particular surface is no longer
in the focus. To avoid “thrashing” of active and deactive
states, a small buffer of 10 cm 1s used.

Shared memory update to the force control board is
somewhat complex as only one activate, deactivate, or sur-
face patch should be sent to this board at a time. Further-
more, 1t is vital that none of this data be ignored as both
sides of the system must remain in sync. The details re-
duce to the “Producers-Consumers” problem, making use
of mutual exclusion, “who’s turn” update, and the TCP/IP
buffer as the queue of requests.

DYNAMICAL INTERACTIONS

At the moment, our dynamics modeling is limited to
surface interaction. A key issue 1s the choice of a compliance
model or a stiffness model for the interaction of the Mas-
ter with a virtual assembly (Yoshikawa and Ueda, 1996).
We have chosen a stiffness model, where the user generates
positions against the virtual assembly and the simulation
returns forces. This approach is well suited for the Sar-
cos Master, which i1s a better force source than a position
source. The user displacements are incorporated into an
inverse dynamics computation. Geometric violations are
accomodated by restoring forces.

Surface Model

How one models a surface for contact and restoring
forces 1s apparently far from straightforward. Although
we began with the usual viscoelastic surface models, we
have subsequently adopted the nonlinear viscosity model of
(Marhefka and Orin, 1996) for energy conservation:

f=-(Az")z — k2" (5)

where f is the normal force, x the normal displacement, A
the viscosity coefficent, and k the stiffness. From experience
we find that n = 0.5 provides a good response. Further-
more, we have adopted the force impulse model of (Ellis
et al., 1996), which avoids active surfaces (energy gained
during collisions) due to lag introduced by discretization.

Stick-Slip Friction

Aside from normal forces, adding tangential forces due
to friction is properly required for realistic interactions. Sal-
cudean and Vlaar (Salcudean and Vlaar, 1994) presented a
stick-slip model, which employs a velocity threshold to de-
fine sticking but which only employs viscous friction during
slipping. We have modified their model by incorporating
both dynamic and static coefficients of friction in the model.
Assume the haptic interface is moving against a surface. In
the slip phase, the friction force f; is

v .
f; = pd||n||w if [|v]| > vmin (6)

where pg4 1s dynamic coefficient of friction, n is the normal
force, v is the tangential velocity of the haptic interface, and
Umin is a small threshold velocity. As soon as ||v]| becomes
smaller than v, , the stick phase begins.

Figure 5 shows the transition from the slip to stick
phase. Point a represents the transition point where the
velocity reaches a threshold of v,y;,. During this transition,
a virtual spring is formed whose stiffness k¢||n|| is propor-
tional to the normal force. It pulls the haptic interface
towards ¢ (stick center). The spring force at this moment
is:

kylInl| lla-c|| = pallnl| (7)

As long as the spring force is less than the static friction
limit ps||n||, the stick phase holds. In other words, hap-
tic interface is trapped in a sphere of radius ps/pql|a-c||
centered at c¢. ¢ 1s found by:

-_—a—-— ——
kg llvl|

palln|| v Bd vV
c=a— (8)
kg lln[] |[v]]
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Figure 5. Transition from slip to stick phase.

where v is the velocity just before transition. It can be easily
shown that the maximum stick radius is g, /k;. The harder
the contact materials of surface and haptic interface, the
bigger k¢. The slip phase begins when the haptic interface is
ws/ kg, or equally p1, /p14]|a-c|| away from c. We can imagine
that the virtual spring has a rupture limit of p;||n]|.

Master

The Sarcos Dextrous Arm Master is presently driven
by the Advanced Joint Controller (AJC), a proprietary
Sarcos system with cards that implement an analog con-
troller, analog-to-digital conversion of joint position and
torque sensing, digital-to-analog output to electrohydraulic
servovalve drivers, digitally writable gains, feedforward con-
trol, and communication with the VMEBus via a parallel
port. The Motorola 68040 microprocessors on the VME-
Bus interact with the AJC via the parallel port, and with
workstations over an ethernet connection.

Our own software modifications include new calibra-
tion and gravity compensation procedures, which are essen-
tial for proper functioning of the arm and for removing the
weight of the Master from the operator (Ma and Hollerbach,
1996).

RESULTS

We have successfully traced a variety of sculptured sur-
face models, including a bumpy surface, a cylinder, and a
goblet. The goblet in Figure 7 illustrates the capability of
the parametric tracing algorithm to trace complex multi-
surface models. The master position is represented by the
small sphere.

We compared the performance of the mesh-based ver-
sus parametric-based surface patch representation, with re-
spect to computational load, depth penetration and vari-

Figure 6. Sarcos Dextrous Arm Master.

Figure 7. A goblet is traced by the master (represented as a small sphere).

ance. The mesh networking board was more heavily loaded
due to the mesh updates, but was still able to keep up with
its force loop board at 333 Hz. The bottleneck for the para-
metric version was the force loop board, which attained
servo rates of 250 Hz for multiple surface tracking and on-
board penetration depth and force computation. Nearly
zero penetration is possible with very high surface response
gains, but those gains resulted in an untraceable surface due
to the large bounce and fact that the arm cannot achieve
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infinite stiffness.

The more accurate normals and surface points for the
parametric evaluation resulted in nicer depth penetration
characteristics as shown in Table 1. The tests were run

Sample Depth
Model | Method Points Max | Ave
Flat mesh 832 4.646 | 1.852
DPT 1450 2.246 | 0.837
Bumpy | mesh 699 6.256 | 1.515
DPT 2030 1.894 | 0.661
Cylinder | mesh 2541 | 13.653 | 1.787
DPT 694 2.033 | 0.629
Goblet DPT 1125 1.365 | 0.336

Table 1. Average and maximum penetration depth for mesh vs. direct para-
metric tracing of different models. Sample points is the number of distinct
contact evaluations and all depths are given in centimeters.

with identical proportional and derivative response gains.
A little more than a centimeter penetration occured on av-
erage during the surface tracing, on surfaces that roughly
filled the 1m? arm working volume. Note that the averages
for the parametric surface patch method were much lower.

DISCUSSION

This paper has presented an approach towards incorpo-
rating a haptic interface into a mechanical CAD system, in
order to provide the user with a sense of touch as well as of
sight. The interaction between haptic interface and CAD
system imposes stringent real-time requirements on colli-
sion detection and dynamical simulation to generate contact
forces and virtual objection motions.

Our approach involves caching surface patches of a full
geometric model, residing on a workstation, on a micropro-
cessor system, which must interact with the master at a high
rate. Communication between the micros and the worksta-
tion occur at a lower rate. From periodic master position
updates sent over the network from the micros, the work-
station extracts a surface patch to be transmitted to the
micro, or activates one of the patches already cached on the
micro.

Two surface patch representations were examined. It
was found that direct operation on a parametric surface

patch representation was feasible, and preferable to an inter-
mediate representation approach involving a mesh. Meth-
ods for real-time computation of proximity and contact uti-
lizing parametric surface patches were presented.

The first implementation has concentrated on surface
tracing tasks under point contact. We are presently working
on surface-to-surface interactions, such as a grasped object
interacting with another, and on adding relative motion be-
tween CAD objects, such as turning a crank or gear train.
Some specific components are

e Support for moving surfaces.

e Introduction of trimmed NURBS models as are com-
mon in mechanical design.

e Use of real-time surface-surface closest point and colli-
sion detection (Johnson and Cohen, 1997).

e Use of sound as additional feedback.

e Assembly data structures for verification and assembly
analysis.

o Wall models to represent surface properties.

e Immersive environments for design.
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