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Network Router

Internet Router

I data per day: at least I
Terabyte

I packet takes 8
nanoseconds to pass
through router

I few million packets per
second

What statistics can we keep on
data?
Want to detect anomalies for
security.
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Telephone Switch

Cell phones connect through
switches

I each message 1000 Bytes

I 500 Million calls / day

I 1 Terabyte per month

Search for characteristics for
dropped calls?
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Ad Auction

Serving Ads on web
Google, Yahoo!, Microsoft

I Yahoo.com viewed 77
trillion times

I 2 million / hour

I Each page serves ads;
which ones?

How to update ad delivery
model?
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Flight Logs on Tape

All airplane logs over Washington, DC

I About 500 - 1000 flights per day.

I 50 years, total about 9 million
flights

I Each flight has trajectory,
passenger count, control dialog

Stored on Tape. Can make 1 pass!
What statistics can be gathered?

CPU
statistics



Streaming Model

CPU

word 2 [n]

le
n
gt

h
m

memory

CPU makes ”one pass” on data

I Ordered set A = 〈a1, a2, . . . , am〉
I Each ai ∈ [n], size log n

I Compute f (A) or maintain f (Ai )
for Ai = 〈a1, a2, . . . , ai 〉.

I Space restricted to
S = O(poly(logm, log n)).

I Updates O(poly(S)) for each ai .
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Space:

I Ideally S = O(logm + log n)

I log n = size of 1 word

I logm = to store number of words

Updates:

I O(S2) or O(S3) can be too much!

I Ideally updates in O(S)
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Easy Example: Average

CPU

word 2 [n]

le
n
gt

h
m

memory

I Each ai a number in [n]

I f (Ai ) = average({a1, . . . , ai})

I Maintain: i and s =
∑i

j=1 ai .

I f (Ai ) = s/i

I Problem? s is bigger than a word!

I s is not bigger than (log s/ log n)
words (big int data structure)

I usually 2 or 3 words is fine
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Trick 1: Approximation
Return f̂ (A) instead of f (A) where

|f (A)− f̂ (A)| ≤ ε · f (A).

f̂ (A) is a (1 + ε)-approximation of f (A).

0 0 0 0

k = log(1/")

Example: Average

I (a) the count: i

I (b) top k = log(1/ε) + 1 bits of s: ŝ

I (c) number of bits in s

I Let f̂ (A) = ŝ/i
First bit has ≥ (1/2)f (A)
Second bit has ≤ (1/4)f (A)
jth bit has ≤ (1/2j)f (A)

∞∑
j=k+1

(1/2j)f (A) < (1/2k)f (A) < ε · f (A)

Where did I cheat?
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Trick 2: Randomization

Return f̂ (A) instead of f (A) where

Pr
[
|f (A)− f̂ (A)| > ε · f (A)

]
≤ δ.

f̂ (A) is a (1 + ε, δ)-approximation of f (A).

Can fix previous cheat using randomization and Morris Counter
(Morris 78, Flajolet 85)
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Decreasing Probability of Failure
Investment Company (IC) sends out 100× 2k emails:

I 2k−1 say Stock A will go up in next week
I 2k−1 say Stock A will go down in next week

After 1 week, 1/2 of email receivers got good advice.

Next week, IC sends letters 2k−1 letters, only to those who got
good advice.

I 2k−2 say Stock B will go up in next week.
I 2k−2 say Stock B will go down in next week.

After 2 weeks, 1/4 of all receivers have gotten good advice twice.

After k weeks 100 receivers got good advice

I IC now asks each for money to receive future stock tricks.
I Don’t actually do this!!!

If you are on IC’s original email list, with what probability will you
receive k good stock tips?

1− (1/2)k
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Markov Inequality

Let X be a random variable (RV).
Let a > 0 be a parameter.

Pr [|X | ≥ a] ≤ E[|X |]
a

.



Chebyshev’s Inequality

Let Y be a random variable.
Let b > 0 be a parameter.

Pr [|Y − E[Y ]| ≥ b] ≤ Var[|Y |]
b2

.



Chernoff Inequality

Let {X1,X2, . . . ,Xr} be independent random variables.
Let ∆i = max{Xi} −min{Xi}.
Let M =

∑r
i=1 Xi .

Let α > 0 be a parameter.

Pr

[
|M −

r∑
i=1

E[Xi ]| ≥ α
]
≤ 2 exp

( −2α2∑
i ∆2

i

)

Often: ∆ = maxi ∆i and E[Xi ] = 0 then:

Pr [|M| ≥ α] ≤ 2 exp

(−2α2

r∆2
i

)
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