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Outline
Sequential:

I External Memory / (I/O)-Efficient

I Streaming

Parallel:

I PRAM and BSP

I MapReduce

I GP-GPU

I Distributed Computing
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RAM Model

RAM model (Von Neumann
Architecture):

I CPU and Memory

I CPU Operations (+, −, ∗, . . .)
constant time

I Read, Write take constant
time.
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Today’s Reality

What your computer actually
looks like:

I 3+ layers of memory
hierarchy.

I Small number of CPUs.

Many variations!
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External Memory Model

D

P

M

block I/O

I N = size of problem
instance

I B = size of disk block

I M = number of items
that fits in Memory

I T = number of items in
output

I I/O = block move
between Memory and Disk

Advanced Data Structures
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Streaming Model

CPU

word 2 [n]
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CPU makes ”one pass” on data

I Ordered set A = 〈a1, a2, . . . , am〉
I Each ai ∈ [n], size log n

I Compute f (A) or maintain f (Ai )
for Ai = 〈a1, a2, . . . , ai 〉.

I Space restricted to
S = O(poly(logm, log n)).

I Updates O(poly(S)) for each ai .

Advanced Algorithms: Approximate, Randomized
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PRAM

Many (p) processors. Access
shared memory:

I EREW : Exclusive Read
Exclusive Write

I CREW : Concurrent Read
Exclusive Write

I CRCW : Concurrent Read
Concurrent Write

Simple model, but has
shortcomings...
...such as Synchronization.
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Bulk Synchronous Parallel

Each Processor has its own Memory
Parallelism Procedes in Rounds:

1. Compute: Each processor
computes on its own Data: wi .

2. Synchronize: Each processor sends
messages to others:
si = m × g × h.

3. Barrier: All processors wait until
others done.

Runtime: maxwi + max si
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Pro: Captures Parallelism and Synchronization
Con: Ignores Locality.
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MapReduce

Each Processor has full hard drive,
data items < key,value >.
Parallelism Procedes in Rounds:

I Map: assigns items to processor
by key.

I Reduce: processes all items using
value. Usually combines many
items with same key.

Repeat M+R a constant number of
times, often only one round.

I Optional post-processing step.

CPU

RAM

CPU

RAM

CPU

RAM

MAP

REDUCE

Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model

Advanced Algorithms
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General Purpose GPU

Massive parallelism on your desktop.
Uses Graphics Processing Unit.
Designed for efficient video rasterizing.
Each processor corresponds to pixel p

I depth buffer:
D(p) = mini ||x − wi ||

I color buffer: C (p) =
∑

i αiχi

I ...

X

wi

p

Pro: Fine grain, massive parallelism. Cheap.
Con: Somewhat restrictive model. Small memory.



Distributed Computing

Many small slow processors with data.
Communication very expensive.

I Report to base station

I Merge tree

I Unorganized (peer-to-peer)
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Themes

What are course goals?

I How to analyze algorithms in each model

I Taste of how to use each model

I When to use each model

Work Plan:
I 2-3 weeks each model.

I Background and Model.
I Example algorithms analysis in each model.
I Small assignment (total = 1/2 grade).

I Course Project (1/2 grade).
I Compare single problem in multiple models
I Solve challenging problem in one model
I Analyze challenging problem in one model

I Access to Amazon’s EC2. More in about 1 month.
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Class Survey
Q1: Algorithms Background

A What is the highest algorithms class you have taken?

B What was the hardest topic?

C Have you seen a randomized algorithm? (which one?)

D Have you seen an approximation algorithm? (which one?)

Q2: Programming Background

A Have you used C or C++?

B Have you used Matlab?

C What other languages have you coded in?

Q3: Class interest

A Are you registered?

B How certain are you to stay in the class? (choose one)
(a) Definitely staying in!
(b) Probably staying in.
(c) Deciding between this and another class.
(d) Just shopping around...



Data Group

Data Group Meeting
Thursdays @ 12-1pm in Graphics Annex

http://datagroup.cs.utah.edu/dbgroup.php

http://datagroup.cs.utah.edu/dbgroup.php

