
CS7960 L7.5 : Streaming | Reservoir Sampling

Streaming Algorithms

Stream : A = <a1,a2,...,am>
  ai in [n]  size log n
Compute f(A) in poly(log m, log n) space

-------------------------

Goal: randomly sample k elements from stream
O(k*log n + log m) space

-------------------------

Simpler question:  randomly sample one element 
from stream
O(log n + log m) space

O(log n) to store element S
O(log m) to keep count of how many seen so far 
C

???

wp k/i keep a_i in register, replace old S w/ 
a_i
[Vitter '85]

Analysis:  



What is probability a_m should be kept?  k/m 
-- good.  
What is probability a_{m-1} should be kept?  
    (k/(m-1)) * ( 1 - (k/m)(1/k) = (m-1)/m) ) 
= k/m  -- good.
      [kept]    [not replaced by a_m]
Inductively, ignoring a_{i+1} ... a_m
  what is probability a_i should be kept to 
that point?  k/i
  Assume a_{i+1} ... a_m kept with correct 
probability: total (m-i)/k * k/m = (m-i)/m
    a_i in S after processed wp k/i
    not replaced afterwards wp 1-(m-i)/m = i/m
    total (kept) * (not replaced) = (k/i) * 
(i/m) = k/m  -- good.

 
---------------------------

(eps,delta)-Approximate Counts:  

Consider Interval I subset [n]
  count(I) = |{ a_i in A | a_i in I}|

Goal:  Data structure S s.t. for query 
interval
   Pr[ | S(I) - count(I) | > eps * m ] < delta

++++++++++++++++++++++++++++
Chernoff Inequality



Let {X_1, X_2, ..., X_r} be independent RVs 
Let Delta_i =  max(X_i) - min(X_i)
Let M = sum_i X_i

Pr[ | M - sum_i E[X_i] | > r * alpha ] < 2 
exp(- 2 alpha^2 / sum_i (Delta_i)^2)

often:  Delta = max_i Delta_i   and  E[X_i] = 
0  then:
Pr[ |M| > r * alpha ] < 2 exp(- 2 alpha^2/ r 
Delta^2)
++++++++++++++++++++++++++++

Let S be a random sample of size k = O((1/
eps^2) log (1/delta))
S(I) = | {S cap I} | * (m/k)

Each s_i in I wp (count(I)/m)
  ->  RV  Y_i = {1 if s_i in I, 0 if s_i !in 
I}
          E[Y_i] = count(I)/m
  ->  RV  X_i = (Y_i - count(I)/m)/k
          E[X_i] = 0
          Delta < 1/k
M = sum_i X_i  == error on count estimate by S

Pr[ |M| > eps ] < 2 exp(- 2 eps^2 / (k *(1/
k^2) ) < delta

Solve for k in eps,delta:
                  2 exp(- 2 eps^2 k) < delta



                  exp(2 eps^2 k) > 2/delta
                  2 eps^2 k > ln(2/delta)
                  k > (1/2) (1/eps^2) ln (2/
delta)
                    = O((1/eps^2) log (1/
delta)


