
CS7960 L6 : I/O-Cache Oblivious + Parallel

Disk <---I/O---> RAM <--> CPU
N = size of problem
B = block size
M = size of memory
T = size of output
I/O = block move between disk + memory

Sorting N items:
 Theta((N/B) log_{M/B} (N/B)) << N log_2 N

Cache-Oblivious Algorithms

[Frigo, Leiserson, Prokop, Ramachandran '99]

 - design algorithms with good I/O efficiency
without knowledge of M, B
 - sometimes don't know M,B
 - portable. Same code to different systems
 - holds for all levels of hierarchy
simultaneously
 - does not work as well in practice.

Modeling assumptions
 * Ideal Cache : cache always flushes the
block that will be used furthest in future
 - LRU performs within constant factor

 * Full Associativity : any block can go
anywhere in cache (not always true - maybe 8
places)
 - can be gotten around using hashing, in
expectation, with constant overhead
 * Tall Cache : M > B^2 (usually M > B^{1+a}
for a > 0 constant ok).

Scanning:
 [N/B + 1] I/Os
 - store elements in consecutive blocks of
memory.
 ... | XXX [X | XXXX | XXXX | XXXX | XX] XX
| ...
 - Extra 1 because may not hit boundary
exactly.

Array reversal?
 [N/B + 1] I/Os (two scans from opposite
ends)

Divide and Conquer:
Divide into subproblems until size is <M (and
Theta(M)) or <B (and Theta(B))

Median Finding:
 (A) Split D into N/5 sets of size 5
(adjacent)

 (B) Find median of each set -> M
 (C) Recursively compute median of M -> m
 (D) Split D into L (l \in L < m) and R (r
\in R >= m)
 (E) Recur on L or R.

A : free
B : 2 scans | first on D, second records
median to M
C : recursive call of size N/5
D : 3 scans | first on D, second and third
records L and R
E : recursive call of size N(7/10)

T(N) = O(N/B + 1) + T(N/5) + T(7N/10) = O(N/B
+ 1)

Binary Search:
 Theta(log N - log B)
 - recall if we know M,B then Theta(log N/log
B) = Theta(log_B N)

Merge Sort:
 O((N/B) log_2 (N/B))
 - recall if we know M,B then Theta((N/B)
log_{M/B} (N/B))

 - same can be achieved with variation of
Quick Sort == Distribution Sort

 or with "Funnel Sort" -- similar to merge
sort but split N^{1/3} pieces
 and merge N^{1/3}
way with a "funnel"

Parallel External Memory

P1 - [M] | | [D]
P2 - [M] |I| [I]
P3 - [M] |/| [S]
... |O| [K]
Pp - [M] | | []

 - P CPUs.
 - each CPU has private cache of size M
 - block of size B
 - P block transfers == 1 I/O (one for each
CPU)
 - Block level CREW

Scanning
scan_P(N) = O(N/PB + log P) parallel I/Os
 if P <= N/(B log N) --> scan_P(N) = O(N/BP)

Sorting

sort_P(N) = O((N/PB) log_{M/B} (N/B))
parallel I/Os
 if P <= N/B^2

Parallel Disk Model (PDM) for External Memory

 | | - d1
 |I| - d2
P - [M] - |/| - d3
 |O|
 | | - dD

M << N, 1 <= DB <= M/2 (often M^2)

Assume transfers are synchronous, although
faster otherwise.

[Vitter + Schriver '94]

sometimes ...
p1 - [M1] - | | - d1
p2 - [M2] - |I| - d2
p3 - [M3] - |/| - d3
 ... |O|
pP - [MP] - | | - dD

Scanning: Theta(N/DB)

Sorting : Theta((N/DB) log_{M/B} (N/B))
Search : Theta(log_{DB} N)

Striping :
 ... | 111 | 222 | 333 | 444 | 555 | 666 |
777 | 888 | 999 | ...
 -->
D1 ... | 111 | 444 | 777 | ...
D2 ... | 222 | 555 | 888 | ...
D3 ... | 333 | 666 | 999 | ...

Usually extending regular EM algorithms to
striped discs is sufficient
 - a few new ideas needed...

How to stripe a single-disk queue?

TPIE : Templated Portable I/O Environment
(formerly, Transparent Parallel I/O
Environment)
http://www.madalgo.au.dk/Trac-tpie

What do you think?
 - How useful is it?
 - How would you change/extend the model?

