CS7960 L26 : distrib | Mergeable Summaries
distributed nodes
Many nodes in graph

- each node knows only small number of neighbors
- need to communicate of calculate
key bottleneck is communication

Mergeable Summaries:
Many unorganized nodes [1,...,k] each with data X_i. <Connected in tree structure>

X = cup_i X_i
Want $S=\operatorname{summ}(X)$, but don't want to send X.
Key operation:

- given S_1 = summ(X_1) and S_2 = summ(X_2)
- produce S_12 = summ(X_1 cup X_2)

```
Example: X_1 = {1,2,3,8,9}
        X_2 = {4,5,89,90,91}
        X_3 = {6,7,92,93,94}
m1 = median(X_1) = 3
m2 = median(X_2) = 89
m3 = median(X_3) = 92
median{m1,m2,m3} = 89
median(X1 cup X_2 cup X_3) = 8
often error (or size) accumulates
-----------------
goal: S = summ(X) is a eps-approximation of X
X multi-subset [n]
f_i = |{x_j in X | x_j = i}|
eps-approx frequency values
    |~f_i - f_i| <= eps F_1 = eps m
```

```
size S = 1/eps
```

- error is relative
- size depends only on eps
key operation:
given: S_1 = summ(X_1), S_2 = summ(X_2)
- S_i is eps-approx of X_i
- size(S_i) = f(1/eps)
output: S_12 = summ(X_1 cup X_2)
- S_12 is eps-approx of X_1 cup X_2
- size(S_12) = f(1/eps)
 * neither size, nor error increase
Misra-Gries Summaries:
S =
Let C be array of k counters C[1], C[2], ..., C[k]
Let L be array of k locations L[1], L[2], ..., L[k]
S_1 = (C_1, L_1) = summ(X_1)
S_2 = (C_2, L_2) = summ(X_2)
$\mathrm{k}=1 / \mathrm{eps}=3$
$\begin{array}{cllllll}\text { S_12 } & {[1+0]} & {[2+3]} & {[0+4]} & {[0+0]} & {[3+0]} & {[0+2]} \\ -> & {[1]} & {[5]} & {[4]} & {[0]} & {[3]} & {[2]^{*}} \\ -> & {[0]} & {[3]} & {[2]} & {[0]} & {[1]} & {[0]}\end{array}$
 - add like counters together (at most 2k)
 - retain just top k after subtracting $C[k+1]$, set rest to 0 .
proof:
Each subtraction removes $>=k$ items
can subtract at most m / k times
each value $\sim f_{-} i$ in $\left[f_{-} i, f_{-} i-m / k\right]=\left[f_{-} i, f_{-} i-e p s ~ m\right]$
commutative, associative
Any linear summary:
$\operatorname{sum}\left(X _12\right)=$ sum(X_1) $+\operatorname{sum}\left(X _2\right)$

```
Any idempotent summary:
    max(X_12) = max{max(X_1), max(X_2)}
count-min sketch
t independent hash functions {h_1, ..., h_t}
each h_i : [n] -> [k]
2-d array of counters:
h_1 -> [C_{1,1}] [C_{1,2}] ... [C_{1,k}]
h_2 -> [C_{2,1}] [C_{2,2}] ... [C_{2,k}]
... ... ...
h_t -> [C_{t,1}] [C_{t,2}] ... [C_{t,k}]
for each a \in A -> increment C_{i,h_i(a)} for i in [t].
hat{f}_a = min_{i in [t]} C_{i,h_i(a)}
Set t = log(1/delta)
Set k = 2/eps
*******************************
can add or subtract!
eps-RELATIVE-RANK:
Build data structure S.
rank(v) = 1 + # items in A smaller than v
relative-rank(v) = Rrank(v) = rank(v)/IXI in [0,1]
eps-RELATIVE-RANK S returns S(v) such that
    Rrank(v) - eps <= S(v) <= Rrank(v) + eps
```

```
1 1 1 1 1 1 1 1 1 1 1
```

1 1 1 1 1 1 1 1 1 1 1
Random Sample size k = O(1/eps^2) = S
Random Sample size k = O(1/eps^2) = S
Rrank_S(v) = S(v)
Rrank_S(v) = S(v)
| Rrank(v) - S(v) | <= eps
| Rrank(v) - S(v) | <= eps
S_1 = {(s_1, u_1), (s_2, u_2), ...}
S_1 = {(s_1, u_1), (s_2, u_2), ...}
S_2 = {(s_1, u_1), (s_2, u_2), ...}
S_2 = {(s_1, u_1), (s_2, u_2), ...}
- u_i at random for each s_i
- u_i at random for each s_i
- keep top k values u_i (and paired s_i)

```
    - keep top k values u_i (and paired s_i)
```

easily mergeable, maintain random sample size k.
22222222222
Maintain sorted list of size $k=0(1 / e p s$ sqrt(log(1/eps)))
$\mathrm{S}_{-} 1=\left\{\mathrm{s}_{-}\{11\}, \mathrm{s}_{-}\{12\}, \mathrm{s}_{-}\{13\}, \ldots, \mathrm{s}_{-}\{1 \mathrm{k}\}\right\}$
S_2 = \{s_\{21\}, s_\{22\}, s_\{23\}, ..., s_\{2k\}\}
s.t. $s_{-}\{i, j\}<s_{-}\{i, j+1\}$ for $i=\{1,2\}$

S_12 =

1. merge sort S_1, S_2 -> ordered list size 2 k
2. select even points / odd points at random
***magically, error does not accumulate, nor probability of failure older merges less important towards relative error
above only works for $\left|X _1\right|=\left|X _2\right|$
if not true, need size $0\left((1 / \mathrm{eps})(\log (1 / \mathrm{eps}))^{\wedge} 3 / 2\right)$
