CS7960 L22 : GPU | Sorting
GPU
Parallel processor

- Many cores
- Small memory
memory transfer overhead

Sorting:
Input: Large array $\mathrm{A}=<\mathrm{a1}$, $\mathrm{a} 2, \ldots$, an>
Output $B=<b 1, b 2, \ldots, b n>$

- mu $\left.a_{-} i\right)=b_{-} j$ exists
- $b_{-} j<=b_{-}\{j+1\}$

Data driven sorting?

- insertion sort? $0(n \wedge 2)$
(choose one and place in correct spot)
- quick sort? $0(n \log n)$
(need splitter: median hard, otherwise varies size...)
- heap sort? $0(n \log n)$
(need to maintain heap data structure, hard on GPU)
- radix sort?

O(nk) (for k digit w/ constant bits)
lengths of each digit category uncontrollable length.
<hard to make highly parallel>
Data Independent sorting

- bubble sort?
$0(n \wedge 2)$
(compare all neighbors)
very parallelizable, but takes n rounds to move point from 1 to
n
- merge sort?
$0(n \log n)$
(divide + conquer + join)
join step very sequential :(
- bitonic sort
(divide + conquer + join)
join step parallel !!!
<will also hybridize merge+bubble...>

Bitonic Sort:

Bitonic sequence:

- increasing,

1246811

- decreasing,

974321

- increasing then decreasing, or

146932

- decreasing then increasing.

952346
(at most one local maxima/minima)

BitonicSplit(A):
Input: 1 bitonic sequence A size n
Ouput: 1 increasing (sorted) sequence B size n
for $h=\log n$ to 1
for $\mathrm{i}=1$ to $\mathrm{n} / 2 \wedge \mathrm{~h}$ PARDO for $j=0$ to $2 \wedge\{\mathrm{~h}-1\}$ PARDO $\min (A[i+(2 j) *(n / 2 \wedge h)], A[i+(2 j+1)(n / 2 \wedge h)])->B[i+$
(2j)*(n/2^h)]
$\max (A[i+(2 j) *(n / 2 \wedge h)], A[i+(2 j+1)(n / 2 \wedge h)])->B[i+(2 j+1)$ ($n / 2 \wedge h$)]

Example:

24	20	15	9	4	2	5	$8 \mid 10$	11	12	13	22	30	32	45
10	11	12	$9 \mid$	4	2	5	$8 \mid 24$	20	15	$13 \mid 22$	30	32	45	
4	$2 \mid$	5	$8 \mid 10$	$11 \mid 12$	$9 \mid 22$	$20 \mid 15$	$13 \mid 24$	$30 \mid 32$	45					
$4 \mid$	$2 \mid$	5	$8 \mid 10$	$9 \mid 12$	$11 \mid 15$	$13 \mid 22$	$20 \mid 24$	$30 \mid 32$	45					
2	4	5	8	9	10	11	12	13	15	20	22	24	30	32
45														

How to get a bitonic sequence?

```
for h = 1 to log n
    for i = 1 to n/2^h PARDO
        for j = 0 to 2^{h-1} PARDO
        BitonicSplit(A[i + (2j)(n/2^h), i + (2j+2)(n/2^h) - 1]) //
(reverse second half)
- sets of size 2 are bitonic
- let \(S\) be an ascending sorted set let T be a descending sorted set \(S\) cat \(T\) is bitonic
- run bitonic sort of sets of doubled size for \(\log \mathrm{n}\) rounds
```

BitonicSplit on all pairs -> sort all pairs
BitonicSplit on all quads (reverse second pair) -> sort all quads
BitonicSplit on list (reverse second half) -> sorted list
$0(\log n)$ rounds of Bitonic split
Each Bitonic split takes O(log n) rounds
$0(\log \wedge 2 n)$ parallel time
$0(\mathrm{n} \log \wedge 2 \mathrm{n})$ work
Fine-grain parallelism:

- core of each operation is a compare.
- data independent

For several years, this was fastest GPU sort!
What are the weak points of this?
How can it be improved?

Hybrid (bucket/quick + merge sort)
Sintorn + Assarsson 08
(beats bitonic by factor 2-3)
takes advantage of advanced architecture of GPU (GeForce 8800)

1. Create L sub-lists using L-1 \{l_1,l_2,....l_\{L-1\}\} pivotes so p in Li has $l_{-} i<p<=l_{-}\{i+1\}$
2. Move each $L_{-} i$ to separate processor group
3. Merge Sort on each list L_i
details:
(1) three proposed methods:
(a) bucket sort (two-rounds)
i : choose L-1 pivots by linear interpolation [min,max] (random sample may work better, distribution
independent)
ii : build histogram w/ AtomicInc on buckets
iii: re-linear interpolate based on histogram (again I think random sample may work better, more general)
(b) Use NVidia histogram functionality to help w/ splits.
(c) Run $\log (\mathrm{L})$ rounds of quick sort by choosing random pivots
(d) other option: run multi-selection sort we discussed in class or just $\log (\mathrm{L})$ median operations in $0(N)$ time each

Note: assigning a point p to a pivot can be done in parallel, but takes $0\left(\log \mathrm{~L}\right.$) (binary search on $\left.\left\{\mathrm{l}_{-} \mathrm{i}\right\} _i\right)$. Perhaps can be done quicker with clever bit-shifting....
(2) Use local hierarchy of GPU to move to sub-hierarchies on GPU each L of roughly the same size.
Importance of same size, otherwise, when last is running, others will be idle.
(3)

1. break to sets of size 4
2. run special "kernel" to sort sets of size 4
3. merge pairs of sets
(for most of run, many more sets than processors, so highly parallel)
4. eventually p processors in group, and $<\mathrm{p}$ lists left to merge (lose some parallelism, but oh,well, did pretty well).

Work $=0(n \log n)$

PTime :
(1) $=0(\log \mathrm{~L})$
(a) 2 rounds of $0(\log L)$ time to assign
(c) $\log \mathrm{L}$ rounds of finding median (and counting) * $0(\log n \log \log n)$ to find median
but heuristic (random split) only takes $0(1) /$ round
(2) $=0(\log L)($ each list of size roughly $N / L)$ (but could be N !)
(3) $=0(n / L)$ since last round one 1 processor needs to run a merge on two lists.
$=O(n / L+\log L)$ optimal for $L=n-->(\log n)$ but that requires (1) to complete sort! ...L restricted by num processors

Odd-Even Transition Merge Sort:

Odd-Even Transition Sort:
for $h=1$ to $n / 2$
for $i=1$ to $n / 2$ PARDO
$\min (A[2 i-1], A[2 i])->A[2 i-1]$
$\max (A[2 i-1], A[2 i])$-> A[2i]
for $i=1$ to $n / 2-1$ PARDO
$\min (A[2 i], A[2 i+1])->A[2 i]$
$\max (A[2 i], A[2 i+1])->A[2 i+1]$
$O(n)$ Ptime, $O\left(n^{\wedge} 2\right)$ Work
Way to make this

- O(log^2 n) Ptime
- O(n $\log \wedge 2 n)$ Work
- fine-grained
- data independent

1. Grow sorted sub-pieces
2. Join takes $0(\log m)$ for sorted sets of size m
"sorting network"
