MapReduce
M = Massive Data

Mapper(M) -> \{(key,value)\}
Sort(\{(key,value)\}) -> group by "key"
Reducer (\{"key,value_i\}) -> ("key, f(value_i))
Can repeat, constant \# of rounds

```
Word Count "Hello, World!" of MapReduce
    -> count occurrences of each word
Input, M = large corpus of text.
Mapper:
    each word in M -> ("word", 1)
Reducer:
    for all ("word", v_i)
    -> ("word", sum_i v_i)
"aggregate" in Hadoop.
-------------------------------------------
Matrix-Vector Multiply
Input M = n x n matrix [square] (sparse!)
    V = n x 1 matrix [column]
X = M * V
Output
x_i = sum_{j=1}^n m_{ij} * v_j
Mapper:
    (i,m_{ij} * v_j) for all m_{ij}
```

```
Reducer:
    "aggregate"
What if v does not fit on mapper?
    -> Stripe v
```

Sets of columns of $M+$ Sets of rows of V Now, each mapper can do $m_{-}\{i j\} v_{-} j$ with just part of V.

Matrix-Matrix Multiply

```
Input M = n x n matrix [square] (sparse!)
    B = n x n matrix [square] (sparse!)
X = M*B
```

Output
$x_{-} i k=<m_{-}\{i *\}, v_{-}\{* k\}>$
$\left.=\operatorname{sum}_{-}\{j=1\}^{\wedge} n_{n-} m_{i j}\right\}^{*} v_{-}\{j k\}$
Mapper:
($\left.(i, k),<m_{-}\{i *\}, v_{-}\{* k\}>\right)$
Reducer:
"aggregate"

Again, requires mapper to store too much:

```
Mapper:
    ((i,k) , m_{ij}*v_{ik})
```

where each mapper gets squares
[i_1,i_2] x [j_3,j_4] of M
and
[j_3,j_4] x [k_5,k_6] of B
(so j's align)
Problem: js may not be aligned...(fix later)

```
Relational Algebra?
```

```
Selection: Find all tuples that satisfy sigma( )
    MR = OVERKILL
Mapper: If sigma(T) true -> (T,T)
Reducer: all (T,T) -> (T,T)
    "identity"
-------
Projection: For tuple, produce subset S or attributes pi_S( )
Mapper: T -> (pi_S(T), pi_S(T))
    Let T' = pi_S(T)
Reducer: All {(T',T'), (T',T'), ...} -> (T',T')
        "remove-duplicate"
```

Union: For sets R,S return union
Mapper: tuple T -> (T, T)
given chunks of R and/or S
Reducer: if $\{(T, T),(T, T)\}$-> (T, T) <appears twice> -> <appears-once>
if $\{(T, T)\}->(T, T)$

Intersection: For sets R,S return intersection
Mapper: tuple T-> (T, R) if in R, and $->(T, S)$ if in S
given chunks of R and/or S
Reducer: if $\{(T, R),(T, S)\}$ <appears twice> -> (T, T)
otherwise -> NULL
Join: $R(A, B)><S(B, C)$-> $H(A, C)$ if agree on B
Mapper: (a, b) in $R \rightarrow(b,(R, a))$

```
    (b,c) in S -> (b,(S,c))
```

Reducer: $\{(b,(R, a 1)),(b,(R, a 2)), \ldots\}$ \{(b, (S, c1)), $(b,(S, c 2)), \ldots\}$
-> $(b,\{(a 1, b, c 1),(a 1, b, c 2), \ldots,(a 2, b, c 1),(a 2, b, c 2), \ldots\})$
Grouping + Aggregation: R(A,B,C) -> sigma_\{A,theta(B)\}(R)
where grouped by A, theta over B
where theta $=$ \{SUM, PRODUCT, COUNT, MIN, MAX \}
Mapper: (a, b, c)-> (a, b)
Reducer: $\{(a, b 1),(a, b 2), \ldots\}$-> (a, thet $a(b 1, b 2, \ldots)$)
for R (words, 1) and theta=SUM, then $:=$ word-count!

```
Matrix Multiplication, Revisited:
    Input M (nxn) and \(N\) (nxn) both sparse!
2-rounds
```

```
Mapper1: \(m_{-}\{i j\}->\left(j,\left(M, i, m_{-}\{i j\}\right)\right)\)
```

Mapper1: $m_{-}\{i j\}->\left(j,\left(M, i, m_{-}\{i j\}\right)\right)$
$n_{-}\{j k\}->\left(j,\left(N, k, n_{-}\{j k\}\right)\right)$

```
Reducer1:
        for some \(j\), for each pair ( \(M, i, m_{-}\{i j\}\) ) , ( \(N, k, n_{-}\{j k\}\) )
            -> (j,(i,j,m_\{ij\}* n_\{jk\}))
Mapper2:
        \{(j,(i1,k1,v1)) , (j,(i2,k2,v2)), ... (j,(ip,kp,vp))\}
    -> \(\{((i 1, k 1), v 1),((i 2, k 2), v 2), \ldots((i p, k p), v p)\}\)

Reducer2: "aggregate" on keys (i,k)

1-round
```

Mapper: m_{ij} -> ((i,k),(M,j,m_{ij})
n_{jk} -> ((j,k),(N,j,n_{jk})

```

Reducer: For all (i,k):
sort (M,j, m_\{ij\}) by \(j\) and sort (M,j, \(\left.n_{-}\{j k\}\right)\) by \(j\)

For pairs with same \(j\)
-> ((i,k), sum_j(m_\{ij\} * n_\{jk\}))
Sort may be too big to fit on single Reducer. But if sparse, then may be ok.

PageRank
Web, basically, a nxn big matrix \(M\)
each row represents a webpage, and if it links to \(L\) pages, then it has \(L\) nonzero entries with a value 1/L.

What to compute the position of an random web browser v. v(i) probability browser reaches page i. Once at page i, goes to random page linked to by i.

In the limit \(v=M \mathrm{v}\)
So \(v\) is the top eigen-vector of \(M\).
Solving for \(v\), takes \(0(n \wedge 3)\) time, too long!
Instead, can approximate \(v\), by starting at any \(v_{-} 0\) (e.g. v_0(i) = 1/I) for I webpages.
Then Let v_1 = \(M^{*}\) v_0...
- in general \(v_{-}\{i+1\}=M^{*} v_{-} i\)
and in the limit (about v_50), \(\mathrm{v}_{-} \mathrm{i}=\mathrm{v}\).
So we need to execute matrix-vector multiply about 50 times (with M very sparse).

Could also compute \(\mathrm{M}^{\wedge} 50\), and set \(\mathrm{v}=\mathrm{M} \wedge 50\) * v , but \(\mathrm{M} \wedge 50\) no longer sparse...
Much more in "Data Mining" next semester...```

