
CS7960 L17 : MapReduce | Matrix Multiply + Relational Algebra

MapReduce

M = Massive Data

Mapper(M) ->  {(key,value)}

Sort({(key,value)}) -> group by "key"

Reducer ({"key,value_i}) -> ("key, f(value_i))

Can repeat, constant # of rounds

-------------------------

------------------------------------------
Word Count  "Hello, World!" of MapReduce
  -> count occurrences of each word

Input, M = large corpus of text.

Mapper:  
 each word in M ->  ("word", 1)

Reducer: 
 for all ("word", v_i)
  ->  ("word", sum_i v_i)  
"aggregate" in Hadoop.

------------------------------------------
Matrix-Vector Multiply

Input M = n x n matrix    [square]   (sparse!)
      V = n x 1 matrix    [column]

X = M * V

Output
x_i = sum_{j=1}^n m_{ij} * v_j

Mapper:
  (i,m_{ij} * v_j)   for all m_{ij}



Reducer:
  "aggregate"

--------------
What if v does not fit on mapper?
 ->  Stripe v

Sets of columns of M + Sets of rows of V
Now, each mapper can do m_{ij}v_j with just part of V.

------------------------------------------
Matrix-Matrix Multiply

Input M = n x n matrix    [square]   (sparse!)
      B = n x n matrix    [square]   (sparse!)

X = M*B

Output
x_ik = <m_{i*} , v_{*k}>
     = sum_{j=1}^n m_{ij}*v_{jk}

Mapper:  
  ((i,k) , <m_{i*}, v_{*k}>)

Reducer:
  "aggregate"

--------
Again, requires mapper to store too much:

Mapper: 
  ((i,k) , m_{ij}*v_{ik})

where each mapper gets squares 
  [i_1,i_2] x [j_3,j_4]  of M
and
  [j_3,j_4] x [k_5,k_6]  of B
(so j's align)

Problem:  js may not be aligned...(fix later)

-----------------------------



Relational Algebra?

Selection:  Find all tuples that satisfy sigma( )
  MR = OVERKILL

Mapper: If sigma(T) true -> (T,T)

Reducer: all (T,T) -> (T,T)
   "identity"

-------
Projection:  For tuple, produce subset S or attributes pi_S( )

Mapper:  T -> (pi_S(T), pi_S(T))
  Let T' = pi_S(T)

Reducer:  All {(T',T'), (T',T'), ...} -> (T',T')
    "remove-duplicate"

--------
Union:  For sets R,S return union

Mapper:  tuple T -> (T,T) 
  given chunks of R and/or S

Reducer: if {(T,T) , (T,T)} -> (T,T)  <appears twice> -> <appears-once>
         if {(T,T)} -> (T,T) 

--------
Intersection:  For sets R,S return intersection

Mapper:  tuple T -> (T,R) if in R, and -> (T,S) if in S 
  given chunks of R and/or S

Reducer: if {(T,R) , (T,S)}  <appears twice> -> (T,T)
         otherwise -> NULL

-------
Join: R(A,B) >< S(B,C) -> H(A,C) if agree on B

Mapper:  (a,b) in R  ->  (b,(R,a))



         (b,c) in S  ->  (b,(S,c))

Reducer: {(b,(R,a1)),(b,(R,a2)),...} {(b,(S,c1)),(b,(S,c2)),...}
  ->  (b,{(a1,b,c1),(a1,b,c2),...,(a2,b,c1),(a2,b,c2),...})

-------
Grouping + Aggregation:  R(A,B,C) -> sigma_{A,theta(B)}(R)
    where grouped by A, theta over B 
    where theta = {SUM, PRODUCT, COUNT, MIN, MAX}
 
Mapper: (a,b,c) -> (a,b)

Reducer: {(a,b1),(a,b2),...} -> (a,theta(b1,b2,...))

for R(words, 1) and theta=SUM, then := word-count!

------
Matrix Multiplication, Revisited:
 Input M (nxn) and N (nxn)   both sparse!

2-rounds

Mapper1:  m_{ij} -> (j,(M,i,m_{ij}))
          n_{jk} -> (j,(N,k,n_{jk}))

Reducer1:
  for some j, for each pair (M,i,m_{ij}) , (N,k,n_{jk})
    ->  (j,(i,j,m_{ij}* n_{jk}))

Mapper2: 
   {(j,(i1,k1,v1)) , (j,(i2,k2,v2)), ... (j,(ip,kp,vp))}
 -> {((i1,k1),v1) , ((i2,k2),v2), ... ((ip,kp),vp)}

Reducer2: "aggregate" on keys (i,k)

------

1-round

Mapper:  m_{ij} -> ((i,k),(M,j,m_{ij})
         n_{jk} -> ((j,k),(N,j,n_{jk})

Reducer:  For all (i,k):  
  sort (M,j,m_{ij}) by j    and
  sort (M,j,n_{jk}) by j



For pairs with same j
 -> ((i,k), sum_j(m_{ij} * n_{jk}))

Sort may be too big to fit on single Reducer.  
But if sparse, then may be ok.  

-----------------------

PageRank

Web, basically, a nxn big matrix M

each row represents a webpage, and if it links to L pages, then it has L non-
zero entries with a value 1/L.  

What to compute the position of an random web browser v.  v(i) probability 
browser reaches page i.  Once at page i, goes to random page linked to by i.  

In the limit v = M v

So v is the top eigen-vector of M.  

Solving for v, takes O(n^3) time, too long!

Instead, can approximate v, by starting at any v_0 (e.g. v_0(i) = 1/I) for I 
webpages.  
Then Let v_1 = M*v_0...
  - in general v_{i+1} = M*v_i
 and in the limit (about v_50), v_i = v.  

So we need to execute matrix-vector multiply about 50 times (with M very 
sparse).  

Could also compute M^50, and set v = M^50 * v, but M^50 no longer sparse...

Much more in "Data Mining" next semester...


