
Introduction to and History of GPU Algorithms

Jeff M. Phillips

November 9, 2011



Early Computer Graphics

X

wi

p

Draw each pixel on screen.
For each pixel p:

I Determine if pixel could “see”
triangle

I Determine which object “in front”

I If we can “see through” object,
what is behind?

I Does light reach that object?

All done on CPU



Early Computer Graphics

Draw each pixel on screen.
For each pixel p:

I Determine if pixel could “see”
triangle

I Determine which object “in front”

I If we can “see through” object,
what is behind?

I Does light reach that object?

All done on CPU



Early Computer Graphics

Draw each pixel on screen.
For each pixel p:

I Determine if pixel could “see”
triangle

I Determine which object “in front”

I If we can “see through” object,
what is behind?

I Does light reach that object?

All done on CPU



Early Computer Graphics

Draw each pixel on screen.
For each pixel p:

I Determine if pixel could “see”
triangle

I Determine which object “in front”

I If we can “see through” object,
what is behind?

I Does light reach that object?

All done on CPU



Blitters in Hardware

1980s.

I Commodore Amiga, IBM

I Block copying of memory;
in parallel on CPU

I Copied image bitmaps
quickly (for moving GUIs)



3D Graphics

1990s.

3D Gaming!

I OpenGL and DirectX APIs

I GPU directly implemented
these APIs
fixed functional pipeline

I nVidia vs. ATI vs. 3dfx



Early GPUs

“Fixed Functional Pipeline”

I All games / 3D Graphics looked
all about the same

I Triangle Rasterization = very
efficient

I RayTracing looked, better, but too
slow, took much memory!



OpenGL

Was OpenGL the first GPU language?

No.

I Just a specification!

I Hardware vendor implemented
specification (sometimes slight
variation).

I before 2.0, entirely fixed-function

I after 2.0, some different effects
added

DirectX: a Windows library.

I Direct3D is the graphics component



OpenGL

Was OpenGL the first GPU language?
No.

I Just a specification!

I Hardware vendor implemented
specification (sometimes slight
variation).

I before 2.0, entirely fixed-function

I after 2.0, some different effects
added

DirectX: a Windows library.

I Direct3D is the graphics component



OpenGL

Was OpenGL the first GPU language?
No.

I Just a specification!

I Hardware vendor implemented
specification (sometimes slight
variation).

I before 2.0, entirely fixed-function

I after 2.0, some different effects
added

DirectX: a Windows library.

I Direct3D is the graphics component



Early GPU programming

Direct3D 8.0 (2000) and
OpenGL 2.0 (2004) added
support for assembly language
programming for shaders.

I nVidia GeForce 3
I ATI Radeon 8000

Direct3D 9.0 added High Level Shader Language (HLSL)

I nVidia GeForce FX 5000
I ATI Radeon 9000

More minor increments...



Early GPU programming

Direct3D 8.0 (2000) and
OpenGL 2.0 (2004) added
support for assembly language
programming for shaders.

I nVidia GeForce 3
I ATI Radeon 8000

Direct3D 9.0 added High Level Shader Language (HLSL)

I nVidia GeForce FX 5000
I ATI Radeon 9000

More minor increments...



Early GPU programming

Direct3D 8.0 (2000) and
OpenGL 2.0 (2004) added
support for assembly language
programming for shaders.

I nVidia GeForce 3
I ATI Radeon 8000

Direct3D 9.0 added High Level Shader Language (HLSL)

I nVidia GeForce FX 5000
I ATI Radeon 9000

More minor increments...



Early GPU Pipeline

I Vertex data sent via graphics API (e.g. OpenGL, DirectX)

I vertex data processed by vertex shader

I vertex shader outputs pixels

I fragment shader processes pixels



Early GPU Pipeline

Early-on (Direct3D 10, GeForce 8000, Radeon 2000): vertex /
fragment shaders had different hardware.

I slightly different rules

I Direct3D 10 (Windows Vista) added geometry shader, unified
hardware

GPUs now use same core to run all shaders



Early GPU Pipeline

Early-on (Direct3D 10, GeForce 8000, Radeon 2000): vertex /
fragment shaders had different hardware.

I slightly different rules

I Direct3D 10 (Windows Vista) added geometry shader, unified
hardware

GPUs now use same core to run all shaders



Shader Languages

No longer write in assembly!

I GLSL, HLSL, cG, offer C-style shader programming

I write two main() functions which are run on each vertex/pixel

I Auxiliary functions and local variables

I output by setting position and color (write to special variables)



CUDA
Compute Unified Device Architecture

I created by nVidia

I came with GeForce 8000 line

I runs general C code (not restricted graphics APIs)

I Linear Memory Access (no buffer objects)

I runs thousands of separate scalar cores



Other GPU patterns

ATI Stream SDK

I closer to assembly

Apple / Kronos Group (OpenGL) started OpenCL initiative (2008)

I released 2009

I supported by nVidia and ATI

I not specific to GPU (support for CPU SSE)

DirectX 11 added DirectCompute Shaders

I similar to OpenCL

I tied with Direct3D

I added hull and domain shaders to pipeline

I allows high-detail geometry created on GPU, not PCI-E bus

OpenGL 4 similar to Direct 11

I also added two stages to pipeline



Other GPU patterns

ATI Stream SDK

I closer to assembly

Apple / Kronos Group (OpenGL) started OpenCL initiative (2008)

I released 2009

I supported by nVidia and ATI

I not specific to GPU (support for CPU SSE)

DirectX 11 added DirectCompute Shaders

I similar to OpenCL

I tied with Direct3D

I added hull and domain shaders to pipeline

I allows high-detail geometry created on GPU, not PCI-E bus

OpenGL 4 similar to Direct 11

I also added two stages to pipeline



Other GPU patterns

ATI Stream SDK

I closer to assembly

Apple / Kronos Group (OpenGL) started OpenCL initiative (2008)

I released 2009

I supported by nVidia and ATI

I not specific to GPU (support for CPU SSE)

DirectX 11 added DirectCompute Shaders

I similar to OpenCL

I tied with Direct3D

I added hull and domain shaders to pipeline

I allows high-detail geometry created on GPU, not PCI-E bus

OpenGL 4 similar to Direct 11

I also added two stages to pipeline



Other GPU patterns

ATI Stream SDK

I closer to assembly

Apple / Kronos Group (OpenGL) started OpenCL initiative (2008)

I released 2009

I supported by nVidia and ATI

I not specific to GPU (support for CPU SSE)

DirectX 11 added DirectCompute Shaders

I similar to OpenCL

I tied with Direct3D

I added hull and domain shaders to pipeline

I allows high-detail geometry created on GPU, not PCI-E bus

OpenGL 4 similar to Direct 11

I also added two stages to pipeline



GPU Programming

Top of line:

I 3 Teraflops

I 100+ GB/s memory access bandwidth

I high-speed atomic operations

Now easier to program:

I nVidia’s Fermi architcture supports C++

I MATLAB integration

Many applications:

I Folding@Home

I Photoshop

I Mathematica 8

I large scale data mining

I physics fluid simulation

I computational ecology



GPU Program Model

We will focus on computational properties and data analysis (not
graphics)

I Suited for highly parallel, fine-grain parallel programs

I Suited for regular number-crunching

I Need to model hierarchy of processors and memory



GPU Program Model

We will focus on computational properties and data analysis (not
graphics)

I Suited for highly parallel, fine-grain parallel programs

I Suited for regular number-crunching

I Need to model hierarchy of processors and memory



GPU Hierarchy
Each processor (SM) has
private L1 Cache

I 16-48 kB (small)
I not coherent (CRCW

causes problems)
I (256-512 kB on CPU)

Modern systems, L2 Cache

I 512 - 768 kB
I (8-15 MB on CPU)

Memory bandwidth is fast!

I 100 - 200 GB/s
I but ... separate from CPU
I (24-32 GB/s on CPU)

Memory size is small!

I 768MB - 6GB
I and ... separate from CPU
I (6 - 64 GB on CPU)



GPU Hierarchy
Each processor (SM) has
private L1 Cache

I 16-48 kB (small)
I not coherent (CRCW

causes problems)
I (256-512 kB on CPU)

Modern systems, L2 Cache

I 512 - 768 kB
I (8-15 MB on CPU)

Memory bandwidth is fast!

I 100 - 200 GB/s
I but ... separate from CPU
I (24-32 GB/s on CPU)

Memory size is small!

I 768MB - 6GB
I and ... separate from CPU
I (6 - 64 GB on CPU)



GPU Hierarchy
Each processor (SM) has
private L1 Cache

I 16-48 kB (small)
I not coherent (CRCW

causes problems)
I (256-512 kB on CPU)

Modern systems, L2 Cache

I 512 - 768 kB
I (8-15 MB on CPU)

Memory bandwidth is fast!

I 100 - 200 GB/s
I but ... separate from CPU
I (24-32 GB/s on CPU)

Memory size is small!

I 768MB - 6GB
I and ... separate from CPU
I (6 - 64 GB on CPU)



GPU Hierarchy
Each processor (SM) has
private L1 Cache

I 16-48 kB (small)
I not coherent (CRCW

causes problems)
I (256-512 kB on CPU)

Modern systems, L2 Cache

I 512 - 768 kB
I (8-15 MB on CPU)

Memory bandwidth is fast!

I 100 - 200 GB/s
I but ... separate from CPU
I (24-32 GB/s on CPU)

Memory size is small!

I 768MB - 6GB
I and ... separate from CPU
I (6 - 64 GB on CPU)



NVidia GeForce 8800 GTX

G80 series

I 128 stream processors:

I 16 multiprocessors

I a multiprocessor has 8 processor units

Higher in hierarchy, more shared memory
Lower in hierarchy, less shared/private memory



GPU Hype

Much hype of 100-200x speed-up on GPU!

I not always fair comparison: 128 GPU cores vs 1CPU core

I optimized GPU code vs. un-optimized CPU code

I work in single precision (double precision slow on GPU)

I not counting memory transfer time

I As CUDA functionality increased, so did its overhead!

But sometimes GPU is very useful.

Cheap, highly parallel computer!



GPU in Matlab
pMatlab: Parallel Matlab Toolbox v2.0.1

cpu_x = rand(1,100000000)*10*pi;

gpu_x = gpuArray(cpu_x);

gpu_y = sin(gpu_x);

cpu_y = gather(gpu_y);



GPU in Matlab

pMatlab: Parallel Matlab Toolbox v2.0.1

cpu_x = rand(1,100000000)*10*pi;

gpu_x = gpuArray(cpu_x);

gpu_y = big-trig-function(gpu_x);

cpu_y = gather(gpu_y);



Attribution

These slides borrow from material by

I Mathieu Desbrun

I Supercomputing Blog:
http://supercomputingblog.com/cuda-tutorials/

I Walking Randomly:
http://www.walkingrandomly.com/?p=3730

http://supercomputingblog.com/cuda-tutorials/
http://www.walkingrandomly.com/?p=3730

