
L9: Hierarchical Clustering

This marks the beginning of the clustering section. The basic idea is to take a set X of items and somehow
partition X into subsets, so each subset has similar items. Obviously, it would be great if we could be more
specific, but that would end up omitting some particular form of clustering.

Clustering is an extremely broad and ill-defined topic. There are many many variants; we will not try to
cover all of them. Instead we will focus on three broad classes of algorithms, and try to touch on some new
developments.

Shouldn’t we be spending more emphasis on clustering? Perhaps not. Of all of the studies that have
emerged, one theme has rung consistently:

When data is easily cluster-able, most clustering algorithms work quickly and well.
When is not easily cluster-able, then no algorithm will find good clusters.

9.1 Hard Clustering Formulation
Lets specify our clustering goal a bit more. Start with a set X ⊂ M (say M = Rd), and a metric d :
M×M→ R+.

A cluster S is a subset of X . A clustering is a partition C(X) = {S1, S2, . . . , Sk} where

(C1) each Si ⊂ X ,

(C2) each pair Si ∩ Sj = ∅ (this is relaxed in soft clustering), and

(C3)
⋃k
i=1 Si = P .

Then the goal is two-fold:

width: For each S ∈ C(X) for all x, x′ ∈ S then d(x, x′) is small.

split: For each Si, Sj ∈ C(X), for all (most) xi ∈ Si and xj ∈ Sj (and i 6= j) then d(xi, xj) is large.

Overall, the goal is for “split” / “width” to be large.

width

split

Figure 9.1: Example of clustering C(X) = {S1, S2, S3}.

1

9.2 Hierarchical/Agglomerative Clustering
The first type of clustering we study is hierarchical. The basic algorithm is:

If two points (clusters) are close (or close enough), put them in the same cluster.

A bit more formally, we can write this as an algorithm.

Algorithm 9.2.1 Hierarchical Clustering
Each xi ∈ X is a separate cluster Si.
while Two clusters are close enough do

Find the closest two clusters Si, Sj
Merge Si and S2 into a single cluster

It remains to define close enough and closest. These both basically require a distance between clusters.
There are several options:

• distance between center of clusters. What does center mean?

– the mean (average) point.
– the center-point (like a high-dimensional median)
– center of the MEB (minimum enclosing ball)
– some (random) representative point

• distance between closest pair of points

• distance between furthest pair of points

• average distance between all pairs of points in different clusters

• radius of minimum enclosing ball of joined cluster

• smallest average distance between points in a cluster and center in the other

Among all clusters, there are often ties. Often break ties arbitrarily, but these choices can dramatically
change the resulting clusters.

Finally we need to define close enough; this indicates some sort of threshold. There are again several
options:

• If information is known about the data, perhaps some absolute value τ can be given.

• If the { diameter, or radius of MEB, or average distance from center point} is beneath some threshold.
This fixes the scale of a cluster, which could be good or bad.

• If the density is beneath some threshold; where density is # points/volume or # points / radiusd

• If the joined (both clusters) density increases too much from single cluster density.
Variations of this are called the “elbow” technique.

• When the number of clusters is k (for some magical value k).

CS 6955 Data Mining; Spring 2013 Instructor: Jeff M. Phillips, University of Utah

9.2.1 Hierarchy
We can keep track of the order clusters are merged and build a hierarchy of clusterings. This can be useful
structure beyond an opaque single partition of the data. This also means we do not need to (initially) choose
when to stop. We can keep merging until there is only 1 cluster remaining. Then we can choose to “chop
off the top of the tree” later.

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

1

2

3

4

5

1 2 3 4 5

The most famous example of this are phylogenic trees.

9.2.2 Efficiency
Lets use as an example where the distance is the distance between the centroids, and we stop when there is
one cluster. For n points, this takes about n3 time steps.

In each we make one merge, so there are n − 1 = O(n) rounds. In each round with m clusters, we may
need to check

(
m
2

)
pairs, to find the closest pair. Whenm < n/2 (which if half of all rounds), then this takes

about n2/4 = O(n2) time each round. It then takes only at most n time to recompute the centroid. So the
total cost is about (n− 1) · n2/4 = O(n3).

We can reduce this to O(n2 log n). We maintain a priority queue of the
(
m
2

)
= O(n2) distance. Each

update takes the closest distance in O(log n) time, but then affects O(n) distances in the queue. These take
O(n log n) time total to update. Centroids can also be updated in O(1) time (by storing the count and center
point - they can be merged by taking the weighted average). So each round takes O(n log n) time, and the
total process takes O(n2 log n) time.

But this is still pretty slow (as we will see in other techniques).

9.3 k-Center Clustering
Today we get a preview of assignment based clustering. In this method, each cluster is represented by a
single point, to which all other points in the cluster are “assigned.” In some sense the hierarchical versions
using the centroid fall under this category.

In general these are defined for a set X , and distance d : X × X → R+, and the output is a set
C = {c1, c2, . . . , ck}. This implicitly defines a set of clusters where φC(x) = argminc∈C d(x, c). Then the
k-center cluster problem is to find the set C of k clusters (often, but always as a subset of X) to

minimize max
x∈X

d(φC(x), x).

So we want every point assigned to the closest center, and want to minimize the longest distance of any such
assignment.

There are other variants:

• the k-means clustering problem: minimize
∑

x∈X d(φC(x), x)2

This will be the topic of next lecture
• the k-median clustering problem: minimize

∑
x∈X d(φC(x), x)

CS 6955 Data Mining; Spring 2013 Instructor: Jeff M. Phillips, University of Utah

Unfortunately, the k-center clustering problem is NP-hard to solve exactly. In fact, it is NP-hard to find a
clustering within a factor 2 of the optimal cost!

Luckily, there is an algorithm that achieves this factor 2 approximation, it is quite fast, and it works very
well in practice.

9.4 Gonzalez Algorithm
He we discuss a simple greedy strategy for the k-center clustering problem. It is usually attributed to
Gonzalez (1985), but it may likely be much older. The lesson is:

Be greedy, but be smart and greedy.

Algorithm 9.4.1 Gonzalez Greedy Algorithm for k-Center Clustering
Choose c1 ∈ X arbitrarily. Let C1 = {c1}.
(In general let Ci = {c1, . . . , Ci}.)
for i = 2 to k do

Set ci = argmaxx∈X d(x, φCi−1(x)).

As Algorithm 9.4.1 describes, the algorithm is to always pick the point in x that is furthest from the
current set of centers, and let it also be a center.

In the worst case, this is a 2-approximation to the optimal clustering for the k-center clustering problem.
But is often much better in practice.

It only takes time about k2n = O(k2n). There are k rounds, and each round can be done in about nk
time. We maintain the set φCi(x) for each x. When a new ci is found, and added to the set of centers, all n
assignments φCi(x) can be updated in linear O(n) time, by checking each distance d(x, φCi−1(x)) against
d(x, ci) and switching the assignment if the later is smaller. Then the minimum can be found in the next
round on a linear scan (or on the same linear scan).

Algorithm 9.4.2 Detailed Gonzalez Greedy Algorithm for k-Center Clustering
Choose c1 ∈ X arbitrarily, and set φ[j] = 1 for all j ∈ [n]
for i = 1 to k do
M = 0, ci = x1
for j = 1 to n do

if d(xj , cφ[j]) > d(xj , ci) then
φ[j] = i

if d(xj , cφ[j]) > M then
M = d(xj , cφ[j]), ci+1 = xj was incorrectly before ci = xj

Note that this works for any metric.
However, it biases the choice of centers to be on the “edges” of the dataset. There are heuristic to try to

recenter afterwards, but usually not worth it—just use another algorithm instead.

CS 6955 Data Mining; Spring 2013 Instructor: Jeff M. Phillips, University of Utah

Algorithm 9.4.3 Detailed Gonzalez Greedy Algorithm for k-Center Clustering (with 2 loops)
Choose c1 ∈ X arbitrarily, and set φ[j] = 1 for all j ∈ [n]
for i = 1 to k do
M = 0, ci = x1
for j = 1 to n do

if d(xj , cφ[j]) > M then
M = d(xj , cφ[j]), ci = xj

for j = 1 to n do
if d(xj , cφ[j]) > d(xj , ci) then
φ[j] = i

CS 6955 Data Mining; Spring 2013 Instructor: Jeff M. Phillips, University of Utah

