
L7 -- Distances
[Jeff Phillips - Utah - Data Mining]

What makes a good distance?

a distance d(a,b) is a metric if
 * d(a,b) >= 0 (non-negativity)
 * d(a,b) = 0 iff a=b (identity)
 * d(a,b) = d(b,a) (symmetry)
 * d(a,b) <= d(a,c) + d(c,b) (triangle inequality)

Not all distance follow this; but very convenient.

Euclidean Distance (in R^d)
 a = (a1,a2,a3,...,ad)
 b = (b1,b2,b3,...,bd)

d(a,b) = sqrt(sum_{i=1}^d (ai-bi)^2)
 = L2(a,b)
 = ||a - b||_2

Lp(a,b) = (sum_{i=1}^d |ai-bi|^p)^{1/p}
 * L1 = "manhattan distance"
 LSH via 1-stable distributions
 --> Cauchy distribution (1/pi)(1/1+x^2)

 * L0 = number of differences
 (used for comparing min-hash signatures)
 "Hamming distance"
 LSH via minhash (bounded t=d)
 almost 1-stable, can use close by .001-stable, but inefficient

 * Linfty = maximum distance
 = max(sum_{i=1}^d (ai-bi))
 "rotation of L1"

Is L2(a,b) a metric?
 non-negativity: square makes bigger than 0
 identity: if any coordinate different -> >0
 symmetry: (ai-bi) = (bi-ai)
 triangle: <draw triangle :) >

Jaccard Distance:
 d_J(a,b) = 1-Jac(a,b)

 Venn Diagram --> Symmetric Difference / Union

 non-negativity: intersection cannot exceed union
 identity: a cap a = a cup a = a
 if a != b, then a cap b strict subset a cup b
 symmetry: yes
 triangle: d_J(a,b) <= d_J(a,c) + d_J(c,b)

Cosine Distance
 "angle between vectors"
 cos(a,b) = arccos(sum_{i=1}^d a_i * b_i) \in [0,pi]

 treats points a,b as "vectors". Does not care of magnitude, only
"direction"

 non-negativity: by definition
 identity: treats multiples of vectors as equivalent (make unit vectors)
 symmetry: a_i * b_i = b_i * a_i
 triangle: geodesic distance on unit sphere
 shortest rotation

Good when want to ignore scale of objects.

LSH: Choose random vector v
 if <v, a> > 0 h(a) = +1
 else h(a) = -1
 Can make v = {-1,+1}^d
Same as Jaccard, but [0,pi] instead of [0,1]
 (gamma,phi,(pi-gamma)/pi,phi/pi)-sensitive

Edit Distance
 a, b strings

 edit(a,b) = # operations to make a -> b
 - delete
 - insert

 a = "mines"
 b = "smiles"

edit(a,b) = 3
 - insert 's' before 'm'
 - delete 'n'
 - insert 'l' after 'i'

many variations ("replace" operation)

 non-negativity: # edits is non-negative
 identity: only no edits if same
 symmetry: can reverse operations
 triangle: any intermediate -> equality
 any deviation -> more edits

Is this good for large text documents?
 - slow to compute
 - moving a sentence is a large edit, may change content little

 - good for approximate string queries (google search, auto-correct)
 edit(a,b) > 3 is pretty large

Much work to approximate by L_1 distance (so can use LSH).
 (eps,delta) keeps improving.

Graph Distance

Let G = (V,E) be a graph
 V = vertices
 E = edges E subset V x V
edges can be ordered or unordered
 (u,v) {u,v}
edges can have weights w_{u,v} (=1 default)
 (usually non-negative, infinite if non-existent)

<draw graph>

d(u,v) = min # edges between (u,v)
Path P = <u=r0,r1,r2,...,r{t-2},v=r{t-1}>
such that (u,r1) , (r{t-2},v), (ri,r{i+1}) in E
length(P) = sum_{ri,r{i+1}} w_{ri,r{i+1}}
d(u,v) = min_P<u...v> length(P)

Metric if w_(u,v) > 0, unordered
 non-negativity: sum non-negative weights
 identity: only if no edges

 symmetry: can reverse edges
 triangle: any intermediate on path -> equality
 any deviation of path -> violates min-length-path

Much work to approximate graph by L_1 or L_2 distance so can use LSH

