L7 -- Distances

[Jeff Phillips - Utah - Data Mining]
What makes a good distance?

```
a distance d(a,b) is a metric if
    * d(a,b) >= 0 (non-negativity)
    * d(a,b) = 0 iff a=b (identity)
    * d(a,b) = d(b,a) (symmetry)
    * d(a,b) <= d(a,c) + d(c,b) (triangle inequality)
```

Not all distance follow this; but very convenient.

```
Euclidean Distance (in R^d)
    a = (a1,a2,a3,...,ad)
    b = (b1,b2,b3,...,bd)
d(a,b) = sqrt(sum_{i=1}^d (ai-bi)^2)
        = L2(a,b)
        = ||a - b||_2
Lp(a,b) = (sum_{i=1}^d |ai-bi|^p)^{1/p}
    * L1 = "manhattan distance"
        LSH via 1-stable distributions
                            --> Cauchy distribution (1/pi)(1/1+x^2)
    * L0 = number of differences
        (used for comparing min-hash signatures)
        "Hamming distance"
            LSH via minhash (bounded t=d)
                almost 1-stable, can use close by .001-stable, but inefficient
    * Linfty = maximum distance
        = max(sum_{i=1}^d (ai-bi))
        "rotation of L1"
```

Is $\operatorname{L2}(a, b)$ a metric?
non-negativity: square makes bigger than 0
identity: if any coordinate different -\gg0
symmetry: (ai-bi) = (bi-ai)
triangle: <draw triangle :) >

```
Jaccard Distance:
    d_J(a,b) = 1-Jac(a,b)
    Venn Diagram --> Symmetric Difference / Union
    non-negativity: intersection cannot exceed union
    identity: a cap a = a cup a = a
            if a != b, then a cap b strict subset a cup b
    symmetry: yes
    triangle: d_J (a,b) <= d_J (a,c) + d_J(c,b)
Cosine Distance
    "angle between vectors"
    cos(a,b) = arccos(sum_{i=1}^d a_i * b_i) \in [0,pi]
    treats points a,b as "vectors". Does not care of magnitude, only
"direction"
    non-negativity: by definition
    identity: treats multiples of vectors as equivalent (make unit vectors)
    symmetry: a_i * b_i = b_i * a_i
    triangle: geodesic distance on unit sphere
                shortest rotation
```

Good when want to ignore scale of objects.

LSH: Choose random vector v
if <v, a>>0 $h(a)=+1$
else $\quad h(a)=-1$
Can make $v=\{-1,+1\} \wedge d$
Same as Jaccard, but [0,pi] instead of [0,1] (gamma, phi, (pi-gamma)/pi,phi/pi)-sensitive

Edit Distance
a, b strings
$\operatorname{edit}(a, b)=\#$ operations to make a-> b

- delete
- insert
$a=$ "mines"
b = "smiles"

```
edit(a,b) = 3
    - insert 's' before 'm'
    - delete 'n'
    - insert 'l' after 'i'
```

many variations ("replace" operation)
non-negativity: \# edits is non-negative
identity: only no edits if same
symmetry: can reverse operations
triangle: any intermediate -> equality
any deviation -> more edits

Is this good for large text documents?

- slow to compute
- moving a sentence is a large edit, may change content little
- good for approximate string queries (google search, auto-correct) edit $(a, b)>3$ is pretty large

Much work to approximate by L_1 distance (so can use LSH).
(eps,delta) keeps improving.

Graph Distance
Let $G=(V, E)$ be a graph
$\mathrm{V}=$ vertices
E = edges E subset $\mathrm{V} \times \mathrm{V}$
edges can be ordered or unordered
(u,v) $\{u, v\}$
edges can have weights $w_{-}\{u, v\}$ ($=1$ default)
(usually non-negative, infinite if non-existent)
<draw graph>
$d(u, v)=$ min \# edges between (u,v)
Path $P=<u=r 0, r 1, r 2, \ldots, r\{t-2\}, v=r\{t-1\}>$
such that (u,r1) , (r\{t-2\},v), (ri,r\{i+1\}) in E
length(P) $=$ sum_ $\{r i, r\{i+1\}\} w_{-}\{r i, r\{i+1\}\}$
$d(u, v)=$ min_P<u...v> length (P)
Metric if w_(u,v) > 0, unordered
non-negativity: sum non-negative weights
identity: only if no edges

```
symmetry: can reverse edges
triangle: any intermediate on path -> equality
    any deviation of path -> violates min-length-path
```

Much work to approximate graph by L_1 or L_2 distance so can use LSH

