Universe of n elements [n$]$
[][][][][][][][][][][][][][][][][][][]
A "trial" draws a random element from [n].
After k trials, what phenomenon occur?
Birthday Paradox:
after about $k=s q r t\{n\}$ trials some element appears twice
Coupon Collectors:
after about $k=n \log n$ trials, we see all elements each element appears on average $\log \mathrm{n}$ times
all "nice" sets w.p. eps with (1/eps) log (1/eps) trials
Today: When is the distribution "even" and Tail Bounds

What does "even" mean?
S_k := k random samples from [n]
$f_{-} i=\#$ trials with i $\backslash i n[n]$ in S_k
E[f_i] = k/n
W_k = max_i |f_i - k/n|
as k increases, we expect W_k to grow!
setting $\mathrm{k}=0$ is silly
Z_k = max_i |~f_i - 1/n|
$\sim f_{-} i=f_{-} i / k \quad \mid \quad$ fraction of elements with value i
$E\left[\sim f_{-} i\right]=1 / n$
as k increases, we expect Z_k to decrease
If Z_k <= eps we say S_k is an "eps-sample". (for eps in $[0,1]$, usually eps $=\{.1, .001\}$)

How large does k need to be for S_k to be an eps-sample?
k ~ 1/eps^2
independent of n.
Setting eps = c/n has Z_k < c/n and W_k < c
--> $k=n \wedge 2 / c^{\wedge 2}$
$c=0.1$-> k ~ 100n^2
(a lower bound of (1/16) * 1/eps^2 / in practice about (1/2) 1/eps^2)

Non-uniform distribution:
i in [n] w.p. p_i
then $Z_{-} k=m a x _i \quad \mid \sim f _i-p _i l$
--> again k ~ 1/eps^2

Continuous domains:
Consider any distribution D [draw curve]
Consider any interval I w.p. p_i of having a random sample from D.
Z_k $=\max _{-}\{I\} \quad\left|\sim f _i-p _i\right|$
Still need $k \sim 1 / e p s \wedge 2$

Works in higher dimensions R^d as well. Instead of intervals -> rectangles, disks, ...
need about k~d/eps^2

Other error measures:
We consider ${ }^{* *}$ worst case bounds** why?

- computer scientists like worst case bounds
- L_1 or L_2? (average error, average squared error) similar results (k~1/eps^2) but can be messier or show variance decreases at about same rate

Tail Bounds:
Markov Inequality
Chernoff-Hoeffding Inequality
How to combine rare events:
The Union Bound

```
Markov Inequality:
    X = random variable, X>0
    Pr[X > a] <= E[X]/a
```

[draw distribution]
- plot average
- if too much "mass" is too large, then average is too low
Consider if not true: gamma $=\operatorname{Pr}[X>a]$
$E[X]=(1$-gamma) $0+$ gamma $a=$ gamma $a>(E[X] / a) / a=E[X]$

Chernoff-Hoeffding Inequality:
r independent random variables $\left\{X _1, X _2, \ldots, X _r\right\}$
-Delta_i <= X_i <= Delta_i

```
    M = sum_{i=1}^r X_i (average of X_i)
    E[M] = 0
Pr[M > a] <= 2 exp(-a^2 / 2 sum_i^r Delta_i^2).
idea for proof: (use Markov Inequality)
    Pr[M > a] = Pr[exp(tM) > exp(t a)]
            <= E[\operatorname{exp(tM)]/exp(ta)]}
            = prod_{i=1}^r E[exp(t X_i)]/exp(ta)
            <= prod_{i=1}^r exp(t^2 Delta_i^2 /2) /exp(ta)
            = exp((t^2 /2) sum_i Delta_i^2 - ta)
    choose t = a/sum_i Delta_i ...
            = exp (-a^2 / 2 sum_i Delta_i^2)
    **magic Lemma** is E[exp(t X_i)] <= exp(t^2 Delta_i^2 /2)
[draw cumulative density plot]
    Central Limit Theorem
```

```
    Use C-H to prove eps-Sample Bound (for one ~f_i).
```

Each (of k) trials is a random variable Y_i
$Y_{-} j=1$ if it chooses i in [n]
$Y_{-} j=0$ if it does not choose i
New random variable X_{-}j
$X_{-} j=Y_{-} j-1 / n$
$E\left[X_{-j}\right]=0$
Delta_i = 1 ($-1 / n<=X_{-} j<=1-1 / n$)
hat $\{M\}=\operatorname{sum}_{-}\{j=1\}^{\wedge} \mathrm{k}_{\mathrm{k}} \mathrm{Y}_{-} \mathrm{j} \quad \mid \quad \#$ random trials with i
$M=(1 / n) \operatorname{sum}_{-}\{j=1\} \wedge k X_{-} j=(\operatorname{hat}\{M\}-k) / n$
fraction of random trials more than expected to have index i
Set $a=$ eps, and delta in (0,1)
$\operatorname{Pr}[$ hat $\{M\}-E[h a t\{M\}]>$ eps $n]=\operatorname{Pr}[M>a]$
$<2 \exp (-a \wedge 2 / 2$ sum_j Delta_i^2)
= $2 \exp (-e p s \wedge 2 / 2 k)<d e l t a$

Solve for k-> k >= (2/eps^2) $\ln (2 /$ delta)

Some probability delta of failure. Trade-off between eps and delta is exponential!
PAC = "probably approximately correct"
[draw eps-(1-delta) trade-off cumulative density plot]

```
For only one i \(\operatorname{\text {in}}\) [n]
```

```
Union Bound:
Consider \(t\) random variables \(\left\{Z \_1, \ldots, Z_{-} t\right\}\)
\(Z_{-} i=1\) wp \(p_{-} i\) and \(Z_{-} 1=0\) w.p. \(q_{-} i=1-p_{-} i\)
All random variables \(=1\)
w.p p >= 1 - sum_\{i=1\}^ q_i
```

Z_i do ${ }^{* *}$ not** need to be independent

- add probabilities of failure!

Apply to eps-Samples
n indices to consider

Want bound on k, so >= 1-delta probability of failure on **all** indices. k = (2/eps^2) ln(2/delta') for one index w.p. 1-delta'
Union bound on n indices $->$ prob. of failure $=$ delta'* n
-> prob. of success = 1-delta'*n = 1-delta -> delta' = delta/n
-> $k=(2 / e p s \wedge 2) \ln (2 n / d e l t a)$
eps-sample (at most eps error on ${ }^{* * a l l * *}$ indices)

- factor of n, but inside $\ln ()$
- can remove $\ln (n)$ term (not $\ln (1 / d e l t a)$), but much more complicated

Numbers: Let eps $=1 / 10$ so $1 / \mathrm{eps}^{\wedge} 2=100$

delta	ln (2/delta)
.1	3
.05	3.7
.01	5.3
.005	6
.001	7.6
.0005	\|
.0001	8.3
.00001	I
.000001	12.2

