```
L26 -- Graph Sparsification
[Jeff Phillips - Utah - Data Mining]
Large graph
    G = (V,E)
```

Might be slow to handle if |V| large and $|E|=|V| \wedge\{1+c\}$
want:
$\mathrm{H}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ close to G
and
$|E '| \sim=|V| \log |V|$

Technique 1:

```
degree of vertex v_i = d_i
Sample each edge (i,j) w.p.
    p_{ij} = min{1, t/min{d_i, d_j}}
    re-weight sampled edged, inverse to probability chosen
        or with same weight if chosen w.p. 1
```

Keep all edges of nodes with degree at most t
All other edges keep proportional to t/d_i for min degree endpoint
$\mathrm{E}[|\mathrm{E}|]<\mathrm{t}^{*}|\mathrm{~V}|$
Set $t=(1 / e p s \wedge 2) \log n$
--> Preserves "cut" within eps
Useful in Spectral Clustering
Finding Communities
Laplacian
L_G = D_G - A_G
D_G = diag(d_1, d_2, ..., d_|VI)
A_G = adjacancy matrix

Want sparse graph H s.t.
|IL_G - L_H|I_2 <= eps

(Technique 1 only works for x in $[0,1] \wedge \mid \mathrm{VI})$

Technique 2:
*** Effective Resistance ***
R_eff(e) is effective resistance between end points e = (u,v)
$(u, v)(u, a)(a, v)$ all strength 1
R_eff $(u, v)=1 /(1 / 2+1 / 1)=2 / 3$
Sample edges w.p. p_e ~~ "proportional to" R_eff(e)
Weight edge as $1 / p_{\text {_e }}$
--> Take $0((1 / e p s \wedge 2) n \log n)$ edges (with replacement, add weights)
Analysis very similar to column sampling (L14).
Recent papers (2011) improve runtime to about O(IV| $\log |V| \log (1 / e p s))$
idea: construct rough approx H_1
remove degree 1,2 nodes -> G_2 (contract edges)
construct rough approx H_2
remove degree 1,2 nodes -> G_3
... $\log n$ rounds
can be done faster with series of subtle but simple tricks

Currently, these are not quite practical. But expect to be practical in next 5 years? May lead to many very useful techniques...
...but worry about the (1/eps^2) factor

Approach 2:

```
Spanners
```

Start with metric d_G(a,b) for all a, b in V
often: d_G(a,b) = shortest path in Euclidean graph
a, b in $R \wedge d$ (for small d e.g. $d=2,3$)
(can be low doubling-dimension)
sometimes G is complete graph (all edges)
$G=(V, E)$
if (a, b) in E, then $d_{-} G(a, b)=||a-b||$
else (shortest path) = best combination
t-spanner H if
for all 1 <= d_H(a,b) / d_G(a,b) <= 1+t
measure (H):

+ \# edges
+ total weight
+ maximum degree
(we want each of these things to be small)
Algorithms:
+ Greedy: start no edges. Sort pairs be distance (small -> large)
If error > 1+t --> add edge
(works ok, hard to say much about measure)
+ Cone Based: around each point, divide space into $k>6$ cones.
Each cone defines set of directions. Find closest point +
connect

$$
\text { angle }=2 \mathrm{pi} / \mathrm{k} \quad->\quad \mathrm{t}<=1 /(1-\sin (\text { angle } / 2))
$$

+ WSPD: Set of pairs $\{(A, B)\}$ s.t. A, B subset V each (a, b) in exactly one pair
$\min _\{a \text { in } A, b \text { in } B\} d(a, b)>$
$s^{*} \max \left\{\max \{a 1, a 2\right.$ in $A\} d(a 1, a 2), \max _{-}\{b 1, b 2$ in $B\} d(b 1, b 2)$
Compute with (compressed) Quad Tree:
split node -> 4 (TL,TR,BL,BR)
for all A, B in (TL,TR,BL,BR)
if A, B s-WS -> into pairs
else check all pairs in split(A) vs. split(B)
--> size $0(s \wedge d|V|)$ and computed in $0\left(|V| \log |V|+s^{\wedge} d|V|\right)$
--> each pair forms the edge of a spanner

