
L24 -- Efficient Page Rank
[Jeff Phillips - Utah - Data Mining]

MapReduce

Big data D = {D1, D2, ... Dm}
 too big for one machine
 each Di on machine i

 [Each machine has limited memory! ... compared to data]

proceeds in rounds (3 parts):
 1: Mapper
 all d in D -> (k(d), v(d))
 2: Shuffle
 moves all (k, v) and (k', v') with k=k' to same machine
 3: Reducer
 {(k,v1), (k,v2), ...,} -> output usually f(v1,v2,...)

1.5: Combiner
 if one machine has multiple (k,v1) , (k,v2)
 then performs part of Reduce before Shuffle.

Can think of output of Reducer as Di on machine i.
Then can string multiple MR-rounds together.

*** key-value pairs can encode much deeper computing power
 + Mapper f(Di) -> {(ki,vi)}_j -> with (ki = i, v_i = input to node i)
*** Provides very rubout system, many fail-safes if node goes down, gets
slow...
*** very simple!

-------- EXAMPLE ----------
Histogram into k bins
 Mapper d in D -> (k=bin(d), 1)
 (combiner)
 Reducer (k=i,v) --> output = sum v

Page Rank:

Internet stored as big matrix M (size=nxn)
 + sparse, 99%+ of entries are 0
 ([M[a,b] = 0] == no link from page a to page b)

 + P = beta M + (1-beta) B where B[a,b] = 1/n
 beta =~ 0.85

page-rank vector: q_* = P^t q as t-> infty (here t = 50 to 75 ok)
 "importance of webpage" (other details too, but this is computational hard
part)

Problems:
 - M is sparse, but B (implicit) and P^n is dense! Too BIG to store
 --> q_i is O(n) can always store, so just compute
 q_{i+1} = beta * M *q_i + (1-beta) e/n
 t times

 - Still very big computation. Gigabytes.
 Many machines and machine crash!
 --> MapReduce!

simple: assume q fits in one machine (twice: e.g. q_i and q_{i+1})

 --> break M into vertical stripes
 M = [M1 M2 ... Mk]
 (and q into q = [q1; q2; ...; qk] = horizontal split)
 then
 Mapper i -> (key=i' in [k] ; val = (row=r of Mi * qi))
 Reducer: adds values to get each element q[i'] * beta + (1-beta)/n

big q: what if q does not fit in a single machine?

option 1: Tiling.

 M into sqrt(k) x sqrt(k) blocks
 M = [M11 M12 .. M1sqrt{k};
 M21 M22 .. M2sqrt{k};
 ...;
 Msqrt{k}1 Msqrt{k}2 .. Msqrt{k}sqrt{k}]

 Mapper:
 k machines each get one block M_{i,j}
 and get sent q_i for i in [sqrt{k}]

 Reducer:
 on each row i', adds M_{i,j} q_i -> q[i']

 and does q_+[i'] = q[i'] * beta + (1-beta)/n

 Problems:
 - each q_i (for i in [sqrt{k}]) is sent sqrt{k} places
 - thrashing: on M_{i,j}
 --> solution: striping -> prefetching
 on q_+ (each column M_{i,j} may add to q_+[i'])
 --> solution: blocking on M_{i,j} (sqrt{k} x sqrt{k} blocks)
 read M_{i,j} once || read,write q/q_+ sqrt{k} times

Example:

M = [0 1/2 0 0]
 [1/3 0 1 1/2]
 [1/3 0 0 1/2]
 [1/3 1/2 0 0]

stripe:
 M1 = [0; 1/3; 1/3; 1/3]
 stored as (1: (1/3,2) (1/3,3) (1/3,4))
 M2 = [1/2; 0; 0; 1/2]
 stored as (2: (1/2,1) (1/2,4))
 M3 = [0; 1; 0; 0]
 stored as (3: (1,3))
 M4 = [1/3; 1/2; 0 0]
 stored as (4: (1/3,1) (1/2,2))

block:
 M11 = [0 1/2; 1/3 0]
 stored as (1: (1/2,2)) (2: (1/3,1))
 M12 = [0 0; 1 1/2]
 stored as (4: (1,1) (1/2,2))
 M21 = [1/3 0; 1/3 1/2]
 stored as (1: (1/3,3)) (2: (1/3,3) (1/2,4))
 M22 = [0 1/2; 0 0]
 stored as (3: (1/2,4))

Note that some blocks have no effect on some vector elements they are
responsible for
 --> M22 has no effect on q_+[3].
 --> M12 has no use for q[3].
 This is quite common, and can be used to speed up.

