MapReduce

```
Big data \(\mathrm{D}=\{\mathrm{D} 1, \mathrm{D} 2, \ldots \mathrm{Dm}\}\)
```

 too big for one machine
 each Di on machine i
 [Each machine has limited memory! ... compared to data]
 proceeds in rounds (3 parts):
1: Mapper
all d in D -> (k(d), v(d))
2: Shuffle
moves all (k, v) and (k', v') with k=k' to same machine
3: Reducer
$\{(k, v 1),(k, v 2), \ldots$,$\} -> output usually f(v 1, v 2, \ldots)$
1.5: Combiner
if one machine has multiple (k,v1) , (k,v2)
then performs part of Reduce before Shuffle.

Can think of output of Reducer as Di on machine i. Then can string multiple MR-rounds together.

```
*** key-value pairs can encode much deeper computing power
    + Mapper f(Di) -> {(ki,vi)}_j -> with (ki = i, v_i = input to node i)
*** Provides very rubout system, many fail-safes if node goes down, gets
slow...
*** very simple!
-------- EXAMPLE ----------
Histogram into k bins
    Mapper d in D -> (k=bin(d), 1)
        (combiner)
    Reducer (k=i,v) --> output = sum v
```

Page Rank:
Internet stored as big matrix M (size=nxn)
+ sparse, $99 \%+$ of entries are 0
($[\mathrm{M}[a, b]=0]==$ no link from page a to page b)
$+P=$ beta $M+(1$-beta) $B \quad$ where $B[a, b]=1 / n$
beta $=\sim 0.85$
page-rank vector: $\mathrm{q}_{-}^{*}=\mathrm{P} \wedge \mathrm{t} q$ as $\mathrm{t}-\mathrm{D}$ infty (here $\mathrm{t}=50$ to 75 ok)
"importance of webpage" (other details too, but this is computational hard part)

Problems:

- M is sparse, but B (implicit) and P^n is dense! Too BIG to store --> q_{-}i is $O(n)$ can always store, so just compute $q_{-}\{i+1\}=$ beta ${ }^{*} M$ *q_i + (1-beta) e/n
t times
- Still very big computation. Gigabytes. Many machines and machine crash! --> MapReduce!
simple: assume q fits in one machine (twice: e.g. $q_{-} i$ and $q_{-}\{i+1\}$)
--> break M into vertical stripes
M = [M1 M2 ... Mk]
(and q into $q=[q 1 ; q 2 ; \ldots ; q k]=$ horizontal split)
then
Mapper i -> (key=i' in [k] ; val = (row=r of Mi * qi))
Reducer: adds values to get each element q[i'] * beta + (1-beta)/n
big q : what if q does not fit in a single machine?
option 1: Tiling.

```
M into sqrt(k) x sqrt(k) blocks
    M = [M11 M12 .. M1sqrt{k};
        M21 M22 .. M2sqrt{k};
        ...;
        Msqrt{k}1 Msqrt{k}2 .. Msqrt{k}sqrt{k}]
```

 Mapper:
 \(k\) machines each get one block \(M_{-}\{i, j\}\)
 and get sent \(q_{-}\)i for \(i\) in [sqrt\{k\}]
 Reducer:
on each row i^{\prime}, adds $\mathrm{M}_{-}\{\mathrm{i}, \mathrm{j}\} \mathrm{q}_{-} \mathrm{i}$-> $q[i ']$
and does $q_{-}+\left[i^{\prime}\right]=q\left[i^{\prime}\right]$ * beta + (1-beta)/n
Problems:

- each q_{-}(for i in [sqrt\{k\}]) is sent sqrt\{k\} places
- thrashing: on $M_{-}\{i, j\}$
--> solution: striping -> prefetching
on $q_{-}+$(each column $M_{-}\{i, j\}$ may add to $\left.q_{-}+[i ']\right)$
--> solution: blocking on $M_{-}\{i, j\}$ (sqrt\{k\} x sqrt\{k\} blocks) read $M_{-}\{i, j\}$ once $\| \mid$ read,write $q / q_{-}+$sqrt $\{k\}$ times

Example:

```
M = [0
    [1/3 0 1 1 1/2]
    [1/3 0 0 1/2]
    [1/3 1/2 0 0 0]
```

stripe:
M1 = [0; 1/3; 1/3; 1/3]
stored as (1: $(1 / 3,2)(1 / 3,3)(1 / 3,4))$
M2 = [1/2; 0; 0; 1/2]
stored as (2: $(1 / 2,1)(1 / 2,4))$
M3 $=[0 ; 1 ; 0 ; 0]$
stored as (3: (1,3))
M4 = [1/3; 1/2; 0 0]
stored as (4: $(1 / 3,1)(1 / 2,2))$
block:

```
M11 = [0 1/2; 1/3 0]
    stored as (1: (1/2,2)) (2: (1/3,1))
M12 = [0 0; 1 1/2]
    stored as (4: (1,1) (1/2,2))
M21 = [1/3 0; 1/3 1/2]
    stored as (1: (1/3,3)) (2: (1/3,3) (1/2,4))
M22 = [0 1/2; 0 0]
    stored as (3: (1/2,4))
```

Note that some blocks have no effect on some vector elements they are responsible for
--> M22 has no effect on q-+[3].
--> M12 has no use for q[3].
This is quite common, and can be used to speed up.

