L2 - Birthday Paradox and Coupon Collectors

[Jeff Phillips - Utah - Data Mining]
Universe of n elements [n$]$
[][][][][][][][][][][][][][][][][][][]
A "trial" draws a random element from [n].
After k trials, what phenomenon occur?
Birthday Paradox:
after about $k=\operatorname{sqr} t\{n\}$ trials some element appears twice
Coupon Collectors:
after about $\mathrm{k}=\mathrm{n}$ log n trials, we see all elements
each element appears on average $\log \mathrm{n}$ times

Modeling:

```
[n] = set of all IP addresses
    = set of all words (or consecutive set of 3 words) in dictionary
    = set of all "types" of costumers
    = set of all products on Amazon
    = hash table buckets
```

 = birthdays of people in room (this room)
 $\mathrm{n}=365$ (ignore leap year) assume each day equally likely
2 people
$\operatorname{Pr}[$ Alice + Bob have same birthday] == ? = 1/365
-->
Pr[Alice + Bob have different birthdays] =
$1-1 / n=1-1 / 365 \sim=0.997$
k people
(k choose 2) $=k(k-1) / 2 \sim=k \wedge 2 / 2$ pairs of people
(independence) -->
$\operatorname{Pr}[$ no pair has same birthday] ~=~ (1-1/n)^\{k choose 2$\}$
$\sim=(1-1 / n) \wedge\left\{k^{\wedge} 2 / 2\right\}$
$\sim=0.997 \wedge\{253\}=0.467$
($\mathrm{n}=365$, $\mathrm{k}=23$)
$\operatorname{Pr}[$ some pair has same birthday] ~= 1-(1-1/n)^\{k^2/2\} ~= 0.532
> 50\%
<run class simulation>

* independence? (leap year, twins, more in spring?)

Sometimes can force independence (or 2-way independence)
when some collisions are more likely, these often govern probability, to a degree
$(1 / 4)+(3 / 4)\{1 /(n-1), 1 /(1-n), \ldots\}$ --> Prob 1/16^\{k^2\}

* sloppy -> k=n+1 --> (k=366, n=365) 1-(1-1/n)^\{k choose 2$\}=1-$ (0.997)^\{66795\} < 1
very small, but <1, so must be wrong.
1 - $((n-1) / n) \wedge\{k-1\} *((n-2) /(n-1)) \wedge\{k-2\} * \ldots$
$=1-\operatorname{prod}\{\{i=1\} \wedge\{k-1\} \quad((n-i-1) /(n-i)) \wedge\{k-i\}$
where the $n-1$ term is $(n-(n-1)-1) /(n-(n-1))=0 / 1=0$.
------->
$\mathrm{k}=\operatorname{sqrt}\{2 \mathrm{n}\}$
1 - (1-1/n)^\{k choose 2$\} \sim \sim 1-(1-1 / n)^{\wedge} n \sim \sim 1-1 / e \sim \sim 0.63$
Not much deviation from
happens 28% with between 18 and 28 people.
happens 96% before 50 people

```
[n] = set of coupons in cereal box "collect them all!"
    = (all "types" of customers)
Pr[all coupons after k trials]
    if k < n --> 0
    too hard...
Pr[we see a new coupon I seen t]
    = (n-t)/n = p_t
```

Given seen t coupons, expected time to see new one
T_t = 1/p_t
Expected time to all coupons:
sum_ $\{t=0\} \wedge\{n-1\}$ T_t
$=s u m_{-}\{t=0\} \wedge\{n-1\} \quad(n /(n-t))$
$=n * \operatorname{sum}_{-}\{t=1\} \wedge$ n ($1 / \mathrm{t}$)
$=n$ * H_n the "nth Harmonic Number"

```
H_n = gamma + ln n + o(1/n)
        gamma ~~ 0.577 "Euler-Masheroni constant"
```

```
--> \(k=n\) * H_n ~ n(gamma + ln n)
<run class simulation, w/ months>
```

* some events more/less likely.
--> dominated by min-probability (p^* $=$ min_i p_i) event
k ~~ (1/p*) ln n
 * all "nice" events that occur with probability at least p
k ~~ (1/p) log (1/p)
* about $n \ln n$ trials to hit all events, not n. Extra $\log n$ factor.
* all "nice" p-probability events with about ((1/p) $\log (1 / p))$ samples.

