Two techniques:

- random projections to subspace (data independent)
- basis selection

```
P in R^d and |P| = n
goal: mu : P -> R^k (k << d)
    s.t. max_{p,q in P}
(1-eps) ||p-q|| <= ||mu(p) - mu(q)||<= (1+eps) ||p-q||
```

Idea: randomly project the data to a subspace.

How to get a random vector? ???

1. compute random Gaussian variable $x \_i$ in R^d
2. normalize to $u_{-} i=x_{-} i /\left|\left|x \_i\right|\right|$

Then $\sim m u\left(y_{-} i\right)=<p, u_{-} i>$

Lets focus on simpler problem for now:
for one $p$ in $P$ (s.t. $||p||=1$ )
(1-eps/2) $||p|| \wedge 2<=||m u(p)|| \wedge 2<=(1+e p s / 2)| | p| | \wedge 2$
sqrt $\{(1-e p s / 2)\}>(1-e p s)$ and $\operatorname{sqrt}\{(1+e p s / 2)\}<(1-e p s)$ pretend just eps/2 = eps ...
$||p|| \wedge 2=\operatorname{sum}\{i=1\} \wedge d| | p_{-} i| | \wedge 2$

But, it has the same problem as homework.
$\mathrm{E}[||\sim m u(p)|| \wedge 2]==$ ???

$$
||p|| \wedge 2 / d<--- \text { too small }
$$

Let $m u(p)=\sim m u(p) * d$ now $E[||m u(p)|| \wedge 2]=||p|| \wedge 2$

Worst case $||m u(p)|| \wedge 2-||p|| \wedge 2<=(d-1)| | p| | \wedge 2=$ Delta_i $\operatorname{Var}[||m u(p)|| \wedge 2]=1$

Can use Chernoff Bound

- expected value $=0$
- bounded variance [or bounded worst case]

Choose $k$ random directions $\left\{u_{-} 1, u_{-} 2, \ldots, u_{-} k\right\}<--$ basis mu(p)_i $=<p, u_{-} i>{ }^{*} \operatorname{sqrt}\{d / k\}$

```
    mu(p) in R^k
||mu(p)||^2 = sum_{i=1}^k ||mu(p)_i||^2
E[||mu(p)||^2 - ||p||^2] = 0
E[||mu(p)_i||^2 - ||p||^2/k] = 0
Var[||mu(p)||^2] <= ||p||
Var[||mu(p)_i||^2] = ||p||/k
Var_i = Var[||mu_i(p)||^2/||p||^2] = 1/k
Pr[| ||mu(p)||^2 - ||p||^2 | > eps ||p||^2] =
Pr[| ||mu(p)||&2/|||||^2 - 1 | > eps] <
    2 exp(- eps^2 / 4 sum_{i=1}^k Var_i^2 ) =
    2 exp(- eps^2 / 4 k (1/k^2) )
    < delta'
    k eps^2 /4 = ln(2/delta')
    k = (4/eps^2) ln(2/delta'))
```

OK, so with $k=c / e p s \wedge 2 \log (1 / d e l t a ')$, one norm is preserved.
now think of each llp - qll for $p, q$ in $P$ a norm that needs preserving with $||m u(p)-m u(q)||=||m u(p-q)||$
since $m u$ is linear, then $m u(p)-m u(q)=m u(p-q)$
\{n choose 2$\}<n \wedge 2$ such norms
set delta' = delta/n^2
then chance that each norm has error is at most delta $/{ }^{\wedge} \wedge 2$
then chance any has norm error is sum_ $\{i=1\} \wedge n \wedge 2$ delta/n^2 $=$ delta <<<<<< Union Bound >>>>>>>

So $k=c / e p s \wedge 2 \log \left(n^{\wedge} 2 /\right.$ delta $)$ $=0((1 / e p s \wedge 2) \log (n / d e l t a))$

Problems:

- not as good as SVD (optimal in some sense)
- does not preserve dimension-structure
- ignores data distribution

Advantages:

+ very easy to implement
+ ignores data distribution (oblivious)
+ can be implemented very fast (only need random $\{-1,0,+1\}$ matrix)
+ if sparse -> no longer sparse (strangely, this prevents from being faster)

Column sampling

- returns set or $\mathrm{t}=\left(1 / e p \mathrm{~s}^{\wedge} 2\right) \mathrm{k}$ log k dimensions that is close to best k from SVD.
simple
compute $w(j)=\left|\left|p_{-}\right|\right| \wedge 2$ of each column.
Select column proportional to w(j)
<<<<<<<< just like k-means++ >>>>>>>>
assume that columns picked are $j$ on $J$ and $|J|=t$
set $m u(p)_{-} i=p_{-} j * 1 / w(j) *(d / t)$
--> mu(P) = Q_t
$\mathrm{P}=\mathrm{U} \mathrm{S}$ V^T $=$ [U_k U_k^\#] [S_k 0; 0 S_k^\#] [V_k ; V_k^\#] $=$ U_k S_k V_k^T + U_k^\# S_k^\# (V_k^\#)^T
P_k = U_k S_k V_k^T
-> gives weak approximation, but very easy.
-> can do both rows and columns to get both subspace and "coreset"
$\left||P-m u(P)| I \_2 \wedge 2=s u m \_\{p \text { in } P\}\right||p-m u(p)| I \_2 \wedge 2$
$\left|\left|P-m u \_k(P)\right|\right| \_2 \wedge 2=s u m \_\{p \text { in } P\}| | p-m u \_k(p) \mid I \_2 \wedge 2$
where mu_k is the best linear rank-k projection (from SVD)
||P - Q_t||_2^2 <= ||P - P_k|I_2^2 + eps ||P|I_F^2
and
IIP - Q_t|I_F^2 <= ||P - P_k|I_F^2 + eps ||P|I_F^2
Frobenious norm: $||P|| \_F \wedge 2=\operatorname{sum}\{i=1\} \wedge n| | p_{-} i| | \_2 \wedge 2$
--------------------
Better result:

1. Construct V_k^T <--- subspace of the best rank-k approximation defines mu_k( )
2. Let $w^{\prime}(j)=\left|\left|\left(V \_k \wedge T\right) \_j\right|\right| \wedge 2=s u m \_\{p \text { in } P\}\left(<m u \_k(p), x_{-} i>\right) \wedge 2$
3. Select $t=(1 / e p s \wedge 2) k$ log $k$ columns: J
$m u^{\prime}(p) \_i=p_{-}{ }^{*} 1 / w^{\prime}(j)$ * (d/t)
$m u '(P)=Q{ }^{\prime} \_t$

Now:
IIP - Q_t|I_F^2 <= IIP - P_k|I_F^2 + eps IIP - P_k|I_F^2
|IP - Q_t|I_F^2 <= (1+eps)||P - P_k|I_F^2
-> gives better approximation
-> takes about as long as SVD_k, but gives better result
$\mathrm{t}=\left(1 / \mathrm{eps}^{\wedge} 2\right) \mathrm{k} \log \mathrm{k}$
(1/eps^2) comes from Chernoff bound, need to bound error $\mathrm{k} \log \mathrm{k}$ comes from Coupon Collector, need to hit each top k component

