```
L13 -- A-Priori Example + Bloom Filters + Quantiles
[Jeff Phillips - Utah - Data Mining]
```

A-Priori Example
$\mathrm{T} 1=\{1,2,6,7\}$
T2 $=\{1,2,5,6\}$
$T 3=\{2,3,4,6\}$
$T 4=\{1,6,7\}$
$T 5=\{2,6\}$
\{n choose $k\}$ sets of size $k \sim n^{\wedge} k$ (too large)
Threshold 40\% -> 2/5
1: 3
2: 3
3: 2
4: 1 <discard>
5: 1 <discard>
6: 4
7: 2
1+2: 2
1+3: 0 <discard>
1+6: 3
1+7: 2
2+3: 1 <discard>
2+6: 3
2+7: 1 <discard>
3+6: 1 <discard>
3+7: 0 <discard>
6+7: 2
1+2+6: 2
1+6+7: 2
none at size 4 possible.
Maximal (at 40\%): (1+2+6) (1+6+7) (3)

Streaming Algorithms

```
Stream : A = <a1,a2,...,am>
    ai in [n] size log n
Compute f(A) in poly(log m, log n) space
    "one pass"
Let f_j = |{a_i in A | a_i = j}|
F_1 = sum_j f_j = m == total count
Bloom Filters
Maintain set S subset [u]
    allow false positives
        no fasle negatives
Initialize Array B of n bits all 0
have k hash functions {h1, h2, ..., hk} in \H
Put a_i in A in set S:
    for j = 1 to k
        set B[hj(a_i)] := 1
Check if a_i in A in set S:
        for j = 1 to k
        if (B[hj(a_i)] == 0) --> return NO
    return YES
*** No false negatives
*** Some false positives
```

Analysis:
m bits:
n items
probability a bit not set to 1 by 1 hash function: 1-1/m
probability bit not set to 1 by k hash functions: (1-1/m)^k
on inserting n elements, probability a bit is 0: (1-1/m)^\{kn\}

```
on inserting n elements, probability a bit is 1:
    1 - (1-1/m)^{kn}
probability of false positive:
(1 - (1-1/m)^{kn})^k
    ~=
(1 - e^{-kn/m})^k
    [(*) not quite right, assumes independence of bits being set ]
So what is the "right" value of k?
    k ~= (m/n) ln 2
Quantiles:
Let [u] be an ordered set.
Let A be multiset in [u] size n
Quantile:
Given x in [u]
    -> A_x = {a in A | a <= x}
    -> |A_x|/n
eps-quantile:
    for any x in [u]
        --> return q(x) s.t.
            | q(x) - |A_x|/n | <= eps
*** Like a histogram
Old best algorithm: Greenwald-Khanna
Maintain set of break points:
\{b1, b2, ..., b_k\} such that know approximate q(bj) for each bj
sometimes insert new points, occasionally delete old points if too dense
works ok, but very complicated analysis.
\(\mathrm{k}=0((1 / \mathrm{eps}) \log (\mathrm{eps} \mathrm{n}) \log (\mathrm{u}))\)
---------
New best algorithm: mergeable summaries
Maintain set \(S\) of \(k \sim(1 / e p s)\) points
```

```
    q(x) = |S_x| / k
    each point "worth" 1/k
merge two summaries S1, S2
    --> sort S1 cup S2
        size = 2k
    --> reduce size, pick all even points or all odd points
        + unbiased
        + size k
    If k = O((1/eps) sqrt(log(1/eps))) error does not grow
But what if |S1| != |S2|?
    let N = 2^s for smallest s s.t. 2^s >= n
store:
    S as h = log(1/eps) levels
        level l in [log(1/eps)]
        level represents N/(2^l) points
        level h+1 is random "buffer" : sample of constant size
    Each level is size k = O((1/eps) sqrt(log(1/eps)))
        levels are either empty or full
    on merge, merge equal weight levels.
    + points only "move down" in levels
Size now k*h = O((1/eps) log^{3/2} (1/eps))
```

Streaming: each new point is merged into random buffer

