L11: Spectral Clustering

Another perspective on clustering is that there are three main types: (1) Bottom-Up, (2) Assignment-Based, and (3) Top-Down. The bottom-up variety was like the hierarchical clustering where we start will very small clusters and build bigger clusters. The assignment based clustering was like the k-center of the k-means variety were we "assign" each object to a center. Given the centers, there is no need to build or carve the clusters. The third type, top-down clustering, is what we will be discussing here. It starts from one big cluster and gradually divides the big clusters into smaller and smaller clusters.

At a high level the idea of top down clustering can be described very easily.

- Find the best cut of the data into two pieces.
- Recur on both pieces until that data should not be split anymore.

What remains is to determine the best way to split a set into two pieces. Then finding a threshold has similar options as with Hierarchical clustering.

Also we will need to discuss graphs, and perform clustering on graphs.

11.1 Graphs

A graph is an abstract data type that may seem very natural once you are familiar with and used to it. But if it is new, it may take a while to sink in. We will revisit them many times in the class.

A graph $G=(V, E)$ is defined by a set of vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and a set of edges $E=$ $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ where each edge e_{j} is an unordered (or ordered in a directed graph) pair of edges: $e_{j}=$ $\left\{v_{i}, v_{i^{\prime}}\right\}$.

Two vertices v_{1} and v_{k} are connected if there is a sequence of edges $\left\langle e_{1}, \ldots, e_{k-1}\right\rangle$ such that e_{1} contains v_{1}, e_{k-1} contains v_{k}, and each consecutive edges can be ordered so $e_{j}=\left\{v_{i}, v_{i+1}\right\}$ and $e_{j+1}=\left\{v_{i+1}, v_{i+2}\right\}$ where that the second element in e_{j} is the same as the first in e_{j+1}.

Consider an example graph portrayed three ways.
Mathematically: $\quad G=(V, E)$ where

$$
\begin{aligned}
V & =\{a, b, c, d, e, f, g\} \text { and } \\
E & =\{\{a, b\},\{a, c\},\{a, d\},\{b, d\},\{c, d\},\{c, e\},\{e, f\},\{e, g\},\{f, g\},\{f, h\}\} .
\end{aligned}
$$

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be symmetric).

$$
\left.G=\left\lvert\, \begin{array}{l|llllllll}
& a & b & c & d & e & f & g & h \\
\hline a & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
b & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
c & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
d & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
e & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
f & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
g & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
h & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right.\right)=\left(\begin{array}{cccccccc}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Pictorially: A ball stick model of a graph.

11.2 Clustering on Graphs

So how to cluster a graph? A cluster is a subset $S \subset V$. We are performing top down clustering, so we only need to consider a subset S and its compliment $\bar{S}=V \backslash S$.

In generally, we want many edges in a cluster (small width), and few edges between clusters (large split).

- The volume of cluster is $\operatorname{Vol}(S)=$ the number of edges with at least one vertex in V.
- The cut between two clusters S, T is $\operatorname{Cut}(S, T)=$ the number of edges with one vertex in S and the other in T.

Then we want a large $\operatorname{Vol}(S)$ for each cluster and a small $\operatorname{Cut}(S, T)$ for each pair of clusters.
Specifically, the normalized cut between S and T is $\operatorname{NCut}(S, T)=\frac{\operatorname{Cut}(S, T)}{\operatorname{Vol}(S)}+\frac{\operatorname{Cut}(S, T)}{\operatorname{Vol}(T)}$. And we want to find the cluster S (and compliment $T=V \backslash S$) that has the minimum $\operatorname{NCut}(S, T)$. Dividing by $\operatorname{Vol}(S)$ and $\operatorname{Vol}(T)$ prevents us from finding either S or T that is too small, and the $\operatorname{Cut}(S, T)$ on top will force a large split.

For instance, in the above example, the minimum normalized cut is $S=\{a, b, c, d\}$, but the cluster with $S^{\prime}=\{h\}$ has just as small $\operatorname{Cut}\left(S^{\prime}, T^{\prime}\right)$ value. But its normalized cut is $1+\frac{1}{10}=1.1$, where as $\operatorname{NCut}(S, T)=\frac{1}{6}+\frac{1}{5}=0.367$.

11.2.1 Spectral Clustering

Start with an adjacency matrix

$$
A=\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

and the degree matrix, which along the diagonal stores the degree of each vertex. The degree of a vertex is the number of edges that contain that vertex.

$$
D=\left(\begin{array}{llllllll}
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then the Laplacian matrix is the adjacency matrix subtracted from the degree matrix

$$
L=D-A=\left(\begin{array}{cccccccc}
3 & -1 & -1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 3 & -1 & -1 & 0 & 0 & 0 \\
-1 & -1 & -1 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 3 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1
\end{array}\right)
$$

Note that the entries in each row and column of L sum up to 0 .

- think of D as the flow into a vertex, and
- think of A as the flow out of the vertex.

The water keeps flowing, so it does not get stuck anywhere. That is, as much flows in as flows out.
The eigenvector of a matrix M is the the vector v such that

$$
M v=\lambda v
$$

where λ is a scalar. Then λ is the corresponding eigenvalue. We usually restrict that $\|v\|=1$.
There are (typically) several eigenvectors of L (the Laplacian): We list them here sorted by λ.

λ	0	$\mathbf{0 . 2 7 8}$	1.11	2.31	3.46	4	4.82
V	$1 / \sqrt{8}$	-.36	0.08	0.10	0.28	0.25	$1 / \sqrt{2}$
	$1 / \sqrt{8}$	-.42	0.18	0.64	-.38	0.25	0
	$1 / \sqrt{8}$	-.20	-.11	0.61	0.03	-.25	0
	$1 / \sqrt{8}$	-.36	0.08	0.10	0.28	0.25	$-1 / \sqrt{2}$
	$1 / \sqrt{8}$	0.17	-.37	0.21	-.54	-.25	0
	$1 / \sqrt{8}$	0.36	-.08	-.10	-.28	0.75	0
	$1 / \sqrt{8}$	0.31	-.51	-.36	-.56	0.56	0
	$1 / \sqrt{8}$	0.50	0.73	0.08	0.11	0.11	0

This can be calculated easily in matlab using the $[V, \Lambda]=$ eig (L) command.
The first eigenvalue of the Laplacian is always 0 , and the first eigenvector is always $1 / \sqrt{|V|}$ in every element.

The second eigenvector (the Fiedler vector) of the Laplacian is a very important descriptor of a graph. In the example it is $u_{2}=(-.36,-.42,-.20,-.36,0.17,0.36,0.31,0.50)$ as read off the second column of the above chart.

- It tells us how to best cut the graph.
- It tells us how "best" to put all of the vertices on a single line
- We can set $S=\left\{v_{i} \in V \mid u_{2}\left(v_{i}\right)<0\right\}$ and $T=V \backslash S$.

Then $S=\{a, b, c, d\}$ and $T=\{e, f, g, h\}$.

- Can sometimes do better by checking all possible cuts along v_{2} (use any threshold, not only 0). Take one with best $\operatorname{NCut}(S, T)$.

The third eigenvector can be useful too. It can be used (with the second eigenvector) to lay out the vertices in \mathbb{R}^{2}, and can then be used to make a 4 -way cut.

$$
\begin{aligned}
{[++] S } & =\{h\} \text { defined as } v_{2}>0 \text { and } v_{3}>0 \\
{[+-] T } & =\{e, f, g\} \text { defined as } v_{2}>0 \text { and } v_{3}<0 \\
{[-+] U } & =\{a, b, d\} \text { defined as } v_{2}<0 \text { and } v_{3}>0 \\
{[--] R } & =\{c\} \text { defined as } v_{2}<0 \text { and } v_{3}>0 .
\end{aligned}
$$

When drawing the graph using v_{2} and v_{3} its good to scale the values by $1 / \sqrt{\lambda_{i}}$ along each axis. Note that in the drawing below points a and d are directly on top of each other. From the perspective of the graph, they are indistinguishable. The eigenstructure does not separate them until v_{7}.

Alternatively, we can use the first d eigenvectors (scaled by eigenvalues) to embed the vertices in \mathbb{R}^{d}. Then we can use any Euclidean clustering algorithm (such as Lloyds for k-means clustering). The smaller the eigenvector, the more important the direction. So the larger the index of the eigenvalue, the smaller the $1 / \sqrt{\lambda_{i}}$ will be. So the top 5 or so (depending on data) may be all required.

More generally, the adjacency matrix need not be $0-1$. It can be filled with the similarity value defined by some similarity between elements. The diagonal is defined as the sum of elements in a row (or column-it must be symmetric). Then spectral cluster can be run as before. When similarity is small, it is a good heuristic to set the values to 0 to make the algorithm run faster.

