
L11: Spectral Clustering

Another perspective on clustering is that there are three main types: (1) Bottom-Up, (2) Assignment-Based,
and (3) Top-Down. The bottom-up variety was like the hierarchical clustering where we start will very small
clusters and build bigger clusters. The assignment based clustering was like the k-center of the k-means
variety were we “assign” each object to a center. Given the centers, there is no need to build or carve the
clusters. The third type, top-down clustering, is what we will be discussing here. It starts from one big
cluster and gradually divides the big clusters into smaller and smaller clusters.

At a high level the idea of top down clustering can be described very easily.

• Find the best cut of the data into two pieces.
• Recur on both pieces until that data should not be split anymore.

What remains is to determine the best way to split a set into two pieces. Then finding a threshold has similar
options as with Hierarchical clustering.

Also we will need to discuss graphs, and perform clustering on graphs.

11.1 Graphs
A graph is an abstract data type that may seem very natural once you are familiar with and used to it. But if
it is new, it may take a while to sink in. We will revisit them many times in the class.

A graph G = (V,E) is defined by a set of vertices V = {v1, v2, . . . , vn} and a set of edges E =
{e1, e2, . . . , em} where each edge ej is an unordered (or ordered in a directed graph) pair of edges: ej =
{vi, vi′}.

Two vertices v1 and vk are connected if there is a sequence of edges 〈e1, . . . , ek−1〉 such that e1 contains
v1, ek−1 contains vk, and each consecutive edges can be ordered so ej = {vi, vi+1} and ej+1 = {vi+1, vi+2}
where that the second element in ej is the same as the first in ej+1.

Consider an example graph portrayed three ways.

Mathematically: G = (V,E) where

V = {a, b, c, d, e, f, g} and

E =
{
{a, b}, {a, c}, {a, d}, {b, d}, {c, d}, {c, e}, {e, f}, {e, g}, {f, g}, {f, h}

}
.

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be
symmetric).

G =

a b c d e f g h

a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

=



0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0


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Pictorially: A ball stick model of a graph.
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11.2 Clustering on Graphs
So how to cluster a graph? A cluster is a subset S ⊂ V . We are performing top down clustering, so we only
need to consider a subset S and its compliment S̄ = V \ S.

In generally, we want many edges in a cluster (small width), and few edges between clusters (large split).

• The volume of cluster is Vol(S) = the number of edges with at least one vertex in V .
• The cut between two clusters S, T is Cut(S, T ) = the number of edges with one vertex in S and the

other in T .

Then we want a large Vol(S) for each cluster and a small Cut(S, T ) for each pair of clusters.
Specifically, the normalized cut between S and T is NCut(S, T ) = Cut(S,T )

Vol(S) + Cut(S,T )
Vol(T ) . And we want to

find the cluster S (and compliment T = V \ S) that has the minimum NCut(S, T ). Dividing by Vol(S) and
Vol(T ) prevents us from finding either S or T that is too small, and the Cut(S, T ) on top will force a large
split.

For instance, in the above example, the minimum normalized cut is S = {a, b, c, d}, but the cluster
with S′ = {h} has just as small Cut(S′, T ′) value. But its normalized cut is 1 + 1

10 = 1.1, where as
NCut(S, T ) = 1

6 + 1
5 = 0.367.

11.2.1 Spectral Clustering
Start with an adjacency matrix

A =



0 1 1 1 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0
1 1 1 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0


and the degree matrix, which along the diagonal stores the degree of each vertex. The degree of a vertex is
the number of edges that contain that vertex.

D =



3 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 3 0 0 0 0 0
0 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 1


.
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Then the Laplacian matrix is the adjacency matrix subtracted from the degree matrix

L = D −A =



3 −1 −1 −1 0 0 0 0
−1 2 0 −1 0 0 0 0
−1 0 3 −1 −1 0 0 0
−1 −1 −1 3 0 0 0 0
0 0 −1 0 3 −1 −1 0
0 0 0 0 −1 3 −1 −1
0 0 0 0 −1 −1 2 0
0 0 0 0 0 −1 0 1


.

Note that the entries in each row and column of L sum up to 0.

• think of D as the flow into a vertex, and
• think of A as the flow out of the vertex.

The water keeps flowing, so it does not get stuck anywhere. That is, as much flows in as flows out.
The eigenvector of a matrix M is the the vector v such that

Mv = λv,

where λ is a scalar. Then λ is the corresponding eigenvalue. We usually restrict that ‖v‖ = 1.
There are (typically) several eigenvectors of L (the Laplacian): We list them here sorted by λ.

λ 0 0.278 1.11 2.31 3.46 4 4.82

V 1/
√

8 −.36 0.08 0.10 0.28 0.25 1/
√

2

1/
√

8 −.42 0.18 0.64 −.38 0.25 0

1/
√

8 −.20 −.11 0.61 0.03 −.25 0

1/
√

8 −.36 0.08 0.10 0.28 0.25 −1/
√

2

1/
√

8 0.17 −.37 0.21 −.54 −.25 0

1/
√

8 0.36 −.08 −.10 −.28 0.75 0

1/
√

8 0.31 −.51 −.36 −.56 0.56 0

1/
√

8 0.50 0.73 0.08 0.11 0.11 0

This can be calculated easily in matlab using the [V ,Λ] = eig(L) command.
The first eigenvalue of the Laplacian is always 0, and the first eigenvector is always 1/

√
|V | in every

element.
The second eigenvector (the Fiedler vector) of the Laplacian is a very important descriptor of a graph. In

the example it is u2 = (−.36,−.42,−.20,−.36, 0.17, 0.36, 0.31, 0.50) as read off the second column of the
above chart.

• It tells us how to best cut the graph.
• It tells us how “best” to put all of the vertices on a single line
• We can set S = {vi ∈ V | u2(vi) < 0} and T = V \ S.

Then S = {a, b, c, d} and T = {e, f, g, h}.
• Can sometimes do better by checking all possible cuts along v2 (use any threshold, not only 0). Take

one with best NCut(S, T ).

The third eigenvector can be useful too. It can be used (with the second eigenvector) to lay out the vertices
in R2, and can then be used to make a 4-way cut.
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[+ + ] S = {h} defined as v2 > 0 and v3 > 0

[+ – ] T = {e, f, g} defined as v2 > 0 and v3 < 0

[– + ] U = {a, b, d} defined as v2 < 0 and v3 > 0

[– – ] R = {c} defined as v2 < 0 and v3 > 0.

When drawing the graph using v2 and v3 its good to scale the values by 1/
√
λi along each axis. Note that

in the drawing below points a and d are directly on top of each other. From the perspective of the graph,
they are indistinguishable. The eigenstructure does not separate them until v7.
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Alternatively, we can use the first d eigenvectors (scaled by eigenvalues) to embed the vertices in Rd.
Then we can use any Euclidean clustering algorithm (such as Lloyds for k-means clustering). The smaller
the eigenvector, the more important the direction. So the larger the index of the eigenvalue, the smaller the
1/
√
λi will be. So the top 5 or so (depending on data) may be all required.

More generally, the adjacency matrix need not be 0− 1. It can be filled with the similarity value defined
by some similarity between elements. The diagonal is defined as the sum of elements in a row (or column–it
must be symmetric). Then spectral cluster can be run as before. When similarity is small, it is a good
heuristic to set the values to 0 to make the algorithm run faster.
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