
13 Intro to Linear Regression (in R2)

Given a large set of data (with noise and error and unimportant variation) is to try to find a (1) simple rule
or model which the data is very (2) close to following. Abstractly, that is, given data X then we want to find
a model M = f(X), so for all x ∈ X that x is close to M(x), where M(x) is the “best” representation of
x in M . This task is known as regression and it comes in many forms.

The simplest form of this is linear regression in two dimensions. Even this simple problem has many
variants, which this note tries to overview, contrast, and to provide intuition for. Further notes will then dive
deeper into certain developments in advanced versions of (linear) regression.

13.1 Linear Least Squares
The simplest version of regression is least-squares linear regression. The input to the problem is a set
P ⊂ R2 of n points, so each p = (px, py) ∈ P . Let Px be the set of x-coordinates in P and let Py be the set
of y-coordinates in P .

The output is the line `(x) : y = ax + b that minimizes

L2(P, a, b) =
∑
p∈P

(py − apx − b)2 = (py − `(px))2. (13.1)

This is the vertical distance from each p to the spot on the line ` at x-value px.
As we will see, the choice of vertical distance and the squaring of it are modeling choices, but also leads

to a very simple algorithm.

Solution: We first need to define

• P̄x = 1
n

∑
p∈P px is the average of the x-coordinates.

• The covariance between Px and Py is defined

Cov[Px, Py] =
1

n

∑
p∈P

(px − P̄x)(py − P̄y)

• And Var[Px] = Cov[Px, Px] is the variance of the set of x-coordinates.

Now we can solve for a = Cov[Px, Py]/Var[Px] = 〈Px, Py〉/‖Px‖2.
Then we set b = P̄y − aP̄x.

13.1.1 Multidimensional Extension
For P ⊂ Rd of size n, let X be a n× d vector where each row (of n rows) represents a point p ∈ P . Let the
first d− 1 columns represent the x-variables, and the dth column by a 1 (for each point). The dth dimension
of each p ∈ P is py, and let Py be the vector of these n values.

Now
a = (XTX)−1XTPy. (13.2)

We call the matrix
HX = X(XTX)−1XT (13.3)

the hat matrix since ŷ = Xa = HXy (where y = Py) puts the “hat” on y to provide the modeling estimate
of value y.

Note that the dth column of X provides the “offset” b automatically.

1

Example matrix. We can show the desired equality Xa = py where a single d-dimensional data point
(r1, r2, r3, . . . , rd−1, rd) is shown in the third row. The “solution” is (a1, a2, . . . , ad−1, b).

x x x . . . x 1
x x x . . . x 1
r1 r2 r3 . . . rd−1 1
x x x . . . x 1

a1
a2
a3
. . .
ad−1
b

 ≈

x
x
rd
x

13.1.2 Polynomial Extension
If instead of finding a linear fit we want to find a polynomial fit of degree t, then the goal is an equation

g : y = a0 + a1x + a2x
2 + . . . =

t∑
i=0

aix
i,

then instead we can create a matrix X where the ith column (for the row representing point p ∈ P) is
populated with (px)i. Then we can solve for all ai-coefficients using equation (13.2).

This approach is called lifting (since it transforms to a “higher”-dimensional problem) or linearization
(because it makes a non-linear problem linear). Similar tricks can be applies to other more exotic types
of regression, where one can map a non-linear problem to a linear equation, perhaps approximately. For
instance, so-called “kernel methods” in machine learning do so implicitly.

13.1.3 Gauss Markov Theorem
This method of fitting provides the optimal solution to Equation (13.1) for any linear model if

• the solution has 0 expected error, and
• all errors εp = px − apx − b are not known to be correlated.

This is equivalent to the minimum variance solution.
So are we done? (It extends to multiple dimensions, to polynomial fits, and is the minimum variance

solution!) ... No!
There are at least four issues that remain:

• Can we make it more robust to outliers (L2 error puts more emphasis on outliers)?
• Can we get less “error” by allowing bias?
• Can we minimize distance to line, not “vertical” distance?
• The matrix inversion (XTX)−1 can be expensive, can we use other techniques to make this more

efficient.

13.2 Theil-Sen Estimator
The Theil-Sen estimator provides a “robust” estimator for linear regression. The breakdown point of an
estimator e(P) is the minimum fraction of points in P that if moved to∞ (or anywhere) then e(P) might
also move to∞ (e.g. do something nonsensical to most of the data). A robust estimator is one that has a
high breakdown point.

For instance, in R1, the mean of data P̄ = 1
n

∑
p∈P has a breakdown point of 1/n and is not robust.

Whereas a median (a point c = med(P) where Pc = {p ∈ P | p < c} has |Pc| = 1/2) has a breakdown
point of 1/2 and is robust.

CS 6140 Data Mining; Spring 2017 Instructor: Jeff M. Phillips, University of Utah

When the estimator is a line, then the least-squares estimate corresponds with the mean, and is not robust.
A single point can greatly effect the slope of the line. The Theil-Sen estimator is a robust version of linear
regression. It is constructed as follows:

First construct the median of all slopes. For all pi = (xi, yi) and pj = (xj , yj) with xi < xj then let
si,j = (yj − yi)/(xj − xi) be the slope defined by these two points. Now let a = med({si,j | xi < xj}).

Then let b = med({yi − axi}) by the intercept of the line `TS : y = ax + b.
This line estimator `TS has a breakdown point of 0.293.

Siegel extension. This was improved by Siegel to be made more robust. Let si = med({sj,i | xj <
xi} ∪ {si,j | xi < xj}). Then set a = med({si}i) where {si}i is the set of all sis. And again set
b = med({yi − axi}) where `S : y = ax + b.

This line estimator `S has breakdown point 0.5 and can be computed in O(n log n) time. Naively it takes
O(n2) time.

13.3 Tikhonov Regularization (ridge regression)
This is another linear regression technique designed to add bias to the answer, but reduce the overall error.
For now we assume the data is centered so that P̄x = 0 and P̄y = 0.

The goal is now to minimize

L2,s(P, a) =
∑
p∈P

(py − apx)2 + sa2. (13.4)

where s is a regularization (or shrinkage) parameter. The larger the value s, the more bias there is in the
model. In this case it can be seen to bias the solution to be “flatter” with the intuition that noise is only in
the x-coordinate, and really large noise will tend to be far from 0 (either towards +∞ or −∞).

So the larger s the less trust there is in the data (e.g. we expect to have less covariance). In this sense
it biases “towards the mean” where the “mean” is no correlation. This is related to thinking of having a
Bayesian prior that the data has 0 slope, and s tells us how much to trust the prior versus the data.

There is a very cool equivalence between this problem and minimizing

Lt
2(P, a) =

∑
p∈P

(py − apx)2 such that a2 ≤ t, (13.5)

where t is some parameter. It can be shown that for every solution to Equation 13.4 with value s there is an
equivalent solution to Equation 13.5 for some parameter t. (Set t = a2 for the a that minimizes L2,s(P, a).)
Moreover, there is a one-to-one correspondence between the solutions using each s and another with each
t; as s decreases, the corresponding solution in the dual formulation has t increase. This view will be useful
in higher dimensions.

Amazingly, the solution to Equation (13.4) for a can be found as

â =
〈Px, Py〉

〈Px, Px〉+ s2
= (XTX + s2I)−1XTPy

where X = Px and sa2 = ‖sIa‖2. So solving Tikhinov regularization is as simple as solving for least
squared regularization.

What is the correct value of s? Good question! Best to use cross-validation to see which one works
best. Leave out some data, build model, and test on the remaining. Try building model with many values s
and see which one gives best result on test data.

CS 6140 Data Mining; Spring 2017 Instructor: Jeff M. Phillips, University of Utah

13.4 Lasso (basis pursuit)
The cousin of Tikhonov regularization is the Lasso. Again we assume here P̄x = 0 and P̄y = 0. The goal
now is to minimize

L1,s(P, a) =
∑
p∈P

(py − apx)2 + s|a|,

where s is again the regularization (or shrinkage) parameter. This is equivalent to minimizing

Lt
1(P, a) =

∑
p∈P

(py − apx)2 such that |a| < t,

for some t. Again, there is a one-to-one correspondence between the solution for each s and each t.
In later lectures we will see that in higher dimensions when s is large, this biases to sparse solutions. We

will then give geometric intuition of why this is robust. We will also see how to solve this efficiently with
least angle regression (LAR).

13.5 Principal Component Analysis
Alternatively to minimizing vertical distance (in all techniques above) Principal Component Analysis (PCA)
minimizes the projection distance to a line. Instead of explaining y from x, it explains the relationship
between x and y. Before we assumed x was correct, now there can be error/residuals in both.

We can again first double center and assume that P̄x = 0 and P̄y = 0. If not, subtract P̄x from all x
coordinates and subtract P̄y from all y coordinates.

Then (in R2) the (principal component analysis) PCA of a point set P is a vector v (with ‖v‖ = 1) that
minimizes

PCA(v) =
∑
p∈P
‖p− 〈p, v〉v‖2.

Note that 〈p, v〉 is a scalar, specifically, the length of p in the direction v (from the origin). And v is a
direction (from the origin). So then 〈p, v〉v is the “projection” of p onto the vector v.

And ‖p − 〈p, v〉v‖ is the distance to that projection. So PCA minimizes the sum of squared errors of
points to their (orthogonal) projection.

How do we find v? In R2 it only depends on 1 parameter (think angles) and PCA(v) is convex (up to
symmetries/antipodes). In higher dimensions, due to very cool least-squares properties, we can, for instance,
solve this one dimension at a time.

CS 6140 Data Mining; Spring 2017 Instructor: Jeff M. Phillips, University of Utah

