
5 Min Hashing

Last time we saw how to convert documents into sets. Then we discussed how to compare sets, specifically
using the Jaccard similarity. Specifically, for two sets A = {0, 1, 2, 5, 6} and B = {0, 2, 3, 5, 7, 9}. The
Jaccard similarity is defined

JS(A,B) =
|A ∩B|
|A ∪B|

=
|{0, 2, 5}|

|{0, 1, 2, 3, 5, 6, 7, 9}|
=

3

8
= 0.375.

Although this gives us a single numeric score to compare similarity (or distance) it is not easy to compute,
and will be especially cumbersome if the sets are quite large.

This leads us to a technique called min hashing that uses a randomized algorithm to quickly estimate the
Jaccard similarity. Furthermore, we can show how accurate it is through the Chernoff-Hoeffding bound.

To achieve these results we consider a new abstract data type, a matrix. This format is incredible useful
conceptually, but often extremely wasteful in practice.

5.1 Matrix Representation
Here we see how to convert a series of sets (e.g. a set of sets) to be represented as a single matrix. Consider
sets:

S1 = {1, 2, 5}
S2 = {3}
S3 = {2, 3, 4, 6}
S4 = {1, 4, 6}

For instance JS(S1, S3) = |{2}|/|{1, 2, 3, 4, 5, 6}| = 1/6.
We can represent these four sets as a single matrix

Element S1 S2 S3 S4

1 1 0 0 1
2 1 0 1 0
3 0 1 1 0
4 0 0 1 1
5 1 0 0 0
6 0 0 1 1

represents matrix M =

1 0 0 1
1 0 1 0
0 1 1 0
0 0 1 1
1 0 0 0
0 0 1 1

 .

That element in the ith row and the jth column determine if element i is in set Sj . It is 1 if the element is
in the set, and 0 otherwise. This captures exactly the same data set as the set representation, but may take
much more space. If the matrix is sparse, meaning that most entries (e.g. > 90% or maybe > 99% ... or
more conceptually, as the matrix becomes r × c the non-zero entries grows as roughly r + c, but the space
grows as r · c) then it wastes a lot of space. But still it is very useful to think about.

1

5.2 Hash Clustering
The first attempt, called hash clustering, will not require the matrix representation, but will bring us towards
our final solution to quickly estimate the Jaccard distance.

Consider the set of elements is E = {1, 2, 3, 4, 5, 6} and there is also a set of possible clusters C =
{A,B,C} that is smaller in size than the set of elements |C| < |E|. Then we consider a random hash
function that maps each element e ∈ E to a consistent location in C. For instance h : E→ C is defined so

h : [1, 2, 3, 4, 5, 6]→ [A,B,B,C,A,A].

Now we can consider the new (and smaller matrix) for our example

Cluster S1 S2 S3 S4

A 1 0 1 1
B 1 1 1 0
C 0 0 1 1

represents matrix Mh =

 1 0 1 1
1 1 1 0
0 0 1 1

 .

Lets see how the Jaccard similarity holds up:

JS(S1, S2) = 0 JSclu(S1, S2) = 1/2
JS(S1, S3) = 2/6 JSclu(S1, S3) = 2/3
JS(S1, S4) = 1/5 JSclu(S1, S4) = 1/3
JS(S2, S3) = 1/4 JSclu(S2, S3) = 1/3
JS(S3, S4) = 0 JSclu(S3, S4) = 0
JS(S3, S4) = 2/5 JSclu(S3, S4) = 2/3.

Similarity generally increases. If there is an intersection, there is still an intersection. But also new intersec-
tions are formed.

This may appear not useful for this applications because it is hard to understand the errors induced by the
clustering. But we will see later how this can be useful to find the very frequent elements in the count min
hash.

5.3 Min Hashing
The next approach, called min hashing, initially seems even simpler than the clustering approach. It will
need to evolve through several steps to become a useful trick.

Step 1: Randomly permute the items (by permuting the rows of the matrix).

Element S1 S2 S3 S4

2 1 0 1 0
5 1 0 0 0
6 0 0 1 1
1 1 0 0 1
4 0 0 1 1
3 0 1 1 0

Step 2: Record the first 1 in each column

m(S1) = 2

m(S2) = 3

m(S3) = 2

m(S4) = 6

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah

Step 3: Estimate the Jaccard similarity JS(Si, Sj) as

ĴS(Si, Sj) =

{
1 m(Si) = m(Sj)

0 otherwise.

Lemma 5.3.1. Pr[m(Si) = m(Sj)] = E[ĴS(Si, Sj)] = JS(Si, Sj).

Proof. There are three types of rows.

(Tx) There are x rows with 1 in both column
(Ty) There are y rows with 1 in one column and 0 in the other
(Tz) There are z rows with 0 in both column

The total number of rows is x + y + z. The Jaccard similarity is precisely JS(Si, Sj) = x/(x + y). (Note
that usually z � x, y (mostly empty) and we can ignore these.)

Let row r be the min{m(Si),m(Sj)}. It is either type (Tx) or (Ty), and it is (Tx) with probability exactly
x/(x+ y), since the permutation is random. This is the only case that m(Si) = m(Sj), otherwise Si or Sj
has 1, but not both.

Thus this approach only gives 0 or 1, but has the right expectation. To get a better estimate, we need
to repeat this several (k) times. Consider k random permutations {m1,m2, . . . ,mk} and also k random
variables {X1, X2, . . . , Xk} (and {Y1, Y2, . . . , Yk}) where

X` =

{
1 if m`(Si) = m`(Sj)

0 otherwise.

and Y` = (1/k)(X` − JS(Si, Sj)). Let M =
∑k

`=1 Y` and A =
∑k

`=1X`. Note that −1 ≤ X` ≤ 1 and
E[M] = 0. We can now apply Theorem 3.1.2 with ∆i = 1 and r = k = (2/ε2) ln(2/δ) to say

Pr[|JS(Si, Sj)−A| < ε] > 1− δ.

That is, the Jaccard similarity is within ε error with probability at least 1 − δ if we repeat this k =
(2/ε2) ln(2/δ) times.

5.3.1 Fast Min Hashing Algorithm
This is still too slow. We need to construct the full matrix, and we need to permute it k times. A faster way
is the min hash algorithm.

Make one pass over the data. Let n = |E|. Maintain k random hash functions {h1, h2, . . . , hk} chosen
from a hash family at random so hi : E→ [n] (one can use a larger range n′ > n where n′ = 2t is a power
of two). An initialize k counters at {c1, c2, . . . , ck} so ci =∞.

Algorithm 5.3.1 Min Hash on set S
for i ∈ S do

for j = 1 to k do
if (hj(i) < cj) then
cj ← hj(i)

On output mj(S) = cj . The algorithm runs in |S|k steps, for a set S of size |S|. Note this is independent
of the size n of all possible elements E. And the output space of a single set is only k = (2/ε2) ln(2/δ)
which is independent of the size of the original set. The space for N sets is only O(Nk).

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah

Finally, we can now estimate JS(Si, Si′) as

JSk(Si, Si′) =
1

k

k∑
i=1

1(mj(Si) = mj(Si′))

where 1(γ) = 1 if γ = TRUE and 0 otherwise. This only takes O(k) time, again independent of n or |Si|
and |Si′ |.

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah

