14 Intro to Linear Regression (in R?)

Given a large set of data (with noise and error and unimportant variation) is to try to find a (1) simple rule
or model which the data is very (2) close to following. Abstractly, that is, given data X then we want to find
amodel M = f(X), so forall z € X that x is close to M (z), where M (x) is the “best” representation of
x in M. This task is known as regression and it comes in many forms.

The simplest form of this is linear regression in two dimensions. Even this simple problem has many
variants, which this note tries to overview, contrast, and to provide intuition for. Further notes will then dive
deeper into certain developments in advanced versions of (linear) regression.

14.1 Linear Least Squares
The simplest version of regression is least-squares linear regression. The input to the problem is a set
P C R? of n points, so each p = (p,, py) € P. Let P, be the set of z-coordinates in P and let P, be the set
of y-coordinates in P.

The output is the line ¢ : y = ax + b that minimizes

Ly(P,a,b) = > (py — aps +b)*. (14.1)
peP

This is the vertical distance from each p to the spot on the line ¢ at z-value p,.
As we will see, the choice of vertical distance and the squaring of it are modeling choices, but also leads
to a very simple algorithm.

Solution: We first need to define

« P =1

% 2_pep Px is the average of the z-coordinates.

e The covariance between P, and P, is defined

Cov[P,, P,| = % > (e — P)(py — B))

peP
1 1 _ 1 _ _
= Ezpwpy - ﬁzpm y Ezpy Pff—'_Pny
peP peEP peP
1 _
:ﬁzprpy_PzPy'
peEP

e And Var[P,| = Cov[P,, P,] is the variance of the set of x-coordinates.

Now we can solve for a = Cov[P,, P,]/Var[P,] = (P, P,)/| P
Then we set b = Py —aP,.

14.1.1 Multidimensional Extension

For P C R¢ of size n, let X be a n x d vector where each row (of n rows) represents a point p € P. Let the
first d — 1 columns represent the z-variables, and the dth column by a 1 (for each point). The dth dimension
of each p € P is p,, and let P, be the vector of these n values.

Now
a=(XTX)"'xTp,. (14.2)

‘We call the matrix
Hx = X(XTx)"'xT (14.3)

the hat matrix since § = Xa = Hxy (where y = P,) puts the “hat” on y to provide the modeling estimate
of value y.
Note that the dth column of X provides the “offset” b automatically.

14.1.2 Polynomial Extension
If instead of finding a linear fit we want to find a polynomial fit of degree ¢, then the goal is an equation

t
g:y:ao+a1x+a2x2+...:Zaoxi,
=1

then instead we can create a matrix X where the ith column (for the row representing point p € P) is
populated with (p,.)®. Then we can solve for all a;-coefficients using equation (14.2).

14.1.3 Gauss Markov Theorem

This method of fitting provides the optimal solution to Equation (14.1) for any linear model if

e the solution has 0 expected error, and

e all errors €, = p; — ap, — b are not known to be correlated.

This is equivalent to the minimum variance solution.

So are we done? (It extends to multiple dimensions, to polynomial fits, and is the minimum variance
solution!) ... No!

There are at least four issues that remain:

e Can we make it more robust to outliers (Lo error puts more emphasis on outliers)?
e Can we get less “error” by allowing bias?
e Can we minimize distance to line, not “vertical” distance?

e The matrix inversion (X7 X)~! can be expensive, can we use other techniques to make this more
efficient (for instance when matrix is sparse).

14.2 Theil-Sen Estimator

The Theil-Sen estimator provides a “robust” estimator for linear regression. The breakdown point of an
estimator e(P) is the fraction of points in P that can move to co (or anywhere) and e(P) does not move to
oo (e.g. do something nonsensical to most of the data). A robust estimator is one that has a high breakdown
point.

For instance, in R!, the mean of data P = % Zpe p has a breakdown point of 1/n and is not robust.
Whereas a median (a point ¢ = med(P) where P. = {p € P | p < ¢} has |P.| = 1/2) has a breakdown
point of 1/2 and is robust.

When the estimator is a line, then the least-squares estimate corresponds with the mean, and is not robust.
A single point can greatly effect the slope of the line. The Theil-Sen estimator is a robust version of linear
regression. It is constructed as follows:

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah

First construct the median of all slopes. For all p; = (x;,y;) and p; = (x;,y;) with 2; < z; then let
si; = (y; — vi)/(z; — x;) be the slope defined by these two points. Now let a = med({s; ; | x; < x;}).

Then let b = med({y; — ax;}) by the intercept of the line (1g : y = ax + b.

This line estimator /g has a breakdown point of 0.293.

Siegel extension. This was improved by Siegel to be made more robust. Let s; = med({s;; | z; <
i} U{si;j | zi < zj}). Then set @ = med({s;};) where {s;}; is the set of all s;s. And again set
b= med({y; — ax;}) where {g : y = ax + b.

This line estimator /g has breakdown point 0.5 and can be computed in O(nlog n) time. Naively it takes
O(n?) time.

14.3 Tikhonov Regularization (ridge regression)

This is another linear regression technique designed to add bias to the answer, but reduce the overall error.
For now we assume the data is centered so that P, = 0 and P, = 0.
The goal is now to minimize

Lys(Pra) =Y (py — ap:)® + sa’. (14.4)
peP

where s is a regularization (or shrinkage) parameter. The larger the value s, the more bias there is in the
model. In this case it can be seen to bias the solution to be “flatter”” with the intuition that noise is only in
the x-coordinate, and really large noise will tend to be far from 0 (either towards +oo or —o0).

So the larger s the less trust there is in the data (e.g. we expect to have less covariance). In this sense
it biases “towards the mean” where the “mean” is no correlation. This is related to thinking of having a
Bayesian prior that the data has 0 slope, and s tells us how much to trust the prior versus the data.

There is a very cool equivalence between this problem and minimizing

Lh(P,a) = > (py — aps)® suchthata® < t, (14.5)
peEP

where ¢ is some parameter. It can be shown that for every solution to Equation 14.4 with value s there is an
equivalent solution to Equation 14.5 for some parameter ¢t. Moreover, there is a one-to-one correspondence
between the solutions using each s and another with each ¢; as s decreases, the corresponding solution in
the dual formulation has ¢ increase. This view will be useful in higher dimensions.

Amazingly, the solution to Equation (14.4) for a can be found as

N (P, Py) T 21—1yT
= =(X"X)" X" P
=B py e XS] v
where X = P, and sa® = ||sal|?>. So solving Tikhinov regularization is as simple as solving for least

squared regularization.

What is the correct value of s? Good question! Best to use cross-validation to see which one works
best. Leave out some data, build model, and test on the remaining. Try building model with many values s
and see which one gives best result on test data.

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah

14.4 Lasso (basis pursuit)
The cousin of Tikhonov regularization is the Lasso. Again we assume here P, = 0 and Py = 0. The goal
now is to minimize
Lys(Pya) = Z(py —ap.)® + slal,
peEP

where s is again the regularization (or shrinkage) parameter. This is equivalent to minimizing

LY(Pa) = Z(py —ap,)? such that |a| < t,
peEP

for some ¢. Again, there is a one-to-one correspondence between the solution for each s and each ¢.

In later lectures we will see that in higher dimensions when s is large, this biases to sparse solutions. We
will then give geometric intuition of why this is robust. We will also see how to solve this efficiently with
least angle regression (LAR).

14.5 Principal Component Analysis

Alternatively to minimizing vertical distance (in all techniques above) Principal Component Analysis (PCA)
minimizes the projection distance to a line. Instead of explaining y from =z, it explains the relationship
between z and y. Before we assumed = was correct, now there can be error/residuals in both.

We can again first double center and assume that P, = 0 and Py = 0. If not, subtract P, from all z
coordinates and subtract P, from all y coordinates.

Then (in R?) the (principal component analysis) PCA of a point set P is a vector v (with ||v| = 1) that

minimizes
PCA(v) = Y [lp — (p, v)v|*.
peP

Note that (p,v) is a scalar, specifically, the length of p in the direction v (from the origin). And v is a
direction (from the origin). So then (p, v)v is the “projection” of p onto the vector v.

And ||p — (p,v)v| is the distance to that projection. So PCA minimizes the sum of squared errors of
points to their (orthogonal) projection.

How do we find v? In R? it only depends on 1 parameter (think angles) and PCA(v) is convex (up to
symmetries/antipodes). In higher dimensions, due to very cool least-squares properties, we can solve this
one dimension at a time.

CS 6140 Data Mining; Spring 2014 Instructor: Jeff M. Phillips, University of Utah

