
4 Linear Algebra Review

For this topic we quickly review many key aspects of linear algebra that will be necessary for the remainder
of the course.

4.1 Vectors and Matrices
For the context of data analysis, the critical part of linear algebra deals with vectors and matrices of real
numbers.

In this context, a vector v = (v1, v2, . . . , vd) is equivalent to a point in Rd. By default a vector will be a
column of d numbers (where d is context specific)

v =


v1
v2
...
vn

 .

but in some cases we will assume the vector is a row

vT = [v1 v2 . . . vn].

An n× d matrix A is then an ordered set of n row vectors a1, a2, . . . an

A = [a1 a2 . . . an] =


− a1 −
− a2 −

...
− an −

 =


A1,1 A1,2 . . . A1,d

A2,1 A2,2 . . . A2,d
...

...
. . .

...
An,1 An,2 . . . An,d

 ,

where vector ai = [Ai,1, Ai,2, . . . , Ai,d], and Ai,j is the element of the matrix in the ith row and jth column.
We can write A ∈ Rn×d when it is defined on the reals.

A transpose operation (·)T reverses the roles of the rows and columns, as seen above with vector v. For
a matrix, we can write:

AT =

 | | |
a1 a2 . . . an
| | |

 =


A1,1 A2,1 . . . An,1

A1,2 A2,2 . . . An,2
...

...
. . .

...
A1,n A2,d . . . An,d

 .

1



Example: Linear Equations
A simple place these objects arise is in linear equations. For instance

3x1 −7x2 +2x3 = −2
−1x1 +2x2 −5x3 = 6

is a system of n = 2 linear equations, each with d = 3 variables. We can represent this system in
matrix-vector notation as

Ax = b

where

b =

[
−2
6

]
x =

 x1
x2
x3

 and A =

[
3 −7 2
−1 2 −5

]
.

4.2 Addition
We can add together two vectors or two matrices only if they have the same dimensions. For vectors
x = (x1, x2, . . . , xd) ∈ Rd and y = (y1, y2, . . . , yd) ∈ Rd, then vector

z = x+ y = (x1 + y1, x2 + y2, . . . , xd + yd) ∈ Rd.

Similarly for two matrices A,B ∈ Rn×d, then C = A+B is defined where Ci,j = Ai,j +Bi,j for all i, j.

4.3 Multiplication
Multiplication only requires alignment along one dimension. For two matrices A ∈ Rn×d and B ∈ Rd×m

we can obtain a new matrix C = AB ∈ Rn×m where Ci,j , the element in the ith row and jth column of C
is defined

Ci,j =
d∑

k=1

Ai,kBk,j .

To multiply A times B (where A is to the left of B, the order matters!) then we require the row dimension
d of A to match the column dimension d of B. If n 6= m, then we cannot multiply BA. Keep in mind:

• Matrix multiplication is associative (AB)C = A(BC).
• Matrix multiplication is distributive A(B + C) = AB +AC.
• Matrix multiplication is not commutative AB 6= BA.

We can also multiply a matrix A by a scalar α. In this setting αA = Aα and is defined by a new matrix
B where Bi,j = αAi,j .

vector-vector products. There are two types of vector-vector products, and their definitions follow di-
rectly from that of matrix-matrix multiplication (since a vector is a matrix where one of the dimensions is
1). But it is worth highlighting these.

Given two column vectors x, y ∈ Rd, the inner product or dot product is written

xT y = x · y = 〈x, y〉 = [x1 x2 . . . xd]


y1
y2
...
yd

 =

d∑
i=1

xiyi,
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where xi is the ith element of x and similar for yi. I prefer the last notation 〈x, y〉 since the same can be
used for row vectors, and there is no confusion with multiplication in using ·; whether a vector is a row or a
column is often arbitrary.

Note that this operation produces a single scalar value. The dot product is a linear operator. So this means
for any scalar value α and three vectors x, y, z ∈ Rd we have

〈αx, y + z〉 = α〈x, y + z〉 = α (〈x, y〉+ 〈x, z〉) .

Example: Geometry of Dot Product
A dot product is one of my favorite mathematical operations! It encodes a lot of geometry. Consider
two vectors u = (35 ,

4
5) and v = (2, 1), with an angle θ between them. Then it holds

〈u, v〉 = length(u) · length(v) · cos(θ).

Here length(·) measures the distance from the origin. We’ll see how to measure length with a “norm”
‖ · ‖ soon.
Moreover, since the ‖u‖ = length(u) = 1, then we can also interpret 〈u, v〉 as the length of v
projected onto the line through u. That is, let πu(v) be the closest point to v on the line through
u (the line through u and the line segment from v to πu(v) make a right angle). Then 〈u, v〉 =
length(πu(v)) = ‖πu(v)‖.

u = (
3

5
,
4

5
)

v = (2, 1)

⇡u(v)

✓

For two column vectors x ∈ Rn and y ∈ Rd, the outer product is written

yTx =


x1
x2
...
xn

 [y1 y2 . . . yd] =


x1y1 x1y2 . . . x1yd
x2y1 x2y2 . . . x2yd

...
...

. . .
...

xny1 xny2 . . . xnyd

 ∈ Rn×d.

Note that the result here is a matrix, not a scalar.

matrix-vector products. Another important and common operation is a matrix-vector product. Given a
matrix A ∈ Rn×d and a vector x ∈ Rd, their product y = Ax ∈ Rn.

When A is composed of row vectors [a1; a2; . . . ; an], then I imagine this as transposing x (which should
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be a column vector here, so a row vector after transposing), and taking the dot product with each row of A.

y = Ax =


− a1 −
− a2 −

...
− an −

x =


〈a1, x〉
〈a2, x〉

...
〈an, x〉

 .

4.4 Norms
The standard Euclidean norm of a vector v = (v1, v2, . . . , vd) ∈ Rd is defined

‖v‖ =

√√√√ d∑
i=1

v2i =
√
〈v, v〉.

This measures the “straight-line” distance from the origin to the point at v. A vector v with norm ‖v‖ = 1
is said to be a unit vector; sometimes a vector x with ‖x‖ = 1 is said to be normalized.

However, a “norm” is a more generally concept. A class called Lp norms are well-defined for any param-
eter p ∈ [1,∞) as

‖v‖p =

(
d∑

i=1

|vi|p
)1/p

.

Thus, when no p is specified, it is assumed to be p = 2. It is also common to denote ‖v‖∞ = maxdi=1 |vi|.
Because subtraction is well-defined between vectors v, u ∈ Rd of the same dimension, then we can also

take the norm of ‖v− u‖p. While this is technically the norm of the vector resulting from the subtraction of
u from v; it also provides a distance between u and v. In the case of p = 2, then

‖u− v‖2 =

√√√√ d∑
i=1

(ui − vi)2

is precisely the straight-line (Euclidean) distance between u and v.
Moreover, all Lp norms define a distance Dp(u, v) = ‖u−v‖p, which satisfies a set of special properties,

which a required for a distance to be a metric. This include:

• Symmetry: For any u, v ∈ Rd we have D(u, v) = D(v, u).
• Non-negativity: For any u, v ∈ Rd we have D(u, v) ≥ 0, and D(u, v) = 0 if and only if u = v.
• Triangle Inequality: For any u, v, w ∈ Rd we have D(u,w) +D(w, v) ≥ D(u, v).

We can also define norms for matrices A. These take on slightly different notational conventions. The
two most common are the spectral norm ‖A‖ = ‖A‖2 and the Frobenius norm ‖A‖F . The Frobenius norm
is the most natural extension of the p = 2 norm for vectors, but uses a subscript F instead. It is defined for
matrix A ∈ Rn×d as

‖A‖F =

√√√√ n∑
i=1

d∑
j=1

A2
i,j =

√√√√ n∑
i=1

‖ai‖2,

where Ai,j is the element in the ith row and jth column of A, and where ai is the ith row vector of A. The
spectral norm is defined for a matrix A ∈ Rn×d as

‖A‖ = ‖A‖2 = max
x∈Rd

‖Ax‖/‖x‖ = max
y∈Rn

‖yA‖/‖y‖.
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Its useful to think of these x and y vectors as being unit vectors, then the denominator can be ignored. Then
we see that x and y only contain “directional” information, and the argmax vectors point in the directions
that maximize the norm.

4.5 Linear Independence
Consider a set of k vectors x1, x2, . . . , xk ∈ Rd, and a set of k scalars α1, α2, . . . , αk ∈ R. Then because of
linearity of vectors, we can write a new vector in Rd as

z =

k∑
i=1

αixi.

For a set of vectors X = {x1, x2, . . . , xk}, for any vector z where there exists a set of scalars α where z
can be written as the above summation, then we say z is linearly dependent on X . If z cannot be written
with any choice of αis, the we say z is linearly independent of X . All vectors z ∈ Rd which are linearly
dependent on X are said to be in its span.

span(X) =

{
z
∣∣∣ z = k∑

i=1

αixi, αi ∈ R

}
.

If span(X) = Rd (that is for vectors X = x1, x2, . . . , xk ∈ Rd all vectors are in the span), then we say X
forms a basis.

Example: Linear Independence
Consider input vectors in a set X as

x1 =

 1
3
4

 x2 =

 2
4
1


And two other vectors

z1 =

 −3−5
2

 z2 =

 3
7
1


Note that z1 is linearly dependent on X since it can be written as z1 = x1 − 2x2 (here α1 = 1 and
α2 = −2). However z2 is linearly independent from X since there are no scalars α1 and α2 so that
z2 = α1x1 + α2x2 (we need α1 = α2 = 1 so the first two coordinates align, but then the third
coordinate cannot).
Also the set X is linearly independent, since there is no way to write x2 = α1x1.

A set of vectors X = {x1, x2, . . . , xn} is linearly independent if there is no way to write any vector
xi ∈ X in the set with scalars {α1, . . . , αi−1, αi+1, . . . , αn} as the sum

xi =

n∑
j=1
j 6=i

αjxj

of the other vectors in the set.
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4.6 Rank
The rank of a set of vectors X = {x1, . . . , xn} is the size of the largest subset X ′ ⊂ X which are linearly
independent. Usually we report rank(A) as the rank of a matrix A. It is defined as the rank of the rows of
the matrix, or the rank of its columns; it turns out these quantities are always the same.

If A ∈ Rn×d, then rank(A) ≤ min{n, d}. If rank(A) = min{n, d}, then A is said to be full rank. For
instance, if d < n, then using the rows of A = [a1; a2; . . . ; an], we can describe any vector z ∈ Rd as the
linear combination of these rows: z =

∑n
i=1 αiai for some set {α1, . . . , αn}; in fact, we can set all but d of

these scalars to 0.

4.7 Inverse
A matrix A is said to be square if it has the same number of column as it has rows. A square matrix
A ∈ Rn×n may have an inverse denoted A−1. If it exists, it is a unique matrix which satisfies:

A−1A = I = AA−1

where I is the n× n identity matrix

I =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1

 = diag(1, 1, . . . , 1).

Note that I serves the purpose of 1 in scalar algebra, so for a scalar a then using a−1 = 1
a we have aa−1 =

1 = a−1a.
A matrix is said to be invertable if it has an inverse. Only square, full-rank matrices are invertable; and a

matrix is always invertable if it is square and full rank. If a matrix is not square, the inverse is not defined.
If a matrix is not full rank, then it does not have an inverse.

4.8 Orthogonality
Two vectors x, y ∈ Rd are orthogonal if 〈x, y〉 = 0. This means those vectors are at a right angle to each
other.

Example: Orthongonality
Consider two vectors x = (2,−3, 4,−1, 6) and y = (4, 5, 3,−7,−2). They are orthogonal since

〈x, y〉 = (2 · 4) + (−3 · 5) + (4 · 3) + (−1 · −7) + (6 · −2) = 8− 15 + 12 + 7− 12 = 0.

A square matrix U ∈ Rn×n is orthogonal if all of its columns [u1, u2, . . . , un] are normalized and are all
orthogonal with each other. It follows that

UTU = I = UUT

since for any normalized vector u that 〈u, u〉 = ‖u‖ = 1.
A set of columns (for instance those of an orthogonal U ) which are normalized and all orthogonal to each

other are said to be orthonormal. If U ∈ Rn×d and has orthonormal columns, then UTU = I (here I is
d× d) but UUT 6= I .
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Orthogonal matrices are norm preserving. That means for an orthogonal matrix U ∈ Rn×n and any vector
x ∈ Rn, then ‖Ux‖ = ‖x‖.

Moreover, the columns [u1, u2, . . . , un] of an orthogonal matrix U ∈ Rn×n form an basis for Rn. This
means that for any vector x ∈ Rn, there exists a set of scalars α1, . . . , αn such that x =

∑n
i=1 αiui. More

interestingly, we also have ‖x‖2 =
∑n

i=1 α
2
i .

This can be interpreted as U describing a rotation (with possible mirror flips) to a new set of coordi-
nates. That is the old coordinates of x are (x1, x2, . . . , xn) and the coordinates in the new orthogonal basis
[u1, u2, . . . , un] are (α1, α2, . . . , αn).

4.9 Python numpy Example
Python provides an excellent library called numpy (pronounced ‘num-pie’) for handling arrays and matri-
ces, and performing linear basic algebra.

import numpy as np
from numpy import linalg as LA

#create an array, a row vector
v = np.array([1,2,7,5])
print v
#[1 2 7 5]
print v[2]
#7

#create a n=2 x d=3 matrix
A = np.array([[3,4,3],[1,6,7]])
print A
#[[3 4 3]
# [1 6 7]]
print A[1,2]
#7
print A[:, 1:3]
#[[4 3]
# [6 7]]

#adding and multiplying vectors
u = np.array([3,4,2,2])
#elementwise add
print v+u
#[4 6 9 7]
#elementwise multiply
print v*u
#[ 3 8 14 10]
# dot product
print v.dot(u)
# 35
print np.dot(u,v)
# 35

CS 4964 Math for Data; Fall 2016 Instructor: Jeff M. Phillips, University of Utah



#matrix multiplication
B = np.array([[1,2],[6,5],[3,4]])
print A.dot(B)
#[[36 38]
# [58 60]]
x = np.array([3,4])
print B.dot(x)
#[11 38 25]

#norms
print LA.norm(v)
#8.88819441732
print LA.norm(v,1)
#15.0
print LA.norm(v,np.inf)
#7.0
print LA.norm(A, ’fro’)
#10.9544511501
print LA.norm(A,2)
#10.704642743

#transpose
print A.T
#[[3 1]
# [4 6]
# [3 7]]
print x.T
#[3 4] (always prints in row format)

print LA.matrix_rank(A)
#2
C = np.array([[1,2],[3,5]])
print LA.inv(C)
#[[-5. 2.]
# [ 3. -1.]]
print C.dot(LA.inv(C))
#[[ 1.00000000e+00 2.22044605e-16] (nearly [[1 0]
# [ 0.00000000e+00 1.00000000e+00]] [0 1]] )
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