4 Linear Algebra Review

For this topic we quickly review many key aspects of linear algebra that will be necessary for the remainder of the course.

4.1 Vectors and Matrices

For the context of data analysis, the critical part of linear algebra deals with vectors and matrices of real numbers.

In this context, a vector $v=\left(v_{1}, v_{2}, \ldots, v_{d}\right)$ is equivalent to a point in \mathbb{R}^{d}. By default a vector will be a column of d numbers (where d is context specific)

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right] .
$$

but in some cases we will assume the vector is a row

$$
v^{T}=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right] .
$$

An $n \times d$ matrix A is then an ordered set of n row vectors $a_{1}, a_{2}, \ldots a_{n}$

$$
A=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]=\left[\begin{array}{ccc}
- & a_{1} & - \\
- & a_{2} & - \\
& \vdots & \\
- & a_{n} & -
\end{array}\right]=\left[\begin{array}{cccc}
A_{1,1} & A_{1,2} & \ldots & A_{1, d} \\
A_{2,1} & A_{2,2} & \ldots & A_{2, d} \\
\vdots & \vdots & \ddots & \vdots \\
A_{n, 1} & A_{n, 2} & \ldots & A_{n, d}
\end{array}\right],
$$

where vector $a_{i}=\left[A_{i, 1}, A_{i, 2}, \ldots, A_{i, d}\right]$, and $A_{i, j}$ is the element of the matrix in the i th row and j th column. We can write $A \in \mathbb{R}^{n \times d}$ when it is defined on the reals.

A transpose operation $(\cdot)^{T}$ reverses the roles of the rows and columns, as seen above with vector v. For a matrix, we can write:

$$
A^{T}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
a_{1} & a_{2} & \ldots & a_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
A_{1,1} & A_{2,1} & \ldots & A_{n, 1} \\
A_{1,2} & A_{2,2} & \ldots & A_{n, 2} \\
\vdots & \vdots & \ddots & \vdots \\
A_{1, n} & A_{2, d} & \ldots & A_{n, d}
\end{array}\right] .
$$

Example: Linear Equations

A simple place these objects arise is in linear equations. For instance

$$
\begin{array}{rlll}
3 x_{1} & -7 x_{2} & +2 x_{3} & =-2 \\
-1 x_{1} & +2 x_{2} & -5 x_{3} & =6
\end{array}
$$

is a system of $n=2$ linear equations, each with $d=3$ variables. We can represent this system in matrix-vector notation as

$$
A x=b
$$

where

$$
b=\left[\begin{array}{c}
-2 \\
6
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{ccc}
3 & -7 & 2 \\
-1 & 2 & -5
\end{array}\right]
$$

4.2 Addition

We can add together two vectors or two matrices only if they have the same dimensions. For vectors $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{d}\right) \in \mathbb{R}^{d}$, then vector

$$
z=x+y=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{d}+y_{d}\right) \in \mathbb{R}^{d}
$$

Similarly for two matrices $A, B \in \mathbb{R}^{n \times d}$, then $C=A+B$ is defined where $C_{i, j}=A_{i, j}+B_{i, j}$ for all i, j.

4.3 Multiplication

Multiplication only requires alignment along one dimension. For two matrices $A \in \mathbb{R}^{n \times d}$ and $B \in \mathbb{R}^{d \times m}$ we can obtain a new matrix $C=A B \in \mathbb{R}^{n \times m}$ where $C_{i, j}$, the element in the i th row and j th column of C is defined

$$
C_{i, j}=\sum_{k=1}^{d} A_{i, k} B_{k, j} .
$$

To multiply A times B (where A is to the left of B, the order matters!) then we require the row dimension d of A to match the column dimension d of B. If $n \neq m$, then we cannot multiply $B A$. Keep in mind:

- Matrix multiplication is associative $(A B) C=A(B C)$.
- Matrix multiplication is distributive $A(B+C)=A B+A C$.
- Matrix multiplication is not commutative $A B \neq B A$.

We can also multiply a matrix A by a scalar α. In this setting $\alpha A=A \alpha$ and is defined by a new matrix B where $B_{i, j}=\alpha A_{i, j}$.
vector-vector products. There are two types of vector-vector products, and their definitions follow directly from that of matrix-matrix multiplication (since a vector is a matrix where one of the dimensions is $1)$. But it is worth highlighting these.

Given two column vectors $x, y \in \mathbb{R}^{d}$, the inner product or dot product is written

$$
x^{T} y=x \cdot y=\langle x, y\rangle=\left[x_{1} x_{2} \ldots x_{d}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{d}
\end{array}\right]=\sum_{i=1}^{d} x_{i} y_{i}
$$

where x_{i} is the i th element of x and similar for y_{i}. I prefer the last notation $\langle x, y\rangle$ since the same can be used for row vectors, and there is no confusion with multiplication in using \cdot; whether a vector is a row or a column is often arbitrary.

Note that this operation produces a single scalar value. The dot product is a linear operator. So this means for any scalar value α and three vectors $x, y, z \in \mathbb{R}^{d}$ we have

$$
\langle\alpha x, y+z\rangle=\alpha\langle x, y+z\rangle=\alpha(\langle x, y\rangle+\langle x, z\rangle)
$$

Example: Geometry of Dot Product

A dot product is one of my favorite mathematical operations! It encodes a lot of geometry. Consider two vectors $u=\left(\frac{3}{5}, \frac{4}{5}\right)$ and $v=(2,1)$, with an angle θ between them. Then it holds

$$
\langle u, v\rangle=\operatorname{length}(u) \cdot \operatorname{length}(v) \cdot \cos (\theta)
$$

Here length (\cdot) measures the distance from the origin. We'll see how to measure length with a "norm" $\|\cdot\|$ soon.
Moreover, since the $\|u\|=$ length $(u)=1$, then we can also interpret $\langle u, v\rangle$ as the length of v projected onto the line through u. That is, let $\pi_{u}(v)$ be the closest point to v on the line through u (the line through u and the line segment from v to $\pi_{u}(v)$ make a right angle). Then $\langle u, v\rangle=$ $\operatorname{length}\left(\pi_{u}(v)\right)=\left\|\pi_{u}(v)\right\|$.

For two column vectors $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{d}$, the outer product is written

$$
y^{T} x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \ldots & y_{d}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \ldots & x_{1} y_{d} \\
x_{2} y_{1} & x_{2} y_{2} & \ldots & x_{2} y_{d} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n} y_{1} & x_{n} y_{2} & \ldots & x_{n} y_{d}
\end{array}\right] \in \mathbb{R}^{n \times d}
$$

Note that the result here is a matrix, not a scalar.
matrix-vector products. Another important and common operation is a matrix-vector product. Given a matrix $A \in \mathbb{R}^{n \times d}$ and a vector $x \in \mathbb{R}^{d}$, their product $y=A x \in \mathbb{R}^{n}$.

When A is composed of row vectors $\left[a_{1} ; a_{2} ; \ldots ; a_{n}\right]$, then I imagine this as transposing x (which should
be a column vector here, so a row vector after transposing), and taking the dot product with each row of A.

$$
y=A x=\left[\begin{array}{ccc}
- & a_{1} & - \\
- & a_{2} & - \\
& \vdots & \\
- & a_{n} & -
\end{array}\right] x=\left[\begin{array}{c}
\left\langle a_{1}, x\right\rangle \\
\left\langle a_{2}, x\right\rangle \\
\vdots \\
\left\langle a_{n}, x\right\rangle
\end{array}\right]
$$

4.4 Norms

The standard Euclidean norm of a vector $v=\left(v_{1}, v_{2}, \ldots, v_{d}\right) \in \mathbb{R}^{d}$ is defined

$$
\|v\|=\sqrt{\sum_{i=1}^{d} v_{i}^{2}}=\sqrt{\langle v, v\rangle}
$$

This measures the "straight-line" distance from the origin to the point at v. A vector v with norm $\|v\|=1$ is said to be a unit vector; sometimes a vector x with $\|x\|=1$ is said to be normalized.

However, a "norm" is a more generally concept. A class called L_{p} norms are well-defined for any parameter $p \in[1, \infty)$ as

$$
\|v\|_{p}=\left(\sum_{i=1}^{d}\left|v_{i}\right|^{p}\right)^{1 / p}
$$

Thus, when no p is specified, it is assumed to be $p=2$. It is also common to denote $\|v\|_{\infty}=\max _{i=1}^{d}\left|v_{i}\right|$.
Because subtraction is well-defined between vectors $v, u \in \mathbb{R}^{d}$ of the same dimension, then we can also take the norm of $\|v-u\|_{p}$. While this is technically the norm of the vector resulting from the subtraction of u from v; it also provides a distance between u and v. In the case of $p=2$, then

$$
\|u-v\|_{2}=\sqrt{\sum_{i=1}^{d}\left(u_{i}-v_{i}\right)^{2}}
$$

is precisely the straight-line (Euclidean) distance between u and v.
Moreover, all L_{p} norms define a distance $D_{p}(u, v)=\|u-v\|_{p}$, which satisfies a set of special properties, which a required for a distance to be a metric. This include:

- Symmetry: For any $u, v \in \mathbb{R}^{d}$ we have $D(u, v)=D(v, u)$.
- Non-negativity: For any $u, v \in \mathbb{R}^{d}$ we have $D(u, v) \geq 0$, and $D(u, v)=0$ if and only if $u=v$.
- Triangle Inequality: For any $u, v, w \in \mathbb{R}^{d}$ we have $D(u, w)+D(w, v) \geq D(u, v)$.

We can also define norms for matrices A. These take on slightly different notational conventions. The two most common are the spectral norm $\|A\|=\|A\|_{2}$ and the Frobenius norm $\|A\|_{F}$. The Frobenius norm is the most natural extension of the $p=2$ norm for vectors, but uses a subscript F instead. It is defined for matrix $A \in \mathbb{R}^{n \times d}$ as

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{d} A_{i, j}^{2}}=\sqrt{\sum_{i=1}^{n}\left\|a_{i}\right\|^{2}}
$$

where $A_{i, j}$ is the element in the i th row and j th column of A, and where a_{i} is the i th row vector of A. The spectral norm is defined for a matrix $A \in \mathbb{R}^{n \times d}$ as

$$
\|A\|=\|A\|_{2}=\max _{x \in \mathbb{R}^{d}}\|A x\| /\|x\|=\max _{y \in \mathbb{R}^{n}}\|y A\| /\|y\| .
$$

Its useful to think of these x and y vectors as being unit vectors, then the denominator can be ignored. Then we see that x and y only contain "directional" information, and the arg max vectors point in the directions that maximize the norm.

4.5 Linear Independence

Consider a set of k vectors $x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}^{d}$, and a set of k scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in \mathbb{R}$. Then because of linearity of vectors, we can write a new vector in \mathbb{R}^{d} as

$$
z=\sum_{i=1}^{k} \alpha_{i} x_{i} .
$$

For a set of vectors $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, for any vector z where there exists a set of scalars α where z can be written as the above summation, then we say z is linearly dependent on X. If z cannot be written with any choice of $\alpha_{i} \mathrm{~s}$, the we say z is linearly independent of X. All vectors $z \in \mathbb{R}^{d}$ which are linearly dependent on X are said to be in its span.

$$
\operatorname{span}(X)=\left\{z \mid z=\sum_{i=1}^{k} \alpha_{i} x_{i}, \quad \alpha_{i} \in \mathbb{R}\right\} .
$$

If $\operatorname{span}(X)=\mathbb{R}^{d}$ (that is for vectors $X=x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}^{d}$ all vectors are in the span), then we say X forms a basis.

Example: Linear Independence

Consider input vectors in a set X as

$$
x_{1}=\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
2 \\
4 \\
1
\end{array}\right]
$$

And two other vectors

$$
z_{1}=\left[\begin{array}{c}
-3 \\
-5 \\
2
\end{array}\right] \quad z_{2}=\left[\begin{array}{l}
3 \\
7 \\
1
\end{array}\right]
$$

Note that z_{1} is linearly dependent on X since it can be written as $z_{1}=x_{1}-2 x_{2}$ (here $\alpha_{1}=1$ and $\alpha_{2}=-2$). However z_{2} is linearly independent from X since there are no scalars α_{1} and α_{2} so that $z_{2}=\alpha_{1} x_{1}+\alpha_{2} x_{2}$ (we need $\alpha_{1}=\alpha_{2}=1$ so the first two coordinates align, but then the third coordinate cannot).
Also the set X is linearly independent, since there is no way to write $x_{2}=\alpha_{1} x_{1}$.
A set of vectors $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is linearly independent if there is no way to write any vector $x_{i} \in X$ in the set with scalars $\left\{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{n}\right\}$ as the sum

$$
x_{i}=\sum_{\substack{j=1 \\ j \neq i}}^{n} \alpha_{j} x_{j}
$$

of the other vectors in the set.

4.6 Rank

The rank of a set of vectors $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is the size of the largest subset $X^{\prime} \subset X$ which are linearly independent. Usually we report $\operatorname{rank}(A)$ as the rank of a matrix A. It is defined as the rank of the rows of the matrix, or the rank of its columns; it turns out these quantities are always the same.

If $A \in \mathbb{R}^{n \times d}$, then $\operatorname{rank}(A) \leq \min \{n, d\}$. If $\operatorname{rank}(A)=\min \{n, d\}$, then A is said to be full rank. For instance, if $d<n$, then using the rows of $A=\left[a_{1} ; a_{2} ; \ldots ; a_{n}\right]$, we can describe any vector $z \in \mathbb{R}^{d}$ as the linear combination of these rows: $z=\sum_{i=1}^{n} \alpha_{i} a_{i}$ for some set $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$; in fact, we can set all but d of these scalars to 0 .

4.7 Inverse

A matrix A is said to be square if it has the same number of column as it has rows. A square matrix $A \in \mathbb{R}^{n \times n}$ may have an inverse denoted A^{-1}. If it exists, it is a unique matrix which satisfies:

$$
A^{-1} A=I=A A^{-1}
$$

where I is the $n \times n$ identity matrix

$$
I=\left[\begin{array}{ccccc}
1 & 0 & \ldots 0 & 0 & \\
0 & 1 & \ldots 0 & 0 & \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right]=\operatorname{diag}(1,1, \ldots, 1)
$$

Note that I serves the purpose of 1 in scalar algebra, so for a scalar a then using $a^{-1}=\frac{1}{a}$ we have $a a^{-1}=$ $1=a^{-1} a$.

A matrix is said to be invertable if it has an inverse. Only square, full-rank matrices are invertable; and a matrix is always invertable if it is square and full rank. If a matrix is not square, the inverse is not defined. If a matrix is not full rank, then it does not have an inverse.

4.8 Orthogonality

Two vectors $x, y \in \mathbb{R}^{d}$ are orthogonal if $\langle x, y\rangle=0$. This means those vectors are at a right angle to each other.

Example: Orthongonality

Consider two vectors $x=(2,-3,4,-1,6)$ and $y=(4,5,3,-7,-2)$. They are orthogonal since

$$
\langle x, y\rangle=(2 \cdot 4)+(-3 \cdot 5)+(4 \cdot 3)+(-1 \cdot-7)+(6 \cdot-2)=8-15+12+7-12=0
$$

A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all of its columns $\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ are normalized and are all orthogonal with each other. It follows that

$$
U^{T} U=I=U U^{T}
$$

since for any normalized vector u that $\langle u, u\rangle=\|u\|=1$.
A set of columns (for instance those of an orthogonal U) which are normalized and all orthogonal to each other are said to be orthonormal. If $U \in \mathbb{R}^{n \times d}$ and has orthonormal columns, then $U^{T} U=I$ (here I is $d \times d$) but $U U^{T} \neq I$.

Orthogonal matrices are norm preserving. That means for an orthogonal matrix $U \in \mathbb{R}^{n \times n}$ and any vector $x \in \mathbb{R}^{n}$, then $\|U x\|=\|x\|$.

Moreover, the columns $\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ of an orthogonal matrix $U \in \mathbb{R}^{n \times n}$ form an basis for \mathbb{R}^{n}. This means that for any vector $x \in \mathbb{R}^{n}$, there exists a set of scalars $\alpha_{1}, \ldots, \alpha_{n}$ such that $x=\sum_{i=1}^{n} \alpha_{i} u_{i}$. More interestingly, we also have $\|x\|^{2}=\sum_{i=1}^{n} \alpha_{i}^{2}$.

This can be interpreted as U describing a rotation (with possible mirror flips) to a new set of coordinates. That is the old coordinates of x are $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and the coordinates in the new orthogonal basis $\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ are $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$.

4.9 Python numpy Example

Python provides an excellent library called numpy (pronounced 'num-pie') for handling arrays and matrices, and performing linear basic algebra.

```
import numpy as np
from numpy import linalg as LA
#create an array, a row vector
v = np.array([1,2,7,5])
print v
#[11 2 7 5]
print v[2]
#7
#create a n=2 x d=3 matrix
A = np.array([[3,4,3],[1,6,7]])
print A
#[[3 [ 4 3]
# [lllll
print A[1,2]
#7
print A[:, 1:3]
#[[[\begin{array}{ll}{4}&{3}\end{array}]
# [l6 7]]
#adding and multiplying vectors
u = np.array([3,4,2,2])
#elementwise add
print v+u
#[\begin{array}{llll}{4}&{6}&{9}&{7}\end{array}]
#elementwise multiply
print v*u
#[ [\begin{array}{llll}{3}&{8}&{14}&{10]}\end{array}]
# dot product
print v.dot(u)
# 35
print np.dot(u,v)
# 35
```

```
#matrix multiplication
B = np.array([[1, 2],[6,5],[3,4]])
print A.dot(B)
#[[[36 38]
# [58 60]]
x = np.array([3,4])
print B.dot(x)
#[llllll
#norms
print LA.norm(v)
#8.88819441732
print LA.norm(v,1)
#15.0
print LA.norm(v,np.inf)
#7.0
print LA.norm(A, 'fro')
#10.9544511501
print LA.norm(A, 2)
#10.704642743
#transpose
print A.T
#[[[3 1]
# [[4 6]
# [3 7]]
print x.T
#[3 4] (always prints in row format)
print LA.matrix_rank(A)
#2
C = np.array([[1,2],[3,5]])
print LA.inv(C)
#[[-5. 2.]
# [ 3. -1.]]
print C.dot(LA.inv(C))
#[[[ 1.00000000e+00 2.22044605e-16] (nearly [[1 0]
# [ 0.00000000e+00 1.00000000e+00]] [0 1]])
```

