Introduction to Streaming Algorithms

Jeff M. Phillips

September 21, 2013

Network Router

Internet Router

- data per day: at least I Terabyte
- packet takes 8 nanoseconds to pass through router
- few million packets per second
What statistics can we keep on data?
Want to detect anomalies for security.

Telephone Switch

Cell phones connect through switches

- each message 1000 Bytes
- 500 Million calls / day
- 1 Terabyte per month Search for characteristics for dropped calls?

Ad Auction

Serving Ads on web
Google, Yahoo!, Microsoft

- Yahoo.com viewed 100 trillion times
- 2 million / hour
- Each page serves ads; which ones?

How to update ad delivery model?

Flight Logs on Tape

All airplane logs over Washington, DC

- About 500-1000 flights per day.
- 50 years, total about 9 million flights
- Each flight has trajectory, passenger count, control dialog Stored on Tape. Can make 1 pass! What statistics can be gathered?

Streaming Model

CPU makes " one pass" on data

- Ordered set $A=\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle$
- Each $a_{i} \in[n]$, size $\log n$
- Compute $f(A)$ or maintain $f\left(A_{i}\right)$ for $A_{i}=\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle$.

Streaming Model

CPU makes " one pass" on data

- Ordered set $A=\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle$
- Each $a_{i} \in[n]$, size $\log n$
- Compute $f(A)$ or maintain $f\left(A_{i}\right)$ for $A_{i}=\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle$.
- Space restricted to $S=O($ poly $(\log m, \log n))$.
- Updates $O(\operatorname{poly}(S))$ for each a_{i}.

Streaming Model

Space:

- Ideally $S=O(\log m+\log n)$
- $\log n=$ size of 1 word
- $\log m=$ to store number of words

Streaming Model

Space:

- Ideally $S=O(\log m+\log n)$
- $\log n=$ size of 1 word
- $\log m=$ to store number of words

Updates:

- $O\left(S^{2}\right)$ or $O\left(S^{3}\right)$ can be too much!
- Ideally updates in $O(S)$

Easy Example: Average

- Each a_{i} a number in [n]
- $f\left(A_{i}\right)=\operatorname{average}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right)$

Easy Example: Average

- Each a_{i} a number in [n]
- $f\left(A_{i}\right)=\operatorname{average}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right)$
- Maintain: i and $s=\sum_{j=1}^{i} a_{i}$.
- $f\left(A_{i}\right)=s / i$

Easy Example: Average

- Each a_{i} a number in [n]
- $f\left(A_{i}\right)=\operatorname{average}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right)$
- Maintain: i and $s=\sum_{j=1}^{i} a_{i}$.
- $f\left(A_{i}\right)=s / i$
- Problem? s is bigger than a word!

Easy Example: Average

- Each a_{i} a number in [n]
- $f\left(A_{i}\right)=\operatorname{average}\left(\left\{a_{1}, \ldots, a_{i}\right\}\right)$
- Maintain: i and $s=\sum_{j=1}^{i} a_{i}$.
- $f\left(A_{i}\right)=s / i$
- Problem? s is bigger than a word!
- s is not bigger than $(\log s / \log n)$ words (big int data structure)
- usually 2 or 3 words is fine

Trick 1: Approximation

Return $\hat{f}(A)$ instead of $f(A)$ where

$$
|f(A)-\hat{f}(A)| \leq \varepsilon \cdot f(A)
$$

$\hat{f}(A)$ is a $(1+\varepsilon)$-approximation of $f(A)$.

Trick 1: Approximation

Return $\hat{f}(A)$ instead of $f(A)$ where

$$
|f(A)-\hat{f}(A)| \leq \varepsilon \cdot f(A)
$$

$\hat{f}(A)$ is a $(1+\varepsilon)$-approximation of $f(A)$.
Example: Average

- (a) the count: i
- (b) top $k=\log (1 / \varepsilon)+1$ bits of $s: \hat{s}$
- (c) number of bits in s
- Let $\hat{f}(A)=\hat{s} / i$

Trick 1: Approximation

Return $\hat{f}(A)$ instead of $f(A)$ where

$$
|f(A)-\hat{f}(A)| \leq \varepsilon \cdot f(A)
$$

$\hat{f}(A)$ is a $(1+\varepsilon)$-approximation of $f(A)$.
Example: Average

- (a) the count: i
$k=\log (1 / \varepsilon)$
- (b) top $k=\log (1 / \varepsilon)+1$ bits of $s: \hat{s}$
- (c) number of bits in s
- Let $\hat{f}(A)=\hat{s} / i$

First bit has $\geq(1 / 2) f(A)$
Second bit has $\leq(1 / 4) f(A)$
j th bit has $\leq\left(1 / 2^{j}\right) f(A)$

$$
\sum_{j=k+1}^{\infty}\left(1 / 2^{j}\right) f(A)<\left(1 / 2^{k}\right) f(A)<\varepsilon \cdot f(A)
$$

Trick 1: Approximation

Return $\hat{f}(A)$ instead of $f(A)$ where

$$
|f(A)-\hat{f}(A)| \leq \varepsilon \cdot f(A)
$$

$\hat{f}(A)$ is a $(1+\varepsilon)$-approximation of $f(A)$.
Example: Average

- (a) the count: i
$k=\log (1 / \varepsilon)$
- (b) top $k=\log (1 / \varepsilon)+1$ bits of $s: \hat{s}$
- (c) number of bits in s
- Let $\hat{f}(A)=\hat{s} / i$

First bit has $\geq(1 / 2) f(A)$
Second bit has $\leq(1 / 4) f(A)$
j th bit has $\leq\left(1 / 2^{j}\right) f(A)$

$$
\sum_{j=k+1}^{\infty}\left(1 / 2^{j}\right) f(A)<\left(1 / 2^{k}\right) f(A)<\varepsilon \cdot f(A)
$$

Where did I cheat?

Trick 2: Randomization

Return $\hat{f}(A)$ instead of $f(A)$ where

$$
\operatorname{Pr}[|f(A)-\hat{f}(A)|>\varepsilon \cdot f(A)] \leq \delta
$$

$\hat{f}(A)$ is a $(1+\varepsilon, \delta)$-approximation of $f(A)$.

Trick 2: Randomization

Return $\hat{f}(A)$ instead of $f(A)$ where

$$
\operatorname{Pr}[|f(A)-\hat{f}(A)|>\varepsilon \cdot f(A)] \leq \delta
$$

$\hat{f}(A)$ is a $(1+\varepsilon, \delta)$-approximation of $f(A)$.

Can fix previous cheat using randomization and Morris Counter (Morris 78, Flajolet 85)

Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^{k} emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, $1 / 2$ of email receivers got good advice.

Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^{k} emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, $1 / 2$ of email receivers got good advice.
Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, $1 / 4$ of all receivers have gotten good advice twice.

Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^{k} emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, $1 / 2$ of email receivers got good advice.
Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, $1 / 4$ of all receivers have gotten good advice twice.
After k weeks 100 receivers got good advice

- IC now asks each for money to receive future stock tricks.

Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^{k} emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, $1 / 2$ of email receivers got good advice.
Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, $1 / 4$ of all receivers have gotten good advice twice.
After k weeks 100 receivers got good advice

- IC now asks each for money to receive future stock tricks.
- Don't actually do this!!!

Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^{k} emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, $1 / 2$ of email receivers got good advice.
Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, $1 / 4$ of all receivers have gotten good advice twice.
After k weeks 100 receivers got good advice

- IC now asks each for money to receive future stock tricks.
- Don't actually do this!!!

If you are on IC's original email list, with what probability will you not receive k good stock tips?

Decreasing Probability of Failure

Investment Company (IC) sends out 100×2^{k} emails:

- 2^{k-1} say Stock A will go up in next week
- 2^{k-1} say Stock A will go down in next week

After 1 week, $1 / 2$ of email receivers got good advice.
Next week, IC sends letters 2^{k-1} letters, only to those who got good advice.

- 2^{k-2} say Stock B will go up in next week.
- 2^{k-2} say Stock B will go down in next week.

After 2 weeks, $1 / 4$ of all receivers have gotten good advice twice.
After k weeks 100 receivers got good advice

- IC now asks each for money to receive future stock tricks.
- Don't actually do this!!!

If you are on IC's original email list, with what probability will you not receive k good stock tips?

$$
1-(1 / 2)^{k}
$$

Sliding Window

Let $A_{i-s, i}=\left\{a_{i-s}, a_{i-s+1}, \ldots, a_{i}\right\}$ (the last s items).
Goal: maintain $f\left(A_{i-s, i}\right)$.

Sliding Window

Let $A_{i-s, i}=\left\{a_{i-s}, a_{i-s+1}, \ldots, a_{i}\right\}$ (the last s items).
Goal: maintain $f\left(A_{i-s, i}\right)$.
Another model: Each $a_{i}=(v, t)$ where t is a time stamp.
Let $A_{i}^{[w]}=\left\{a=(v, t) \in A_{i} \mid t \geq t_{\text {now }}-w\right\}$
Goal: maintain $f\left(A_{i}^{[\omega]}\right)$.

Sliding Window

Let $A_{i-s, i}=\left\{a_{i-s}, a_{i-s+1}, \ldots, a_{i}\right\}$ (the last s items).
Goal: maintain $f\left(A_{i-s, i}\right)$.
Another model: Each $a_{i}=(v, t)$ where t is a time stamp.
Let $A_{i}^{[w]}=\left\{a=(v, t) \in A_{i} \mid t \geq t_{\text {now }}-w\right\}$
Goal: maintain $f\left(A_{i}^{[\omega]}\right)$.
Simpler solution: Decay rate γ.
Maintain a summary $S_{i}=f\left(A_{i}\right)$;
at each time step update $S_{i+1}=f\left((1-\gamma) S_{i} \cup a_{i+1}\right)$.

Semi-Streaming Model

Streaming on Graphs.

Semi-Streaming Model

Streaming on Graphs.
Each $a_{i}=\left(v_{i}, v_{j}\right)$ is an edge.

- Is graph connected?
- Size of best matching? (each vertex in at most one pair)

Semi-Streaming Model

Streaming on Graphs.
Each $a_{i}=\left(v_{i}, v_{j}\right)$ is an edge.

- Is graph connected?
- Size of best matching? (each vertex in at most one pair)

Too hard!

Assume that all vertices can fit in memory, say $O(n \log n)$ space. For 1 million vertices, may be ok, but not for 1 billion vertices (e.g. Facebook).

Markov Inequality

Let X be a random variable (RV).
Let $a>0$ be a parameter.

$$
\operatorname{Pr}[|X| \geq a] \leq \frac{\mathbf{E}[|X|]}{a}
$$

Chebyshev's Inequality

Let Y be a random variable.
Let $b>0$ be a parameter.

$$
\operatorname{Pr}[|Y-\mathbf{E}[Y]| \geq b] \leq \frac{\operatorname{Var}[|Y|]}{b^{2}}
$$

Chernoff Inequality

Let $\left\{X_{1}, X_{2}, \ldots, X_{r}\right\}$ be independent random variables.
Let $\Delta_{i}=\max \left\{X_{i}\right\}-\min \left\{X_{i}\right\}$.
Let $M=\sum_{i=1}^{r} X_{i}$.
Let $\alpha>0$ be a parameter.

$$
\operatorname{Pr}\left[\left|M-\sum_{i=1}^{r} \mathbf{E}\left[X_{i}\right]\right| \geq \alpha\right] \leq 2 \exp \left(\frac{-2 \alpha^{2}}{\sum_{i} \Delta_{i}^{2}}\right)
$$

Chernoff Inequality

Let $\left\{X_{1}, X_{2}, \ldots, X_{r}\right\}$ be independent random variables.
Let $\Delta_{i}=\max \left\{X_{i}\right\}-\min \left\{X_{i}\right\}$.
Let $M=\sum_{i=1}^{r} X_{i}$.
Let $\alpha>0$ be a parameter.

$$
\operatorname{Pr}\left[\left|M-\sum_{i=1}^{r} \mathbf{E}\left[X_{i}\right]\right| \geq \alpha\right] \leq 2 \exp \left(\frac{-2 \alpha^{2}}{\sum_{i} \Delta_{i}^{2}}\right)
$$

Often: $\Delta=\max _{i} \Delta_{i} \quad$ and $\quad \mathbf{E}\left[X_{i}\right]=0$ then:

$$
\operatorname{Pr}[|M| \geq \alpha] \leq 2 \exp \left(\frac{-2 \alpha^{2}}{r \Delta_{i}^{2}}\right)
$$

Attribution

These slides borrow from material by Muthu Muthukrishnan: http://www.cs.mcgill.ca/~denis/notes09.pdf and Amit Chakrabarti:
http://www.cs.dartmouth.edu/~ac/Teach/CS85-Fall09/

