
Introduction to Parallel Algorithm Analysis

Jeff M. Phillips

October 4, 2013

Petri Nets

C. A. Petri [1962] introduced analysis model
for concurrent systems.

I Flow chart

I Described data flow and dependencies.

I Very low level (we want something more
high-level)

I Reachability EXP-SPACE-HARD,
Decidable

Critical Regions Problem

Edsger Dijkstra [1965]

I Mutex: “Mutual exclusion” of variable

I Semaphores : Locks/Unlocks access to (multiple) data.

I Semaphore more general - keeps a count. Mutex binary.

Important, but lower level details.

Critical Regions Problem

Edsger Dijkstra [1965]

I Mutex: “Mutual exclusion” of variable

I Semaphores : Locks/Unlocks access to (multiple) data.

I Semaphore more general - keeps a count. Mutex binary.

Important, but lower level details.

Amdahl’s and Gustafson’s Laws

Amdahl’s Law : Gene Amdahl
[1967]

I Small portion (fraction α)
non-parallelizable

I Limits max speed-up
S = 1/α.

Gustafson’s Law :
Gustafson+Barsis [1988]

I Small portion (fraction α)
non-parallelizable

I P processors

I Limits max speed-up
S(P) = P − α(P − 1).

Tseq

Tpar

S =
Tseq

Tpar

S(P) =
Tseq

Tpar(P)
Tpar(P)

Logical Clocks

Leslie Lamport [1978]

I Posed parallel problems as finite
state machine

I Preserved (only) partial order:
“happens before” mutex

Logical Clocks

Leslie Lamport [1978]

I Posed parallel problems as finite
state machine

I Preserved (only) partial order:
“happens before” mutex

Logical Clocks

Leslie Lamport [1978]

I Posed parallel problems as finite
state machine

I Preserved (only) partial order:
“happens before” mutex

Logical Clocks

Leslie Lamport [1978]

I Posed parallel problems as finite
state machine

I Preserved (only) partial order:
“happens before” mutex

Logical Clocks

Leslie Lamport [1978]

I Posed parallel problems as finite
state machine

I Preserved (only) partial order:
“happens before” mutex

Logical Clocks

Leslie Lamport [1978]

I Posed parallel problems as finite
state machine

I Preserved (only) partial order:
“happens before” mutex

Highlights nuances and difficulties in
clock synchronization.

DAG Model

Directed Acyclic Graph:

I Each node represents a chunk of
computation that is to be done on
a single processor

I Directed edges indicate that the
from node must be completed
before the to node

I The longest path in the DAG
represents the total amount of
parallel time of the algorithm

I The width of the DAG indicates
the number of processors that can
be used at once

DAG Model

Directed Acyclic Graph:

I Each node represents a chunk of
computation that is to be done on
a single processor

I Directed edges indicate that the
from node must be completed
before the to node

I The longest path in the DAG
represents the total amount of
parallel time of the algorithm

I The width of the DAG indicates
the number of processors that can
be used at once

DAG Model

Directed Acyclic Graph:

I Each node represents a chunk of
computation that is to be done on
a single processor

I Directed edges indicate that the
from node must be completed
before the to node

I The longest path in the DAG
represents the total amount of
parallel time of the algorithm

I The width of the DAG indicates
the number of processors that can
be used at once

A1 A2

A3+
A4

A3 A4

A1+A2+
A3+A4

A1+
A2

PRAM Model

RAM

CPU1 CPU2 CPUp

Steve Fortune and James Wyllie [1978].
“shared memory model”

I P processors which operate on a
shared data

I For each processor read, write, op
(e.g. +, −, ×) constant time.

I CREW : Concurrent read,
exclusive write

I CRCW : Concurrent read,
concurrent write

I EREW : Exclusive read, exclusive
write

PRAM Model

RAM

CPU1 CPU2 CPUp

Steve Fortune and James Wyllie [1978].
“shared memory model”

I P processors which operate on a
shared data

I For each processor read, write, op
(e.g. +, −, ×) constant time.

I CREW : Concurrent read,
exclusive write

I CRCW : Concurrent read,
concurrent write

I EREW : Exclusive read, exclusive
write

PRAM Model

RAM

CPU1 CPU2 CPUp

A1 A2

A3+
A4

A3 A4

A1+A2+
A3+A4

A1+
A2

Steve Fortune and James Wyllie [1978].
“shared memory model”

I P processors which operate on a
shared data

I For each processor read, write, op
(e.g. +, −, ×) constant time.

I CREW : Concurrent read,
exclusive write

I CRCW : Concurrent read,
concurrent write

I EREW : Exclusive read, exclusive
write

Message Passing Model

Emphasizes Locality

I send(X , i) : sends X to Pi

I receive(Y , j) : receives Y from Pj

I Fixed topology, can only
send/receive from neighbor

Common Topologies:

I Array/Ring Topology
•

I Mesh Topology
•

I Hypercube Topology
•

Message Passing Model

Emphasizes Locality

I send(X , i) : sends X to Pi

I receive(Y , j) : receives Y from Pj

I Fixed topology, can only
send/receive from neighbor

Common Topologies:

I Array/Ring Topology
•

I Mesh Topology
•

I Hypercube Topology
•

Message Passing Model

Emphasizes Locality

I send(X , i) : sends X to Pi

I receive(Y , j) : receives Y from Pj

I Fixed topology, can only
send/receive from neighbor

Common Topologies:

I Array/Ring Topology
• (Ω(p) rounds)

I Mesh Topology
•

I Hypercube Topology
•

Message Passing Model

Emphasizes Locality

I send(X , i) : sends X to Pi

I receive(Y , j) : receives Y from Pj

I Fixed topology, can only
send/receive from neighbor

Common Topologies:

I Array/Ring Topology
• (Ω(p) rounds)

I Mesh Topology
•

I Hypercube Topology
•

Message Passing Model

Emphasizes Locality

I send(X , i) : sends X to Pi

I receive(Y , j) : receives Y from Pj

I Fixed topology, can only
send/receive from neighbor

Common Topologies:

I Array/Ring Topology
• (Ω(p) rounds)

I Mesh Topology
• (Ω(

√
p) rounds)

I Hypercube Topology
•

Message Passing Model

Emphasizes Locality

I send(X , i) : sends X to Pi

I receive(Y , j) : receives Y from Pj

I Fixed topology, can only
send/receive from neighbor

Common Topologies:

I Array/Ring Topology
• (Ω(p) rounds)

I Mesh Topology
• (Ω(

√
p) rounds)

I Hypercube Topology
•

00
00

00
10

00
01

00
11

10
00

10
10

10
01

10
11

01
00

01
10

01
01

01
11

11
00

11
10

11
01

11
11

Message Passing Model

Emphasizes Locality

I send(X , i) : sends X to Pi

I receive(Y , j) : receives Y from Pj

I Fixed topology, can only
send/receive from neighbor

Common Topologies:

I Array/Ring Topology
• (Ω(p) rounds)

I Mesh Topology
• (Ω(

√
p) rounds)

I Hypercube Topology
• (Ω(log p) rounds)

00
00

00
10

00
01

00
11

10
00

10
10

10
01

10
11

01
00

01
10

01
01

01
11

11
00

11
10

11
01

11
11

Programming in MPI

Open MPI :

I (Open Source High Performance Computing).

I http://www.open-mpi.org/

When to use MPI?

I Critical to exploit locality (i.e. scientific simulations)

I Complication in only talking to neighbor

http://www.open-mpi.org/

Programming in MPI

Open MPI :

I (Open Source High Performance Computing).

I http://www.open-mpi.org/

When to use MPI?

I Critical to exploit locality (i.e. scientific simulations)

I Complication in only talking to neighbor

http://www.open-mpi.org/

Bulk Synchronous Parallel

Les Valiant [1989] BSP
Creates “barriers” in parallel algorithm.

1. Each processor computes on data

2. Processors send/receive data

3. Barrier : All processors wait for
communication to end globally

Allows for easy synchronization. Easier
to analyze since handles many messy
synchronization details if this is
emulated.

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

Bulk Synchronous Parallel

Les Valiant [1989] BSP
Creates “barriers” in parallel algorithm.

1. Each processor computes on data

2. Processors send/receive data

3. Barrier : All processors wait for
communication to end globally

Allows for easy synchronization. Easier
to analyze since handles many messy
synchronization details if this is
emulated.

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

Bulk Synchronous Parallel

Les Valiant [1989] BSP
Creates “barriers” in parallel algorithm.

1. Each processor computes on data

2. Processors send/receive data

3. Barrier : All processors wait for
communication to end globally

Allows for easy synchronization. Easier
to analyze since handles many messy
synchronization details if this is
emulated.

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

Bridging Model for Multi-Core Computing

Les Valiant [2010] Mulit-BSP
Many parameters:

I P : number of processors

I M : Memory/Cache Size

I B : Block Size/Cost

I L : Synchronization Costs

Argues: any portable and efficient
parallel algorithm, must take into
account all of these parameters.

Advantages:

I Analyzes all levels of architecture
together

I Like Cache-Oblivious, but not
oblivious

At depth d uses parameters:⋃
i (pi , gi , Li ,mi)

I pi : number of subcomponents
(processors at leaf)

I gi : communication bandwidth
(e.g. I/O cost)

I Li : synchronization cost

I mi : memory/cache size
Matrix Multiplication, Fast Fourier Transform, Sorting

Bridging Model for Multi-Core Computing

Les Valiant [2010] Mulit-BSP
Many parameters:

I P : number of processors

I M : Memory/Cache Size

I B : Block Size/Cost

I L : Synchronization Costs

Argues: any portable and efficient
parallel algorithm, must take into
account all of these parameters.

Advantages:

I Analyzes all levels of architecture
together

I Like Cache-Oblivious, but not
oblivious

At depth d uses parameters:⋃
i (pi , gi , Li ,mi)

I pi : number of subcomponents
(processors at leaf)

I gi : communication bandwidth
(e.g. I/O cost)

I Li : synchronization cost

I mi : memory/cache size
Matrix Multiplication, Fast Fourier Transform, Sorting

Bridging Model for Multi-Core Computing

Les Valiant [2010] Mulit-BSP
Many parameters:

I P : number of processors

I M : Memory/Cache Size

I B : Block Size/Cost

I L : Synchronization Costs

Argues: any portable and efficient
parallel algorithm, must take into
account all of these parameters.

Advantages:

I Analyzes all levels of architecture
together

I Like Cache-Oblivious, but not
oblivious

At depth d uses parameters:⋃
i (pi , gi , Li ,mi)

I pi : number of subcomponents
(processors at leaf)

I gi : communication bandwidth
(e.g. I/O cost)

I Li : synchronization cost

I mi : memory/cache size

Matrix Multiplication, Fast Fourier Transform, Sorting

Bridging Model for Multi-Core Computing

Les Valiant [2010] Mulit-BSP
Many parameters:

I P : number of processors

I M : Memory/Cache Size

I B : Block Size/Cost

I L : Synchronization Costs

Argues: any portable and efficient
parallel algorithm, must take into
account all of these parameters.

Advantages:

I Analyzes all levels of architecture
together

I Like Cache-Oblivious, but not
oblivious

At depth d uses parameters:⋃
i (pi , gi , Li ,mi)

I pi : number of subcomponents
(processors at leaf)

I gi : communication bandwidth
(e.g. I/O cost)

I Li : synchronization cost

I mi : memory/cache size
Matrix Multiplication, Fast Fourier Transform, Sorting

Two types of programmers

1. Wants to optimize the heck out of everything, tune all
parameters

2. Wants to get something working, not willing to work too hard

Two types of programmers

1. Wants to optimize the heck out of everything, tune all
parameters

2. Wants to get something working, not willing to work too hard

Two types of programmers

1. Wants to optimize the heck out of everything, tune all
parameters

2. Wants to get something working, not willing to work too hard

MapReduce

Each Processor has full hard drive,
data items < key,value >.
Parallelism Procedes in Rounds:

I Map: assigns items to processor
by key.

I Reduce: processes all items using
value. Usually combines many
items with same key.

Repeat M+R a constant number of
times, often only one round.

I Optional post-processing step.

CPU

RAM

CPU

RAM

CPU

RAM

MAP

REDUCE

sort

post-process
Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model

General Purpose GPU

Massive parallelism on your desktop.
Uses Graphics Processing Unit.
Designed for efficient video rasterizing.
Each processor corresponds to pixel p

I depth buffer:
D(p) = mini ||x − wi ||

I color buffer: C (p) =
∑

i αiχi

I ...

X

wi

p

Pro: Fine grain, massive parallelism. Cheap.
Con: Somewhat restrictive model. Small memory.

... and Beyond

Google Sawzall / Dremel

I Compute statistics on massive distributed data.

I Separates local computation from aggregation.

Berkeley Spark: Processing in memory

I Keeps relevant information in memory.

I Faster on iterative algorithms (machine learning, SQL queries)

Massive, Unorganized, Distributed Computing

I Bit-Torrent (distributed hash tables)

I SETI @ Home

I Twitter Storm / Facebook Casandra

... and Beyond

Google Sawzall / Dremel

I Compute statistics on massive distributed data.

I Separates local computation from aggregation.

Berkeley Spark: Processing in memory

I Keeps relevant information in memory.

I Faster on iterative algorithms (machine learning, SQL queries)

Massive, Unorganized, Distributed Computing

I Bit-Torrent (distributed hash tables)

I SETI @ Home

I Twitter Storm / Facebook Casandra

... and Beyond

Google Sawzall / Dremel

I Compute statistics on massive distributed data.

I Separates local computation from aggregation.

Berkeley Spark: Processing in memory

I Keeps relevant information in memory.

I Faster on iterative algorithms (machine learning, SQL queries)

Massive, Unorganized, Distributed Computing

I Bit-Torrent (distributed hash tables)

I SETI @ Home

I Twitter Storm / Facebook Casandra

