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Petri Nets

C. A. Petri [1962] introduced analysis model
for concurrent systems.

I Flow chart

I Described data flow and dependencies.

I Very low level (we want something more
high-level)

I Reachability EXP-SPACE-HARD,
Decidable



Critical Regions Problem

Edsger Dijkstra [1965]

I Mutex: “Mutual exclusion” of variable

I Semaphores : Locks/Unlocks access to (multiple) data.

I Semaphore more general - keeps a count. Mutex binary.

Important, but lower level details.
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Amdahl’s and Gustafson’s Laws

Amdahl’s Law : Gene Amdahl
[1967]

I Small portion (fraction α)
non-parallelizable

I Limits max speed-up
S = 1/α.

Gustafson’s Law :
Gustafson+Barsis [1988]

I Small portion (fraction α)
non-parallelizable

I P processors

I Limits max speed-up
S(P) = P − α(P − 1).
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Logical Clocks

Leslie Lamport [1978]

I Posed parallel problems as finite
state machine

I Preserved (only) partial order:
“happens before” mutex
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Logical Clocks

Leslie Lamport [1978]

I Posed parallel problems as finite
state machine

I Preserved (only) partial order:
“happens before” mutex

Highlights nuances and difficulties in
clock synchronization.



DAG Model

Directed Acyclic Graph:

I Each node represents a chunk of
computation that is to be done on
a single processor

I Directed edges indicate that the
from node must be completed
before the to node

I The longest path in the DAG
represents the total amount of
parallel time of the algorithm

I The width of the DAG indicates
the number of processors that can
be used at once
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PRAM Model

RAM

CPU1 CPU2 CPUp

Steve Fortune and James Wyllie [1978].
“shared memory model”

I P processors which operate on a
shared data

I For each processor read, write, op
(e.g. +, −, ×) constant time.

I CREW : Concurrent read,
exclusive write

I CRCW : Concurrent read,
concurrent write

I EREW : Exclusive read, exclusive
write
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Message Passing Model

Emphasizes Locality

I send(X , i) : sends X to Pi

I receive(Y , j) : receives Y from Pj

I Fixed topology, can only
send/receive from neighbor

Common Topologies:

I Array/Ring Topology
•

I Mesh Topology
•

I Hypercube Topology
•
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Message Passing Model

Emphasizes Locality

I send(X , i) : sends X to Pi

I receive(Y , j) : receives Y from Pj

I Fixed topology, can only
send/receive from neighbor

Common Topologies:

I Array/Ring Topology
• (Ω(p) rounds)

I Mesh Topology
• (Ω(

√
p) rounds)

I Hypercube Topology
• (Ω(log p) rounds)
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Programming in MPI

Open MPI :

I (Open Source High Performance Computing).

I http://www.open-mpi.org/

When to use MPI?

I Critical to exploit locality (i.e. scientific simulations)

I Complication in only talking to neighbor

http://www.open-mpi.org/
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Bulk Synchronous Parallel

Les Valiant [1989] BSP
Creates “barriers” in parallel algorithm.

1. Each processor computes on data

2. Processors send/receive data

3. Barrier : All processors wait for
communication to end globally

Allows for easy synchronization. Easier
to analyze since handles many messy
synchronization details if this is
emulated.
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Bridging Model for Multi-Core Computing

Les Valiant [2010] Mulit-BSP
Many parameters:

I P : number of processors

I M : Memory/Cache Size

I B : Block Size/Cost

I L : Synchronization Costs

Argues: any portable and efficient
parallel algorithm, must take into
account all of these parameters.

Advantages:

I Analyzes all levels of architecture
together

I Like Cache-Oblivious, but not
oblivious

At depth d uses parameters:⋃
i (pi , gi , Li ,mi )

I pi : number of subcomponents
(processors at leaf)

I gi : communication bandwidth
(e.g. I/O cost)

I Li : synchronization cost

I mi : memory/cache size
Matrix Multiplication, Fast Fourier Transform, Sorting
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Two types of programmers

1. Wants to optimize the heck out of everything, tune all
parameters

2. Wants to get something working, not willing to work too hard
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MapReduce

Each Processor has full hard drive,
data items < key,value >.
Parallelism Procedes in Rounds:

I Map: assigns items to processor
by key.

I Reduce: processes all items using
value. Usually combines many
items with same key.

Repeat M+R a constant number of
times, often only one round.

I Optional post-processing step.

CPU

RAM

CPU

RAM

CPU

RAM

MAP

REDUCE

sort

post-process
Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model



General Purpose GPU

Massive parallelism on your desktop.
Uses Graphics Processing Unit.
Designed for efficient video rasterizing.
Each processor corresponds to pixel p

I depth buffer:
D(p) = mini ||x − wi ||

I color buffer: C (p) =
∑

i αiχi

I ...

X

wi

p

Pro: Fine grain, massive parallelism. Cheap.
Con: Somewhat restrictive model. Small memory.



... and Beyond

Google Sawzall / Dremel

I Compute statistics on massive distributed data.

I Separates local computation from aggregation.

Berkeley Spark: Processing in memory

I Keeps relevant information in memory.

I Faster on iterative algorithms (machine learning, SQL queries)

Massive, Unorganized, Distributed Computing

I Bit-Torrent (distributed hash tables)

I SETI @ Home

I Twitter Storm / Facebook Casandra
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