
L9: Distinct Elements

scribe: Mengyang Wang

Overview
Data stream is a very useful model in various domains such as data mining and network monitoring. A data
stream can be viewed as a sequence of items. Each of them can only be seen once(or more than once if
making multiple passes). In streaming model, space is restricted, so it will be infeasible to get exact answer
for some problems. However, in many streaming applications, approximate answers are sufficient.

9.1 Streaming
Suppose there is a stream A = 〈a1, a2, ..., am〉. The current size of this stream is m and for each element
ai, we have ai ∈ [n]. Note that ai is not necessary to be an integer, but we can always map it to an integer.
So it will take about log n bits to store ai and logm space to store m, which is the number of elements we
have seen by now. The goal is to do some computation using only poly(logm, log n) space.

9.2 Distinct-Element Problem
Given a stream A = 〈a1, a2, ..., am〉 with each ai ∈ [n]. We define fj = |{ai ∈ A | ai = j}|, which is
the number of elements in the stream that have value j. The goal of this problem is to find the number of
distinct element F0, denote as F0 = |{ j ∈ [n] | fj >= 0 }|.

For integer p, we denote zeros(p) = max{ i | 2i divides p }. This function computes the number of zeros
that binary form of p end with. For example, if p = 8(10) = 1000(2), then zeros(p) = 3.

Algorithm 9.2.1 Distinct-Elements
Initialization:
Choose a random hash function h : [n]→ [n]
z ← 0

Stream: A
if zeros(h(ai)) > z then
z ← zeros(h(ai))

Output: 2z+
1
2

Let there be k distinct elements(k is just for analysis, we don’t know the value of k). We expect 1/k
distinct elements to have zeros(ai) ≥ log k. And we expect no elements to have zeros(ai) � log k. So z
can be used to estimate log k.

Analysis Let Xr,j be an indicator random variable for event zeros(h(j)) > r. And let Yr =
∑

j Xr,j . Let
t denote the value of variable z at end of stream. We have

Yr > 0⇔ t ≥ r

And it can be rewritten as
Yr = 0⇔ t < r

1

The expectation of Xr,j is

E[Xr,j] = Pr[zeros(h(j)) ≥ r] = Pr[2r divides h(j)] =
1

2r

The expectation and variance of Yr are

E[Yr] =
∑
j

E[Xr,j] =
k

2r

Var[Yr] =
∑
j

Var[Xr, j] (Var[Xr,j] = E[(Xr,j)
2)]− E[Xr,j]

2)

≤
∑
j

E[X2
r,j]

=
∑
j

E[Xr,j]

=
k

2r

(9.1)

Using Markovs inequality, we have

Pr[Yr > 0] = Pr[Yr ≥ 1] ≤ E[Yr]

1
=

k

2r

Using Chebyshev’s inequality, we get

Pr[Yr = 0] = Pr[|Yr − E[Yr]| ≥
k

2r
]

≤ Var[Yr]
(k/2r)2

≤ 2r

k

(9.2)

The algorithm output will be k̂, which is an estimated value of k, so k̂ = 2t+
1
2 . Let a to be the smallest

integer such that 2a+1/2 ≥ 3k, then

Pr[k̂ ≥ 3k] = Pr[t ≥ a] = Pr[Ya > 0] ≤ k

2a
≤
√

2

3
<

1

2

Let b to be the largest integer such that 2b+
1
2 < k/3, then

Pr[k̂ ≤ k/3] = Pr[t ≤ b] = Pr[Yb+1 = 0] ≤ 2b+1

k
≤
√

2

3
<

1

2

That possibility of k̂ larger than 3k or smaller than k/3 is no more than 50%. This is really weak bound.
And in this case ε = 3, δ = 1/2, so it is a (3, 12)-approximation. One way to improve it is to use median
trick, which will be discussed later.

Models of Computation for Massive Data | F13 | Instructor: Jeff M. Phillips, UUtah

9.3 Median Trick
The median trick can help us to reduce the error probability to any δ > 0. Suppose we are running s
parallel, independent hash functions on the above procedure. The output of will be K̂ = {k̂1, k̂2, ..., k̂s}.
Let k̄ denote the median of K̂. Then if k̄ > 3k, there must be at least s/2 values in K̂ than greater than 3k.
In K̂, each k̂i that has value no greater than 3k with probability of 1/2. So (12)s/2 ≤ δ. Solve for s we have
s ≥ 2 log(1/δ). Similarly, we can get same answer for lower bound. Using s = 2 log(2/δ), take median k̄
is an (ε = 3, δ)-approximation of the number of distinct elements.

In this algorithm, we need O(log log n) bits to store t. We also have O(log(1/δ)) hash functions, each
of them needs O(log n) space. So the space used by this algorithm will be O(log(1/δ) · log n). There is a
better algorithm that has space bound O(logm+ 1/ε2 · log(1/ε+ log logm)).

Appendix
Markov Inequality If X is a random variable and a > 0, then

Pr(|X| ≥ a) ≤ E[|X|]
a

Chebyshev’s Inequality If Y a random variable and b > 0, then

Pr(|Y − E[Y]| ≥ b) ≤ Var[Y]

b2

Models of Computation for Massive Data | F13 | Instructor: Jeff M. Phillips, UUtah

