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Outline

Sequential:
» External Memory / (1/0)-Efficient
» Streaming

Parallel:
» PRAM and BSP
» MapReduce
» GP-GPU
» Distributed Computing
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RAM Model

RAM model (Von Neumann RAM
Architecture):

» CPU and Memory
» CPU Operations (+, —, *, ...)

constant time
» Data stored as words, not bits.
» READ, WRITE take constant

time. CPU



Today's Reality

What your computer actually
looks like:

> 34 layers of memory
hierarchy.

» Small number of CPUs.

Many variations!

bigger

164 GB
’
28 RAM
’
4 MB |2
: :
L1 L1

19158}



RAM Model

RAM model (Von Neumann RAM
Architecture):

» CPU and Memory
» CPU Operations (+, —, *, ...)

constant time
» Data stored as words, not bits.
» READ, WRITE take constant

time. CPU



External Memory Model

» N = size of problem
instance

B = size of disk block

M = number of items
that fits in Memory

v

v

black 1/0

T = number of items in
M N output
/O = block move

between Memory and Disk
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External Memory Model

» N = size of problem
instance

» B = size of disk block

» M = number of items
black 1/0 that fits in Memory

» T = number of items in

M \ output
I/O = block move

between Memory and Disk
%

Advanced Data Structures: Sorting, Searching
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Streaming Model

memor

length m

CPU makes "one pass’ on data
» Ordered set A= (a1, az,...,am)

v

Each a; € [n], size logn

Compute f(A) or maintain f(A;)
for A = (a1, a2, ..., ai).

v

v

Space restricted to
S = O(poly(log m, log n)).
Updates O(poly(S)) for each a;.

v
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Streaming Model
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CPU makes "one pass’ on data
» Ordered set A= (a1, az,...,am)

v

Each a; € [n], size logn

Compute f(A) or maintain f(A;)
for A = (a1, a2, ..., ai).

length m
v

v

Space restricted to
S = O(poly(log m, log n)).
Updates O(poly(S)) for each a;.
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Advanced Algorithms: Approximate, Randomized
[m] = = =




PRAM

Many (p) processors. Access
shared memory:

» EREW : Exclusive Read
Exclusive Write RAM

» CREW : Concurrent Read
Exclusive Write

» CRCW : Concurrent Read
Concurrent Write w W ..
Slmple model, but has CPU4 CPU, »
shortcomings...
...such as Synchronization.
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shared memory:
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Exclusive Write
» CREW : Concurrent Read
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» CRCW : Concurrent Read
Concurrent Write
Simple model, but has
shortcomings...
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Advanced Algorithms



Bulk Synchronous Parallel

Each Processor has its own Memory
Parallelism Procedes in Rounds:

1. Compute: Each processor
computes on its own Data: w;.

2. Synchronize: Each processor sends
messages to others:
si = MESSSIZE x CoMMCOST.

3. Barrier: All processors wait until
others done.

Runtime: max w; + maxs;

Pro: Captures Parallelism and Synchronization
Con: Ignores Locality.
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MapReduce

Each Processor has full hard drive,
data items < KEY, VALUE >.
Parallelism Procedes in Rounds:
» Map: assigns items to processor
by KEY.
» Reduce: processes all items using

VALUE. Usually combines many
items with same KEY.

Repeat M+R a constant number of
times, often only one round.

» Optional post-processing step.

Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model
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General Purpose GPU

Massive parallelism on your desktop.

Uses Graphics Processing Unit. Wi
Designed for efficient video rasterizing. <

Each processor corresponds to pixel p
» depth buffer:
D(p) = min; [|x — wil|

|

» color buffer: C(p) =", aixi EEEEEEREE.SEEEEE

!

Pro: Fine grain, massive parallelism. Cheap. Harnesses Locality.
Con: Somewhat restrictive model, hierarchy. Small memory.

> ...




Distributed Computing

Many small slow processors with data.
Communication very expensive.

» Report to base station

> Merge tree

» Unorganized (peer-to-peer)

Data collection or Distribution
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Distributed Computing

Many small slow processors with data.

Communication very expensive.
» Report to base station
> Merge tree

» Unorganized (peer-to-peer)

Data collection or Distribution
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Distributed Computing
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Many small slow processors with data.
Communication very expensive.

» Report to base station
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Data collection or Distribution

Advanced Algorithms: Approximate, Randomized



Themes

What are course goals?
» How to analyze algorithms in each model
» Taste of how to use each model

» When to use each model



Themes

What are course goals?
» How to analyze algorithms in each model
» Taste of how to use each model

» When to use each model

Work Plan:
» 1-3 weeks each model.

» Background and Model.
» Example algorithms analysis in each model.

[/O Stream Parallel MapReduce GPU Distributed

4 5 4 4 3 3




Class Work

1 Credit Students:
» Attend Class. (some Fridays less important)
> Ask Questions.
» If above lacking, may have quizzes.

» Scribing Notes, Video-taping Lectures, or Giving Lectures.

3 Credit Students:
Must also do a project!

» Project Proposal (Aug 30).
Approved or Rejected by Sept 4.

> Intermediate Report (Oct 23).
> Presentations (Dec 11 or 13).
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Asymptotics
How large (in seconds) is:

v

Searching (log n)
Max (n)
Merge-Sort (nlog n)

v

v

v

Bubble-Sort (n?) ... or Dynamic Programming
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How large (in seconds) is:

» Searching (log n)

» Max (n)

» Merge-Sort (nlogn)

» Bubble-Sort (n?) ... or Dynamic Programming

n=| 10 102 103 10* 105 105 107 108 1
Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.0C

Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >1°
Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388
Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ~2 hour ~9 days -

Complexity Theory:

v

v

v

v

LOG: polylog(n) =log®n (...

P : poly(n) = n° (many cool algorithms)
EXP: exp(n) = c” (usually hopeless ... but 0.00001"” not bad)
NP: verify solution in P, find solution conjectured EXP

need to load data)

(If EXP number parallel machines, then in P time)



Data Group

Data Group Meeting
Thursdays @ 12:15-1:30pm in LCR
(to be confirmed)

http://datagroup.cs.utah.edu/dbgroup.php
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