
Models of Computation for Massive Data

Jeff M. Phillips

August 28, 2013

Outline
Sequential:

I External Memory / (I/O)-Efficient

I Streaming

Parallel:

I PRAM and BSP

I MapReduce

I GP-GPU

I Distributed Computing

ru
nt

im
e

data size

RAM Model

RAM model (Von Neumann
Architecture):

I CPU and Memory

I CPU Operations (+, −, ∗, . . .)
constant time

I Data stored as words, not bits.

I Read, Write take constant
time.

RAM

CPU

Today’s Reality

What your computer actually
looks like:

I 3+ layers of memory
hierarchy.

I Small number of CPUs.

Many variations!

Disk

CPU

RAM

L2

L1

fasterbi
gg

er
4 MB

2 GB

164 GB

CPU

L1

RAM Model

RAM model (Von Neumann
Architecture):

I CPU and Memory

I CPU Operations (+, −, ∗, . . .)
constant time

I Data stored as words, not bits.

I Read, Write take constant
time.

RAM

CPU

External Memory Model

D

P

M

block I/O

I N = size of problem
instance

I B = size of disk block

I M = number of items
that fits in Memory

I T = number of items in
output

I I/O = block move
between Memory and Disk

Advanced Data Structures: Sorting, Searching

External Memory Model

D

P

M

block I/O

I N = size of problem
instance

I B = size of disk block

I M = number of items
that fits in Memory

I T = number of items in
output

I I/O = block move
between Memory and Disk

Advanced Data Structures: Sorting, Searching

Streaming Model

CPU

word 2 [n]

le
n
gt

h
m

memory

CPU makes ”one pass” on data

I Ordered set A = 〈a1, a2, . . . , am〉
I Each ai ∈ [n], size log n

I Compute f (A) or maintain f (Ai)
for Ai = 〈a1, a2, . . . , ai 〉.

I Space restricted to
S = O(poly(log m, log n)).

I Updates O(poly(S)) for each ai .

Advanced Algorithms: Approximate, Randomized

Streaming Model

CPU

word 2 [n]

le
n
gt

h
m

memory

CPU makes ”one pass” on data

I Ordered set A = 〈a1, a2, . . . , am〉
I Each ai ∈ [n], size log n

I Compute f (A) or maintain f (Ai)
for Ai = 〈a1, a2, . . . , ai 〉.

I Space restricted to
S = O(poly(log m, log n)).

I Updates O(poly(S)) for each ai .

Advanced Algorithms: Approximate, Randomized

PRAM

Many (p) processors. Access
shared memory:

I EREW : Exclusive Read
Exclusive Write

I CREW : Concurrent Read
Exclusive Write

I CRCW : Concurrent Read
Concurrent Write

Simple model, but has
shortcomings...
...such as Synchronization.

RAM

CPU1 CPU2 CPUp

Advanced Algorithms

PRAM

Many (p) processors. Access
shared memory:

I EREW : Exclusive Read
Exclusive Write

I CREW : Concurrent Read
Exclusive Write

I CRCW : Concurrent Read
Concurrent Write

Simple model, but has
shortcomings...
...such as Synchronization.

RAM

CPU1 CPU2 CPUp

Advanced Algorithms

Bulk Synchronous Parallel

Each Processor has its own Memory
Parallelism Procedes in Rounds:

1. Compute: Each processor
computes on its own Data: wi .

2. Synchronize: Each processor sends
messages to others:
si = MessSize×CommCost.

3. Barrier: All processors wait until
others done.

Runtime: max wi + max si

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

Pro: Captures Parallelism and Synchronization
Con: Ignores Locality.

Bulk Synchronous Parallel

Each Processor has its own Memory
Parallelism Procedes in Rounds:

1. Compute: Each processor
computes on its own Data: wi .

2. Synchronize: Each processor sends
messages to others:
si = MessSize×CommCost.

3. Barrier: All processors wait until
others done.

Runtime: max wi + max si

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

Pro: Captures Parallelism and Synchronization
Con: Ignores Locality.

Bulk Synchronous Parallel

Each Processor has its own Memory
Parallelism Procedes in Rounds:

1. Compute: Each processor
computes on its own Data: wi .

2. Synchronize: Each processor sends
messages to others:
si = MessSize×CommCost.

3. Barrier: All processors wait until
others done.

Runtime: max wi + max si

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

Pro: Captures Parallelism and Synchronization
Con: Ignores Locality.

MapReduce

Each Processor has full hard drive,
data items < key,value >.
Parallelism Procedes in Rounds:

I Map: assigns items to processor
by key.

I Reduce: processes all items using
value. Usually combines many
items with same key.

Repeat M+R a constant number of
times, often only one round.

I Optional post-processing step.

CPU

RAM

CPU

RAM

CPU

RAM

MAP

REDUCE

Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model

Advanced Algorithms

MapReduce

Each Processor has full hard drive,
data items < key,value >.
Parallelism Procedes in Rounds:

I Map: assigns items to processor
by key.

I Reduce: processes all items using
value. Usually combines many
items with same key.

Repeat M+R a constant number of
times, often only one round.

I Optional post-processing step.

CPU

RAM

CPU

RAM

CPU

RAM

MAP

REDUCE

Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model

Advanced Algorithms

General Purpose GPU

Massive parallelism on your desktop.
Uses Graphics Processing Unit.
Designed for efficient video rasterizing.
Each processor corresponds to pixel p

I depth buffer:
D(p) = mini ||x − wi ||

I color buffer: C (p) =
∑

i αiχi

I ...

X

wi

p

Pro: Fine grain, massive parallelism. Cheap. Harnesses Locality.
Con: Somewhat restrictive model, hierarchy. Small memory.

Distributed Computing

Many small slow processors with data.
Communication very expensive.

I Report to base station

I Merge tree

I Unorganized (peer-to-peer)

CPU

RAM
base

station

01100

01100 01100

01
10
0

01100

01100

01100

01100

Data collection or Distribution

Distributed Computing

Many small slow processors with data.
Communication very expensive.

I Report to base station

I Merge tree

I Unorganized (peer-to-peer)

CPU

RAM
base

station

01100

01100 01100

01
10
0

01100

01100

01100

01100

Data collection or Distribution

Distributed Computing

Many small slow processors with data.
Communication very expensive.

I Report to base station

I Merge tree

I Unorganized (peer-to-peer)

01100

01100
01100

01
10
0

01100

01100

01100

01100

01100

Data collection or Distribution

Distributed Computing

Many small slow processors with data.
Communication very expensive.

I Report to base station

I Merge tree

I Unorganized (peer-to-peer)

01100

01100
01100

01
10
0

01100

01100

01100

01100

01100

Data collection or Distribution

Advanced Algorithms: Approximate, Randomized

Themes

What are course goals?

I How to analyze algorithms in each model

I Taste of how to use each model

I When to use each model

Work Plan:
I 1-3 weeks each model.

I Background and Model.
I Example algorithms analysis in each model.

I/O Stream Parallel MapReduce GPU Distributed

4 5 4 4 3 3

Themes

What are course goals?

I How to analyze algorithms in each model

I Taste of how to use each model

I When to use each model

Work Plan:
I 1-3 weeks each model.

I Background and Model.
I Example algorithms analysis in each model.

I/O Stream Parallel MapReduce GPU Distributed

4 5 4 4 3 3

Class Work

1 Credit Students:

I Attend Class. (some Fridays less important)

I Ask Questions.

I If above lacking, may have quizzes.

I Scribing Notes, Video-taping Lectures, or Giving Lectures.

3 Credit Students:
Must also do a project!

I Project Proposal (Aug 30).
Approved or Rejected by Sept 4.

I Intermediate Report (Oct 23).

I Presentations (Dec 11 or 13).

Sequential Review

Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):
TM: O(n) VNA: O(n)

I Sorting:
TM: O(n2) VNA: O(n log n)

I Searching:
TM: O(n) VNA: O(log n)

Sequential Review
Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):
TM: O(n) VNA: O(n)

I Sorting:
TM: O(n2) VNA: O(n log n)

I Searching:
TM: O(n) VNA: O(log n)

Sequential Review
Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):
TM: O(n) VNA: O(n)

I Sorting:
TM: O(n2) VNA: O(n log n)

I Searching:
TM: O(n) VNA: O(log n)

Sequential Review
Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):

TM: O(n) VNA: O(n)

I Sorting:
TM: O(n2) VNA: O(n log n)

I Searching:
TM: O(n) VNA: O(log n)

Sequential Review
Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):
TM: O(n) VNA: O(n)

I Sorting:
TM: O(n2) VNA: O(n log n)

I Searching:
TM: O(n) VNA: O(log n)

Sequential Review
Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):
TM: O(n) VNA: O(n)

I Sorting:

TM: O(n2) VNA: O(n log n)

I Searching:
TM: O(n) VNA: O(log n)

Sequential Review
Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):
TM: O(n) VNA: O(n)

I Sorting:
TM: O(n2) VNA: O(n log n)

I Searching:
TM: O(n) VNA: O(log n)

Sequential Review
Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):
TM: O(n) VNA: O(n)

I Sorting:
TM: O(n2) VNA: O(n log n)

I Searching:

TM: O(n) VNA: O(log n)

Sequential Review
Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):
TM: O(n) VNA: O(n)

I Sorting:
TM: O(n2) VNA: O(n log n)

I Searching:
TM: O(n) VNA: O(log n)

Asymptotics
How large (in seconds) is:

I Searching (log n)

I Max (n)

I Merge-Sort (n log n)

I Bubble-Sort (n2) ... or Dynamic Programming

n = 10 102 103 104 105 106 107 108 109

Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.001871

Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >15 min
Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388 -
Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ∼2 hour ∼9 days -

Complexity Theory:

I log: poly log(n) = logc n (... need to load data)

I P : poly(n) = nc (many cool algorithms)

I EXP: exp(n) = cn (usually hopeless ... but 0.00001n not bad)

I NP: verify solution in P, find solution conjectured EXP
(If EXP number parallel machines, then in P time)

Asymptotics
How large (in seconds) is:

I Searching (log n)

I Max (n)

I Merge-Sort (n log n)

I Bubble-Sort (n2) ... or Dynamic Programming

n = 10 102 103 104 105 106 107 108 109

Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.001871
Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >15 min

Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388 -
Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ∼2 hour ∼9 days -

Complexity Theory:

I log: poly log(n) = logc n (... need to load data)

I P : poly(n) = nc (many cool algorithms)

I EXP: exp(n) = cn (usually hopeless ... but 0.00001n not bad)

I NP: verify solution in P, find solution conjectured EXP
(If EXP number parallel machines, then in P time)

Asymptotics
How large (in seconds) is:

I Searching (log n)

I Max (n)

I Merge-Sort (n log n)

I Bubble-Sort (n2) ... or Dynamic Programming

n = 10 102 103 104 105 106 107 108 109

Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.001871
Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >15 min

Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388 -

Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ∼2 hour ∼9 days -

Complexity Theory:

I log: poly log(n) = logc n (... need to load data)

I P : poly(n) = nc (many cool algorithms)

I EXP: exp(n) = cn (usually hopeless ... but 0.00001n not bad)

I NP: verify solution in P, find solution conjectured EXP
(If EXP number parallel machines, then in P time)

Asymptotics
How large (in seconds) is:

I Searching (log n)

I Max (n)

I Merge-Sort (n log n)

I Bubble-Sort (n2) ... or Dynamic Programming

n = 10 102 103 104 105 106 107 108 109

Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.001871
Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >15 min

Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388 -
Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ∼2 hour ∼9 days -

Complexity Theory:

I log: poly log(n) = logc n (... need to load data)

I P : poly(n) = nc (many cool algorithms)

I EXP: exp(n) = cn (usually hopeless ... but 0.00001n not bad)

I NP: verify solution in P, find solution conjectured EXP
(If EXP number parallel machines, then in P time)

Asymptotics
How large (in seconds) is:

I Searching (log n)

I Max (n)

I Merge-Sort (n log n)

I Bubble-Sort (n2) ... or Dynamic Programming

n = 10 102 103 104 105 106 107 108 109

Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.001871
Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >15 min

Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388 -
Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ∼2 hour ∼9 days -

Complexity Theory:

I log: poly log(n) = logc n (... need to load data)

I P : poly(n) = nc (many cool algorithms)

I EXP: exp(n) = cn (usually hopeless ... but 0.00001n not bad)

I NP: verify solution in P, find solution conjectured EXP
(If EXP number parallel machines, then in P time)

Asymptotics
How large (in seconds) is:

I Searching (log n)

I Max (n)

I Merge-Sort (n log n)

I Bubble-Sort (n2) ... or Dynamic Programming

n = 10 102 103 104 105 106 107 108 109

Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.001871
Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >15 min

Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388 -
Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ∼2 hour ∼9 days -

Complexity Theory:

I log: poly log(n) = logc n (... need to load data)

I P : poly(n) = nc (many cool algorithms)

I EXP: exp(n) = cn (usually hopeless ... but 0.00001n not bad)

I NP: verify solution in P, find solution conjectured EXP
(If EXP number parallel machines, then in P time)

Asymptotics
How large (in seconds) is:

I Searching (log n)

I Max (n)

I Merge-Sort (n log n)

I Bubble-Sort (n2) ... or Dynamic Programming

n = 10 102 103 104 105 106 107 108 109

Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.001871
Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >15 min

Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388 -
Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ∼2 hour ∼9 days -

Complexity Theory:

I log: poly log(n) = logc n (... need to load data)

I P : poly(n) = nc (many cool algorithms)

I EXP: exp(n) = cn (usually hopeless ... but 0.00001n not bad)

I NP: verify solution in P, find solution conjectured EXP
(If EXP number parallel machines, then in P time)

Asymptotics
How large (in seconds) is:

I Searching (log n)

I Max (n)

I Merge-Sort (n log n)

I Bubble-Sort (n2) ... or Dynamic Programming

n = 10 102 103 104 105 106 107 108 109

Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.001871
Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >15 min

Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388 -
Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ∼2 hour ∼9 days -

Complexity Theory:

I log: poly log(n) = logc n (... need to load data)

I P : poly(n) = nc (many cool algorithms)

I EXP: exp(n) = cn (usually hopeless ... but 0.00001n not bad)

I NP: verify solution in P, find solution conjectured EXP
(If EXP number parallel machines, then in P time)

Data Group

Data Group Meeting
Thursdays @ 12:15-1:30pm in LCR

(to be confirmed)

http://datagroup.cs.utah.edu/dbgroup.php

http://datagroup.cs.utah.edu/dbgroup.php

