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I Streaming
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RAM Model

RAM model (Von Neumann
Architecture):

I CPU and Memory

I CPU Operations (+, −, ∗, . . .)
constant time

I Data stored as words, not bits.

I Read, Write take constant
time.
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Today’s Reality

What your computer actually
looks like:

I 3+ layers of memory
hierarchy.

I Small number of CPUs.

Many variations!
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External Memory Model

D

P

M

block I/O

I N = size of problem
instance

I B = size of disk block

I M = number of items
that fits in Memory

I T = number of items in
output

I I/O = block move
between Memory and Disk

Advanced Data Structures: Sorting, Searching
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Streaming Model

CPU

word 2 [n]

le
n
gt

h
m

memory

CPU makes ”one pass” on data

I Ordered set A = 〈a1, a2, . . . , am〉
I Each ai ∈ [n], size log n

I Compute f (A) or maintain f (Ai )
for Ai = 〈a1, a2, . . . , ai 〉.

I Space restricted to
S = O(poly(log m, log n)).

I Updates O(poly(S)) for each ai .

Advanced Algorithms: Approximate, Randomized
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PRAM

Many (p) processors. Access
shared memory:

I EREW : Exclusive Read
Exclusive Write

I CREW : Concurrent Read
Exclusive Write

I CRCW : Concurrent Read
Concurrent Write

Simple model, but has
shortcomings...
...such as Synchronization.

RAM

CPU1 CPU2 CPUp

Advanced Algorithms
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Bulk Synchronous Parallel

Each Processor has its own Memory
Parallelism Procedes in Rounds:

1. Compute: Each processor
computes on its own Data: wi .

2. Synchronize: Each processor sends
messages to others:
si = MessSize×CommCost.

3. Barrier: All processors wait until
others done.

Runtime: max wi + max si

CPU

RAM
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RAM

Pro: Captures Parallelism and Synchronization
Con: Ignores Locality.
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MapReduce

Each Processor has full hard drive,
data items < key,value >.
Parallelism Procedes in Rounds:

I Map: assigns items to processor
by key.

I Reduce: processes all items using
value. Usually combines many
items with same key.

Repeat M+R a constant number of
times, often only one round.

I Optional post-processing step.

CPU
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MAP

REDUCE

Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model

Advanced Algorithms
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General Purpose GPU

Massive parallelism on your desktop.
Uses Graphics Processing Unit.
Designed for efficient video rasterizing.
Each processor corresponds to pixel p

I depth buffer:
D(p) = mini ||x − wi ||

I color buffer: C (p) =
∑

i αiχi

I ...

X

wi

p

Pro: Fine grain, massive parallelism. Cheap. Harnesses Locality.
Con: Somewhat restrictive model, hierarchy. Small memory.



Distributed Computing

Many small slow processors with data.
Communication very expensive.

I Report to base station

I Merge tree

I Unorganized (peer-to-peer)
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Themes

What are course goals?

I How to analyze algorithms in each model

I Taste of how to use each model

I When to use each model

Work Plan:
I 1-3 weeks each model.

I Background and Model.
I Example algorithms analysis in each model.

I/O Stream Parallel MapReduce GPU Distributed

4 5 4 4 3 3
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Class Work

1 Credit Students:

I Attend Class. (some Fridays less important)

I Ask Questions.

I If above lacking, may have quizzes.

I Scribing Notes, Video-taping Lectures, or Giving Lectures.

3 Credit Students:
Must also do a project!

I Project Proposal (Aug 30).
Approved or Rejected by Sept 4.

I Intermediate Report (Oct 23).

I Presentations (Dec 11 or 13).



Sequential Review

Turing Machines (Alan Turing 1936)

I Single Tape: MoveL, MoveR, read, write

I each constant time

I content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly
1945)

I based on ENIAC

I CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

I Scanning (max):
TM: O(n) VNA: O(n)

I Sorting:
TM: O(n2) VNA: O(n log n)

I Searching:
TM: O(n) VNA: O(log n)
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Asymptotics
How large (in seconds) is:

I Searching (log n)

I Max (n)

I Merge-Sort (n log n)

I Bubble-Sort (n2) ... or Dynamic Programming

n = 10 102 103 104 105 106 107 108 109

Search 0.000001 0.000001 0.000001 0.000002 0.000001 0.000002 0.000002 0.000007 0.001871

Max 0.000003 0.000005 0.000006 0.000048 0.000387 0.003988 0.040698 9.193987 >15 min
Merge 0.000005 0.000030 0.000200 0.002698 0.029566 0.484016 7.833908 137.9388 -
Bubble 0.000003 0.000105 0.007848 0.812912 83.12960 ∼2 hour ∼9 days -

Complexity Theory:

I log: poly log(n) = logc n (... need to load data)

I P : poly(n) = nc (many cool algorithms)

I EXP: exp(n) = cn (usually hopeless ... but 0.00001n not bad)

I NP: verify solution in P, find solution conjectured EXP
(If EXP number parallel machines, then in P time)
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Data Group

Data Group Meeting
Thursdays @ 12:15-1:30pm in LCR

(to be confirmed)

http://datagroup.cs.utah.edu/dbgroup.php

http://datagroup.cs.utah.edu/dbgroup.php

