Models of Computation for Massive Data

Jeff M. Phillips

August 28, 2013

Outline

Sequential:

- External Memory / (I/O)-Efficient
- Streaming

Parallel:

- PRAM and BSP
- MapReduce
- GP-GPU
- Distributed Computing

RAM Model

RAM model (Von Neumann
Architecture):

- CPU and Memory
- CPU Operations ($+,-, *, \ldots$) constant time
- Data stored as words, not bits.
- Read, Write take constant time.

Today's Reality

What your computer actually looks like:

- 3+ layers of memory hierarchy.
- Small number of CPUs.

Many variations!

RAM Model

RAM model (Von Neumann
Architecture):

- CPU and Memory
- CPU Operations ($+,-, *, \ldots$) constant time
- Data stored as words, not bits.
- Read, Write take constant time.

External Memory Model

- $N=$ size of problem instance
- $B=$ size of disk block
- $M=$ number of items that fits in Memory
- $T=$ number of items in output
- $1 / \mathrm{O}=$ block move between Memory and Disk

External Memory Model

- $N=$ size of problem instance
- $B=$ size of disk block
- $M=$ number of items that fits in Memory
- $T=$ number of items in output
- $1 / \mathrm{O}=$ block move between Memory and Disk

Advanced Data Structures: Sorting, Searching

Streaming Model

CPU makes "one pass" on data

- Ordered set $A=\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle$
- Each $a_{i} \in[n]$, size $\log n$
- Compute $f(A)$ or maintain $f\left(A_{i}\right)$ for $A_{i}=\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle$.
- Space restricted to $S=O($ poly $(\log m, \log n))$.
- Updates $O($ poly $(S))$ for each a_{i}.

Streaming Model

CPU makes "one pass" on data

- Ordered set $A=\left\langle a_{1}, a_{2}, \ldots, a_{m}\right\rangle$
- Each $a_{i} \in[n]$, size $\log n$
- Compute $f(A)$ or maintain $f\left(A_{i}\right)$ for $A_{i}=\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle$.
- Space restricted to $S=O($ poly $(\log m, \log n))$.
- Updates $O(\operatorname{poly}(S))$ for each a_{i}.

PRAM

Many (p) processors. Access shared memory:

- EREW : Exclusive Read Exclusive Write
- CREW : Concurrent Read Exclusive Write
- CRCW : Concurrent Read Concurrent Write

Simple model, but has shortcomings...
...such as Synchronization.

PRAM

Many (p) processors. Access shared memory:

- EREW : Exclusive Read Exclusive Write
- CREW : Concurrent Read Exclusive Write
- CRCW : Concurrent Read Concurrent Write

Simple model, but has shortcomings...

RAM

...such as Synchronization.
Advanced Algorithms

Bulk Synchronous Parallel

Each Processor has its own Memory Parallelism Procedes in Rounds:

1. Compute: Each processor computes on its own Data: w_{i}.
2. Synchronize: Each processor sends messages to others:
$s_{i}=$ MessSize \times CommCost.
3. Barrier: All processors wait until others done.

Runtime: $\max w_{i}+\max s_{i}$

Pro: Captures Parallelism and Synchronization
Con: Ignores Locality.

Bulk Synchronous Parallel

Each Processor has its own Memory Parallelism Procedes in Rounds:

1. Compute: Each processor computes on its own Data: w_{i}.
2. Synchronize: Each processor sends messages to others: $s_{i}=$ MessSize \times CommCost .
3. Barrier: All processors wait until others done.
Runtime: $\max w_{i}+\max s_{i}$

Pro: Captures Parallelism and Synchronization
Con: Ignores Locality.

Bulk Synchronous Parallel

Each Processor has its own Memory Parallelism Procedes in Rounds:

1. Compute: Each processor computes on its own Data: w_{i}.
2. Synchronize: Each processor sends messages to others: $s_{i}=$ MessSize \times CommCost .
3. Barrier: All processors wait until others done.
Runtime: $\max w_{i}+\max s_{i}$

Pro: Captures Parallelism and Synchronization
Con: Ignores Locality.

MapReduce

Each Processor has full hard drive, data items < KEY, VALUE $>$.
Parallelism Procedes in Rounds:

- Map: assigns items to processor by KEY.
- Reduce: processes all items using VALUE. Usually combines many items with same KEY.
Repeat $M+R$ a constant number of times, often only one round.
- Optional post-processing step.

Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model

MapReduce

Each Processor has full hard drive, data items < KEY, VALUE $>$.
Parallelism Procedes in Rounds:

- Map: assigns items to processor by KEY.
- Reduce: processes all items using VALUE. Usually combines many items with same KEY.
Repeat $M+R$ a constant number of times, often only one round.
- Optional post-processing step.

Pro: Robust (duplication) and simple. Can harness Locality
Con: Somewhat restrictive model

General Purpose GPU

Massive parallelism on your desktop. Uses Graphics Processing Unit. Designed for efficient video rasterizing. Each processor corresponds to pixel p

- depth buffer:

$$
D(p)=\min _{i}\left\|x-w_{i}\right\|
$$

- color buffer: $C(p)=\sum_{i} \alpha_{i} \chi_{i}$
- ...

Pro: Fine grain, massive parallelism. Cheap. Harnesses Locality.
Con: Somewhat restrictive model, hierarchy. Small memory.

Distributed Computing

Many small slow processors with data.
Communication very expensive.

- Report to base station
- Merge tree
- Unorganized (peer-to-peer)

Data collection or Distribution

Distributed Computing

Many small slow processors with data. Communication very expensive.

- Report to base station
- Merge tree
- Unorganized (peer-to-peer)

Data collection or Distribution

Distributed Computing

Many small slow processors with data. Communication very expensive.

- Report to base station
- Merge tree
- Unorganized (peer-to-peer)

Data collection or Distribution

Distributed Computing

Many small slow processors with data. Communication very expensive.

- Report to base station
- Merge tree
- Unorganized (peer-to-peer)

Data collection or Distribution

Themes

What are course goals?

- How to analyze algorithms in each model
- Taste of how to use each model
- When to use each model

Themes

What are course goals?

- How to analyze algorithms in each model
- Taste of how to use each model
- When to use each model

Work Plan:

- 1-3 weeks each model.
- Background and Model.
- Example algorithms analysis in each model.

I/O	Stream	Parallel	MapReduce	GPU	Distributed
4	5	4	4	3	3

Class Work

1 Credit Students:

- Attend Class. (some Fridays less important)
- Ask Questions.
- If above lacking, may have quizzes.
- Scribing Notes, Video-taping Lectures, or Giving Lectures.

3 Credit Students:
Must also do a project!

- Project Proposal (Aug 30). Approved or Rejected by Sept 4.
- Intermediate Report (Oct 23).
- Presentations (Dec 11 or 13).

Sequential Review

Sequential Review

Turing Machines (Alan Turing 1936)

- Single Tape: MoveL, MoveR, read, write
- each constant time
- content pointer memory, infinite tape (memory)

Sequential Review

Turing Machines (Alan Turing 1936)

- Single Tape: MoveL, MoveR, read, write
- each constant time
- content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly 1945)

- based on ENIAC
- CPU + Memory (RAM): read, write, op = constant time

Sequential Review

Turing Machines (Alan Turing 1936)

- Single Tape: MoveL, MoveR, read, write
- each constant time
- content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly 1945)

- based on ENIAC
- CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

- Scanning (max):

Sequential Review

Turing Machines (Alan Turing 1936)

- Single Tape: MoveL, MoveR, read, write
- each constant time
- content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly 1945)

- based on ENIAC
- CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

- Scanning (max):

TM: $O(n)$ VNA: $O(n)$

Sequential Review

Turing Machines (Alan Turing 1936)

- Single Tape: MoveL, MoveR, read, write
- each constant time
- content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly 1945)

- based on ENIAC
- CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

- Scanning (max): TM: $O(n)$ VNA: $O(n)$
- Sorting:

Sequential Review

Turing Machines (Alan Turing 1936)

- Single Tape: MoveL, MoveR, read, write
- each constant time
- content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly 1945)

- based on ENIAC
- CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

- Scanning (max): TM: $O(n)$ VNA: $O(n)$
- Sorting:

$$
\text { TM: } O\left(n^{2}\right) \quad \text { VNA: } O(n \log n)
$$

Sequential Review

Turing Machines (Alan Turing 1936)

- Single Tape: MoveL, MoveR, read, write
- each constant time
- content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly 1945)

- based on ENIAC
- CPU + Memory (RAM): read, write, op = constant time

How fast are the following?

- Scanning (max): TM: $O(n)$ VNA: $O(n)$
- Sorting: TM: $O\left(n^{2}\right) \quad$ VNA: $O(n \log n)$
- Searching:

Sequential Review

Turing Machines (Alan Turing 1936)

- Single Tape: MoveL, MoveR, read, write
- each constant time
- content pointer memory, infinite tape (memory)

Von Neumann Architecture (Von Neumann + Eckert + Mauchly 1945)

- based on ENIAC
- CPU + Memory (RAM): read, write, op $=$ constant time

How fast are the following?

- Scanning (max): TM: $O(n)$ VNA: $O(n)$
- Sorting: TM: $O\left(n^{2}\right) \quad$ VNA: $O(n \log n)$
- Searching:

TM: $O(n) \quad$ VNA: $O(\log n)$

Asymptotics

How large (in seconds) is:

- Searching $(\log n)$
- Max (n)
- Merge-Sort $(n \log n)$
- Bubble-Sort (n^{2}) ... or Dynamic Programming

$n=$	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	1
Search	0.000001	0.000001	0.000001	0.000002	0.000001	0.000002	0.000002	0.000007	0.00

Asymptotics

How large (in seconds) is:

- Searching $(\log n)$
- Max (n)
- Merge-Sort $(n \log n)$
- Bubble-Sort (n^{2}) ... or Dynamic Programming

$n=$	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
Search	0.000001	0.000001	0.000001	0.000002	0.000001	0.000002	0.000002	0.000007
Max	0.000003	0.000005	0.000006	0.000048	0.000387	0.003988	0.040698	9.193987

Asymptotics

How large (in seconds) is:

- Searching $(\log n)$
- Max (n)
- Merge-Sort $(n \log n)$
- Bubble-Sort (n^{2}) \ldots or Dynamic Programming

$n=$	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	1
Search	0.000001	0.000001	0.000001	0.000002	0.000001	0.000002	0.000002	0.000007	0.00
Max	0.000003	0.000005	0.000006	0.000048	0.000387	0.003988	0.040698	9.193987	>15
Merge	0.000005	0.000030	0.000200	0.002698	0.029566	0.484016	7.833908	137.9388	

Asymptotics

How large (in seconds) is:

- Searching $(\log n)$
- Max (n)
- Merge-Sort $(n \log n)$
- Bubble-Sort (n^{2}) \ldots or Dynamic Programming

$n=$	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	1
Search	0.000001	0.000001	0.000001	0.000002	0.000001	0.000002	0.000002	0.000007	0.00
Max	0.000003	0.000005	0.000006	0.000048	0.000387	0.003988	0.040698	9.193987	>15
Merge	0.000005	0.000030	0.000200	0.002698	0.029566	0.484016	7.833908	137.9388	
Bubble	0.000003	0.000105	0.007848	0.812912	83.12960	~ 2 hour	~ 9 days	-	

Asymptotics

How large (in seconds) is:

- Searching $(\log n)$
- Max (n)
- Merge-Sort $(n \log n)$
- Bubble-Sort (n^{2}) ... or Dynamic Programming

$n=$	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	1
Search	0.000001	0.000001	0.000001	0.000002	0.000001	0.000002	0.000002	0.000007	0.00
Max	0.000003	0.000005	0.000006	0.000048	0.000387	0.003988	0.040698	9.193987	>15
Merge	0.000005	0.000030	0.000200	0.002698	0.029566	0.484016	7.833908	137.9388	
Bubble	0.000003	0.000105	0.007848	0.812912	83.12960	~ 2 hour	~ 9 days	-	

Complexity Theory:

- LOG: poly $\log (n)=\log ^{c} n$ (... need to load data)

Asymptotics

How large (in seconds) is:

- Searching $(\log n)$
- Max (n)
- Merge-Sort $(n \log n)$
- Bubble-Sort (n^{2}) ... or Dynamic Programming

$n=$	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}	1
Search	0.000001	0.000001	0.000001	0.000002	0.000001	0.000002	0.000002	0.000007	0.00
Max	0.000003	0.000005	0.000006	0.000048	0.000387	0.003988	0.040698	9.193987	>15
Merge	0.000005	0.000030	0.000200	0.002698	0.029566	0.484016	7.833908	137.9388	
Bubble	0.000003	0.000105	0.007848	0.812912	83.12960	~ 2 hour	~ 9 days	-	

Complexity Theory:

- LOG: poly $\log (n)=\log ^{c} n$ (... need to load data)
- P : $\operatorname{poly}(n)=n^{c}$ (many cool algorithms)

Asymptotics

How large (in seconds) is:

- Searching $(\log n)$
- Max (n)
- Merge-Sort $(n \log n)$
- Bubble-Sort (n^{2}) \ldots or Dynamic Programming

$n=$	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
Search	0.000001	0.000001	0.000001	0.000002	0.000001	0.000002	0.000002	0.000007
Max	0.000003	0.000005	0.000006	0.000048	0.000387	0.003988	0.040698	9.193987
Merge	0.000005	0.000030	0.000200	0.002698	0.029566	0.484016	7.833908	137.9388
Bubble	0.000003	0.000105	0.007848	0.812912	83.12960	~ 2 hour	~ 9 days	-

Complexity Theory:

- LOG: poly $\log (n)=\log ^{c} n$ (... need to load data)
- P : $\operatorname{poly}(n)=n^{c}$ (many cool algorithms)
- EXP: $\exp (n)=c^{n}$ (usually hopeless \ldots but 0.00001^{n} not bad)

Asymptotics

How large (in seconds) is:

- Searching $(\log n)$
- Max (n)
- Merge-Sort $(n \log n)$
- Bubble-Sort (n^{2}) \ldots or Dynamic Programming

$n=$	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
Search	0.000001	0.000001	0.000001	0.000002	0.000001	0.000002	0.000002	0.000007
Max	0.000003	0.000005	0.000006	0.000048	0.000387	0.003988	0.040698	9.193987
Merge	0.000005	0.000030	0.000200	0.002698	0.029566	0.484016	7.833908	137.9388
Bubble	0.000003	0.000105	0.007848	0.812912	83.12960	~ 2 hour	~ 9 days	-

Complexity Theory:

- LOG: poly $\log (n)=\log ^{c} n$ (... need to load data)
- P : $\operatorname{poly}(n)=n^{c}$ (many cool algorithms)
- EXP: $\exp (n)=c^{n}$ (usually hopeless \ldots but 0.00001^{n} not bad)
- NP: verify solution in P, find solution conjectured EXP (If EXP number parallel machines, then in P time)

Data Group

Data Group Meeting
Thursdays @ 12:15-1:30pm in LCR
(to be confirmed)

http://datagroup.cs.utah.edu/dbgroup.php

