```
MCMD L7.5 : Streaming | Reservoir Sampling
```

Streaming Algorithms
Stream : $A=<a 1, a 2, \ldots, a m>$
ai in [n] size $\log n$
Compute $f(A)$ in poly $(\log m, \log n)$ space
\qquad
Goal: randomly sample k elements from stream
O(k* $\log \mathrm{n}+\log \mathrm{m}$) space

Simpler question: randomly sample one element from stream
$0(\log n+\log m)$ space
$0(\log n)$ to store element S
$0(\log m)$ to keep count of how many seen so far C
???
wp k/i keep $a_{-} i$ in register, replace old S w/ $a_{-} i$ [Vitter '85]

Analysis:

```
What is probability a_m should be kept? k/m -- good.
What is probability a_{m-1} should be kept?
    (k/(m-1)) * ( 1 - (k/m)(1/k) = (m-1)/m) ) = k/m -- good.
            [kept] [not replaced by a_m]
Inductively, ignoring a_{i+1} ... a_m
    what is probability a_i should be kept to that point? k/i
    Assume a_{i+1} ... a_m kept with correct probability: total (m-i)/k * k/m =
(m-i)/m
        a_i in S after processed wp k/i
        not replaced afterwards wp 1-(m-i)/m = i/m
        total (kept) * (not replaced) = (k/i) * (i/m) = k/m -- good.
```

(eps,delta)-Approximate Counts:
Consider Interval I subset [n]
count(I) $=\mid\left\{a_{-} i\right.$ in A $\left.\mid a_{-} i \operatorname{in} I\right\} \mid$

Goal: Data structure S s.t. for query interval $\operatorname{Pr}[$ | S(I) - count(I) | > eps * m] < delta

```
+++++++++++++++++++++++++++++
```

Chernoff Inequality
Let \{X_1, X_2, ..., X_r\} be independent RVs
Let Delta_i = max(X_i) - min(X_i)
Let $M=$ sum_i $X_{-} i$
$\operatorname{Pr}\left[\mid \mathrm{M}-\operatorname{sum} _\mathrm{E}\right.$ E X_i] | > alpha $]<2 \exp (-2$ alpha^2 / sum_i (Delta_i)^2)
often: Delta $=$ max_i Delta_i and $E\left[X_{-} i\right]=0$ then:
$\operatorname{Pr}[|M|>a l p h a]<2 \exp (-2$ alpha^2/ r Delta^2)
++++++++++++++++++++++++++++++++

Let S be a random sample of size $\mathrm{k}=0((1 / \mathrm{eps} \wedge 2)$ log (1/delta)) $S(I)=\mid\{S$ cap $I\} \mid *(m / k)$

Each s_i in I wp (count(I)/m)

```
    -> RV Y_i = {1 if s_i in I, 0 if s_i !in I}
```

 \(\mathrm{E}\left[\mathrm{Y} _i\right]=\operatorname{count}(\mathrm{I}) / \mathrm{m}\)
 -> RV X_i = (Y_i - count(I)/m)/k
 \(\mathrm{E}\left[\mathrm{X} _\mathrm{i}\right]=0\)
 Delta < 1/k
 $M=$ sum_i $X_{-} i==$ error on count estimate by S
$\operatorname{Pr}[|M|>e p s]<2 \exp (-2 \operatorname{eps} \wedge 2 /(k *(1 / k \wedge 2))<d e l t a$
Solve for k in eps, delta:

```
    2 exp(- 2 eps^2 k) < delta
    exp(2 eps^2 k) > 2/delta
    2 eps^2 k > ln(2/delta)
    k > (1/2) (1/eps^2) ln (2/delta)
        = 0((1/eps^2) log (1/delta)
```

