
MCMD L4 : I/O-Efficient Searching with B-Trees

Disk <---I/O---> RAM <--> CPU
N = size of problem
B = block size
M = size of memory
T = size of output
I/O = block move between disk + memory

Sorting N items:
 Theta((N/B) log_{M/B} (N/B)) << N log_2 N

Internal Memory Searching

Binary Tree:

 * (root)
 * *
 * * * *
 * * * * * * * *
[][] [][] [][] [][] [][] [][] [][] [][]

 - all elements at leafs, height log_2 N.
 - search traces a (root)-(leaf) path
 -> Search : O(log_2 N) I/Os
 -> Range query : O(log_2 N + T) I/Os

External Trees:
 BFS blocking:

--
| * (root) |
| * * |
* * * *
*
[][]

 - each block has height O(log_2 B),
 width theta(B)
 - block height = O(log_2 N)/O(log_2 B) = O(log_B N)
 - output also blocked in sorted order
 - range query : O(log_B N + T/B) I/Os

Optimal: O(N/B) space O(log_B N + T/B) query

--
What about updates? Stay balanced? rotation?

Difficult to maintain block structure on rotation:

: : ----------
| (y) | | (x) |
----------------------- -> | [L] | (y) --------
| (x) | (z) | | [R]|--| (z) |
| [L] [R] | [] [] | -----------| [] [] |
----------------------- |__________|

- tough to make leaves blocked

B Trees

Theta(B) - fan out

--
* (root)
*
[][]

- allow variable degree fan-out. Split and merge nodes.

--
(a,b) Tree

- each node has between a and b fan-out (except root)
- all leaves on same level (balanced)
- root has degree in [2, b].

- O(N) space. Height O(log_a N)
- Let a,b = Theta(B) -> each leaf and node in one block
- O(N/B) blocks, O(log_B N + T/B) query

INSERT(x):
Search tree, insert x at leaf v
If v has b+1 elements/children
 Split v:
 - make nodes v' + v'' with (a,b) elements {a <= b/2}

 - remove v from parent(v)
 - insert v' and v'' in parent(v)
 Check if parent(v) needs to be split (recursively up the tree)
Touches O(log_a N) nodes.

DELETE(x):
Search tree for x, delete x from leaf v
If v has a-1 elements/children
 Fuse v to sibling v'
 - move children of v' to v
 - delete v' from parent(v)
 (if parent(v) root with 1 child v, delete root)
 - If (v has >b) Split(v)
 Check if parent(v) needs to be fused with sibling, and recursively...
Touches O(log_a N) nodes.

Rebalancing:
 Let b > 2a --> update causes O(1/a) rebalancing ops (amortized)
 (hard to show)
 Let b = 4a
 Split: leaf contains 4a/2 = 2a (a far from a or b=4a)
 Fuse: leaf contains (2a - 5a). Split if >3a to 3/2 a - 5/2 a
 (both at least a/2 far from a or b=4a)

Summary:
 (a,b) tree w/ a,b = Theta(B) (i.e. b = B-10, a = B/2 - 21)
 - O(N/B) blocks
 - O(log_B N + T/B) range query I/Os
 - O(log_B N) insert/delete

B-Tree with elements in leaves := B^+-Tree
Weight Balanced B-Tree has more spread out "rebalancing".

Construction in O((N/B) log_{M/B} N/B) I/Os
 - sort elements. chunk to blocks as leaves.
 - build tree level-by-level bottom up

Does an (a,b) ever become unbalanced
 - all inserts to right?
 - all deletes from left?
(nope, only changes level at root)

Note uses sorting to build. But cannot sort efficiently by inserting into a

tree, element-by-element or even block-by-block.

