MCMD L18 : MapReduce | filtering for MST
MapReduce
D = Massive Data
$\operatorname{Mapper}(\mathrm{D}): \mathrm{d}$ in $\mathrm{D} \rightarrow$ (key, value) $\}$
Shuffle(\{(key,value)\}) -> group by "key"
Reducer (\{"key,value_i\}) -> ("key, f(value_i))
Can repeat, constant \# of rounds

```
MRC Model:
    N = size of data
    O(N^{1-eps}) memory on single machine (eps>0 constant)
        so can't fit all on one machine
    at most N^{1-eps} machines total
    Shuffle = O(N^{2-2eps})
        so can't shuffle more data than memory
    Constant # rounds
```

"Filtering" idea:
consider subproblems $->$ drop many data points
recur until fits in memory, solve in-core
[Lattanzi, Moseley, Suri, Vassilvitskii 2011]
Given graph G=(V,E)
Assume $|V|=n$ and $|E|=m=n^{\wedge\{1+c\}}$
typical large graphs have c in [0.08, 0.5]
size of input is $N=0\left(n^{\wedge}\{1+c\}\right)$

Find MST: (minimum spanning tree)
<MSF = minimum spanning forest, may not be connected>
each machine has memory $\mathrm{M}=2 * \mathrm{n}^{\wedge}\{1+e \mathrm{e} s\}=0\left(\mathrm{~N}^{\wedge}\{1\right.$-gamma\})
for $0<e p s<c$ and gamma > 0
(otherwise $|G|<=M$)
$P=\operatorname{Theta}\left(\mathrm{n}^{\wedge}\{\mathrm{c}-\mathrm{eps}\}\right)$ so data just fits on machines

```
Map:
Partition E -> {E1,E2,...Ek}
    so E_i = Theta(M)
    k = 2*(|E|/M)
    (each edge e a random number i in [k]) -> (i,e)
```

Reduce:
compute MSF(V,Ei) -> (V,Ei')
E' = Union_i Ei'
If |E'| < M, solve on 1 machine
else : repeat M+R

Proof:
3 parts (A) gives correct MST
(B) finishes in constant number of rounds
(C) no node has more than $2 * \mathrm{n}^{\wedge\{1+e p s\}}$ whp.
(A) Correctness:

Each edge thrown out was part of cycle, and was longer than all other edges.
-> not in MST
-> no edges in full MST thrown out.
(B): Constant number of rounds:

Each round decreases the size by a factor about $\mathrm{n}^{\wedge}\{\mathrm{eps}\}$.
$\mathrm{m} _1=\left|E^{\prime}\right|<=k(n-1)=0\left(n^{\wedge}\{1+c-e p s\}\right)$
$\mathrm{m}_{-} \mathrm{r}=\mathrm{m} _\{\mathrm{r}-1\} / \mathrm{n}$ ^eps
-> requires c/eps iterations
Another view: If $\mathrm{n}^{\wedge}\{1+\mathrm{c}\}=\mathrm{N}$, and $\mathrm{n}^{\wedge\{1+e p s\}}=\mathrm{M}$, then requires $\mathrm{R}=$ log_M N rounds.
$\mathrm{R}=$ log_M N seems to be the goal in the number of rounds needed for hard problems...
(C) no Memory overflow:

Lemma. No machine has |Ei| > M = 2 * $\mathrm{n} \wedge\{1+e \mathrm{eps}\}$ wp > 1/2 (follows from Markov bound)

```
Let {X_1, X_2, ..., X_r} be independent RVs
Let Delta_i = max(X_i) - min(X_i)
Let S = sum_i X_i
Pr[ | S - sum_i E[X_i] | > alpha ] < 2 exp(- 2 alpha^2 / sum_i
(Delta_i)^2)
often: Delta = max_i Delta_i then:
Pr[ |S - sum_i E[X_i]| > alpha ] < 2 exp(- 2 alpha^2/ r Delta^2)
+++++++++++++++++++++++++++++++++
Let X_i represent edge i is in node j
Delta_i = 1-0 = 1; Delta = 1
S = number of edges on node j
sum_i E[X_i] = n^{1+eps}
Let alpha = n^{1+eps}
Pr[ S > 2 * n^{1+eps}] <=
    Pr[ |S - n^{1+eps}| > n^{1+eps}] <
    2 exp( -2 (n^{1+eps})^2 / n^{1+c} (1)^2)
    <= 2 exp(-2 n^{1+2eps-c}) let beta = 1+eps-c be a constant, beta >
0
with high probability (whp) (probability <= e^{-poly(n)}):
    any node j has fewer than 2 * n^{1+eps} edges
to show for all k = n^{1+eps} nodes, we need to use union bound:
    no node has probability greater than e^{-n^{beta+eps}}/k
    easy to show that n^{beta+eps}/log(n^{1+eps}) > n^beta
    all nodes j has fewer than 2 * n^{1+eps} edge whp
```

Also solves \# connected components Or assign component id to each vertex

Also w/ "filtering"

- maximal matchings
- approximate maximal weighted matchings
- minimum cut

