
MCMD L13 : Parallel | Sorting

PRAM

1 disk
P processors
n input items

Each time step a processor can:
read, write, operate (+,-,*,<<,...)

shared memory: CRCW (although CREW more realistic)

Sort (n):
INPUT A = [a_1, a_2, ..., a_n]
Output B = [b_1, b_2, ..., b_n]
so for each a_i = b_j where i->j 1to1, and b_i < b_{i+1}

Sequential? O(n log n)

PRAM: O(log^2 n) Ptime, O(n log n) work

Surplus log n

(possible O(log n) Ptime, O(n log n) work)

Merging:
Input A = [a_1, a_2, ..., a_n]
 B = [b_1, b_2, ..., b_n]
 (both sorted, increasing)
Output C = [c_1, c_2, ..., c_{2n}]
 sorted, each c_i = some a_j, or b_j (i.e. sorted merge)

Sequential O(n)

PRAM: O(n) work, O(log n) Ptime

**** Interlude ****
How to get from Merging to Sorting?
 --> Merge Sort!
Arbitrary binary splits into subpieces of size 1 (free)
O(log n) rounds of "merging" sorted lists (each O(log n) Ptime + O(n) work)

How to solve merging problem?
 --> break to arbitrarily small subproblems (i.e. p of size O(n/p))
 solve subproblems sequentially on each CPU

Ranking Problem:

Input A = [a_1, a_2, ..., a_n]
 B = [b_1, b_2, ..., b_n]
 (both sorted, increasing)

Output: A' = [a'_1,...,a'_n]
 B' = [b'_1,...,b'_n]
 where a'_i is rank of a_i in B
 b'_i is rank of b_i in A
 i.e. j = rank(i,B) is largest index j of B s.t. a_i > b_j

Sequential : O(n) time -- scan both lists in parallel, keeping counters in
each

Goal: O(n) work, O(log n) Ptime

First Naive O(n log n) work, O(log n) time
 - for each i in A, using binary search in B, to find rank(i,B)
 same for each i in B.
 - O(n) elements, each in O(log n) time.
 (surplus-log !)

Split A (and B) into n/log n equal size chunks (size log n each)
 A1 = {a_1, ..., a_{log n}}
 A2 = {a_{1 + log n}, ..., a_{2 log n}}
 ...
 A{n/log n} = {a_{n-log n}, ..., a_n}}
same for B.

For each Ai1 find which chunk of B it is in.
 O(n/log n) * O(log n) work in O(log n) Ptime.
Same for each Bi1 in mapped to A

For each chunk of Ai, mapped to chunk Bj, perform sequential Rank (offset by
index of Bj).
Same with chunks Bj to chunk Ai.

 O(n log n) in O(log n) time/work each = O(n) work, O(log n) Ptime.

Are we done? Where is the problem?

After we get to the end of chunk Bj, we can no longer be confident in our
answer for rank (i,B), since it likely spills into B_{j+1} and beyond.

However, solving rank(i,B) (for all i) can be used to solve rank(i,A) (for all
i).
A = 1 3 6 7
B = 2 4 5 8
rank(A,B) = 0 1 3 3
rank(B,A) = 1 2 2 4

rank(i,B) = j + rank(i+1,B) = j+k
means that for any l in [j+1,j+k] has rank(l,A) = i

So either each Ai can be ranked in matched chunk Bj, or it can be inversely
ranked using chunk Bj or B{j+1}, or larger.

Compute Merge(A,B) given rank(A,B) + rank(B,A)

#####################
for i=1 to n PARDO
 C(i + rank(i,B)) := A(i)
for i=1 to n PARDO
 C(i + rank(i,A)) := B(i)
#####################

O(n) work, O(1) time.

So Rank O(n) Work in O(log n) Ptime --> merge O(n) Work + O(log n) Ptime
and
after O(log n) rounds of merges (merge sort)
Sorting O(n log n) Work + O(log^2 n) Ptime.

